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Abstract: A significant number of discoveries in past two decades have established the importance
of long-distance signaling in controlling plant growth, development, and biotic and abiotic stress
responses. Numerous mobile signals, such as mRNAs, proteins, including RNA-binding proteins,
small RNAs, sugars, and phytohormones, are shown to regulate various agronomic traits such as
flowering, fruit, seed development, and tuberization. Potato is a classic model tuber crop, and
several mobile signals are known to govern tuber development. However, it is unknown if these
mobile signals have any synergistic effects on potato crop improvement. Here, we employed a
simple innovative strategy to test the cumulative effects of a key mobile RNA, StBEL5, and its RNA-
binding proteins, StPTB1, and -6 on tuber productivity of two potato cultivars, Solanum tuberosum cv.
Désirée and subspecies andigena, using a multi-gene stacking approach. In this approach, the coding
sequences of StBEL5 and StPTB1/6 are driven by their respective native promoters to efficiently
achieve targeted expression in phloem for monitoring tuber productivity. We demonstrate that this
strategy resulted in earliness for tuberization and enhanced tuber productivity by 2–4 folds under
growth chamber, greenhouse, and field conditions. This multi-gene stacking approach could be
adopted to other crops, whose agronomic traits are governed by mobile macromolecules, expanding
the possibilities to develop crops with improved traits and enhanced yields.

Keywords: BEL5; tuber productivity; long-distance signaling; mobile signal; PTB

1. Introduction

Long-distance macromolecular signaling enables plants to modulate developmental
events in response to environmental cues at the whole-plant level. Numerous mobile sig-
nals (mRNAs, small RNAs, proteins, small peptides, phytohormones, etc.) ferry the phloem
cell system and govern a range of physiological activities [1–10]. Mobile signals have been
identified in Arabidopsis thaliana, potato (Solanum tuberosum), tomato (Solanum lycopersicum),
pumpkin (Cucurbita maxima), melon (Cucumis melo), wheat (Triticum aestivum), rice (Oryza
sativa), maize (Zea mays), pear (Pyrus communis), and apple (Malus domestica) that regulate
sink formation and impact crop productivity. For example, phloem-mobile microRNAs
regulate grain size, shape, and quality in cereals [11,12]. In developing rice endosperm,
OsRBP-P (RNA-BINDING PROTEIN-P) facilitates the transport of GLUTELIN and PRO-
LAMINE mRNAs through the endoplasmic reticulum to regulate kernel development [13].
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In Arabidopsis, a mobile transcription factor (TF), HY5, coordinates carbon assimilation
and improves the nutrient-use efficiency of plants [14,15]. mRNAs from the FLOWERING
LOCUS T (FT) clade function as long-distance signals to regulate flowering [16–18]. The
RNA-BINDING PROTEIN (RBP), CmRBP50, was identified from the pumpkin phloem
sap and forms a ribonucleoprotein (RNP) complex containing six mRNAs and sixteen
proteins [19]. This complex provides stability and facilitates RNA transport. Although
numerous mRNAs are detected in the phloem sap [20–24], only a few select mRNAs are
known to have physiological relevance [25–31].

Several studies in the past two decades have established potato as a valuable model sys-
tem for studying the phloem-mobile signals regulating storage organ development [32–35].
The first phloem-mobile mRNA in potato, StBEL5, a BEL-like TF moves from leaf to stolon
(a belowground modified stem) to regulate tuberization [32] (Figure 1A). In stolons, StBEL5
works in tandem with a KNOTTED1-like (KNOX) TF to control the expression of key
tuberization genes [36]. This tandem complex regulates the expression of the FT ortholog
StSP6A [34] to mediate the onset of tuber formation [37–39] (Figure 1A). Movement and
stability of StBEL5 is shown to be controlled by two RBPs from the family of POLYPYRIMI-
DINE TRACT-BINDING (PTB) proteins, designated as StPTB1 and -6. These PTB proteins
bind to the StBEL5 mRNA to form an RNP complex present in the phloem [40] (Figure 1A).
The mobility of StBEL5 RNA and a significant function of specific StPTBs is crucial in
protecting, transporting, and localizing its transcript and controlling its function. Earlier,
we have demonstrated that the individual overexpression of StBEL5 or StPTB1 or StPTB6
results in enhanced tuber productivity in potato [32,40]. However, if tandem expression
of these mobile signals has any cumulative effects on tuber productivity have not yet
been tested. In this study, we employed a multi-gene approach using a key mobile RNA,
StBEL5, and its RNA-binding proteins, StPTB1 and -6, driven by their respective native
promoters and demonstrate up to 4-fold tuber weight increase under both greenhouse
and field conditions. The strategy is simple and effective in the improvement of tuber
productivity in potato and could have wider applications in other crops.
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Figure 1. Schematics of potato tuberization pathway driven by mobile factors and design of chimeric
constructs. (A) Illustration of potato tuberization pathway driven by a mobile RNA (StBEL5), StSP6A
protein, and RNA-BINDING PROTEINS (StPTB1/6) in response to photoperiod. (B) Schematics
of the chimeric constructs (CCs): CC-1, CC-2, and CC-3. The plasmid sizes of CCs containing the
binary vector backbone were 20.3 kb, 18.8 kb, and 24.2 kb for CC-1, CC-2, and CC-3, respectively.
Abbreviations: pr, Promoter; KanR, Kanamycin resistance cassette; kb, Kilobase; LB, Left border; NosT,
NOPALINE SYNTHASE TERMINATOR; NPTII, NEOMYCIN PHOSPHOTRANSFERASE; RB, Right
border; Ubi, UBIQUITIN; UbiT, UBIQUITIN TERMINATOR; Ubi3T; UBIQUITIN 3 TERMINATOR.
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2. Results
2.1. Assessment of Earliness for Tuberization under In Vitro and Greenhouse Conditions

To validate our hypothesis, chimeric constructs (CCs) were designed that express
StBEL5 mRNA and the two StPTB proteins in tandem and are driven by their respective
native promoters (Figure 1B). These constructs (CC-1, CC-2, and CC-3) utilizing a com-
bination of StBEL5 plus its RNA-BINDING PROTEINS, StPTB1 and -6, were cloned into
a pCAMBIA binary vector, followed by mobilization to Agrobacterium tumefaciens strain
GV2260 (Figure 1B). These chimeric constructs were used for the generation of several
transgenic CC lines in Désirée and two select lines per chimeric construct were used for
further experiments (Figure 2A,B; Supplementary Figure S1). We selected potato cultivar
Désirée because it is a day-neutral plant and can be grown in the greenhouse under normal
long-day as well as in the field conditions of India. These multi-gene lines, designated as
CC-1, CC-2, and CC-3, exhibited growth and shoot architecture comparable to WT having
no phenotypic abnormalities (Figure 2B).
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Figure 2. Evaluation of earliness for tuberization in Désirée CC lines. (A) Image of wild-type (WT)
and CC lines of S. tuberosum cv. Désirée growing in the greenhouse. (B) Representative images of WT
and CC Désirée lines after 12 weeks of transfer to soil. Lower yellow leaves in CC lines indicate their
earliness for maturity. The enhanced expression of StCDF1 in these lines (shown later in Figure 3A)
could be the reason. Scale bar = 5 cm. (C) In vitro tuber induction experiment (8% sucrose) showed
an earliness in transgenic CC Désirée lines compared to WT. (D) Average number of stolons per
plant after 3-week of transfer to greenhouse. Student’s t-test was used at p < 0.05 (*** p < 0.001,
**** p < 0.0001, ns, not significant). Mean values ±SEM are represented in the graph. (E) Evaluation
of earliness for tuberization in greenhouse after 3-weeks. The graph represents the percentage of
plants that formed stolons and/or swollen stolon after three weeks of growth. For panels (C,E), no
statistical test is performed as the data is plotted as the percentage of nodes or plants tuberizing. For
panels (D,E), values inside the bars represent the number of plants per line (n). #1 and #2 are the two
independent lines of respective CC used throughout the studies (as mentioned in Supplementary
Figure S1).

To assess the rate of tuber formation in the Désirée CC lines, an in vitro tuber induction
assay (supplemented with 8% sucrose) was performed. These lines exhibited 2-day earliness
(day 3 versus day 5) for tuber formation compared to WT, except CC-1 #2 and CC-3 #2
lines, which recovered in the subsequent four days (Figure 2C). On day 9, up to 40% nodes
tuberized from WT, whereas the number of tuberizing nodes varied between 59 to 75% for
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CC lines. After 21 days, 89–99% nodes of CC lines had formed tubers as opposed to 74%
nodes of WT (Figure 2C). The CC lines were also grown in soil to assess their rate of tuber
formation under greenhouse conditions. After three weeks of transfer to soil, they had
more stolons per plant compared to WT (Figure 2D) and exhibited earliness for tuberization
(Figure 2E), consistent with the observations of the in vitro tuberization experiment.

2.2. Expression Analysis of Tuber Marker Genes and Evaluation of Tuber Productivity under
Controlled Growth Conditions

After three weeks of growth in greenhouse, leaves and stolons of Désirée CC lines and
WT plants were harvested for expression analysis of tuber marker genes. Expression profiles
of select tuber marker genes revealed an upregulation of StSP6A (tuber initiation marker)
and CYCLING DOF FACTOR 1 (StCDF1; an earliness marker) in leaves of transgenic CC
lines compared to WT (Figure 3A). In stolons, St14-3-3 and PIN-FORMED 4 (StPIN4) were
upregulated in CC lines (Figure 3B). RNA levels of StGA2ox1 exhibited a modest increase.
GIBBERELLIN 2-OXIDASE 1 (StGA2ox1) is an important tuber gene. Its expression is
activated by StBEL5 [36] and it promotes tuberization by degrading gibberellins just prior
to stolon swelling [41]. The TUBER IDENTITY gene StIT1 was also found to be significantly
upregulated in the stolons of CC lines. StIT1 is key to the initiation of tuberization and
interacts with StSP6A to promote tuber development [42]. These findings support the
premise of early tuber induction in CC lines.

The tuber productivity of Désirée CC lines was assessed after they reached physiologi-
cal maturity (19 weeks in greenhouse). The CC lines demonstrated a significant increase
in tuber weight per plant ranging from 1.70 to 3.54-fold compared to WT, except CC-1
#2 (Figure 3C). Tubers produced from these lines had similar morphology as that of WT.
Though the tuber numbers did not vary much compared to WT, the tuber size appeared to
be larger for CC lines (Figure 3D).

To test the effectiveness of our strategy in another potato cultivar, we generated seven
transgenic CC-3 lines of S. tuberosum ssp. andigena (Figure 4A,B; Supplementary Figure S2).
Andigena was selected because this cultivar is responsive to photoperiod [32]. Similar to
Désirée CC lines, andigena CC-3 lines (#1 and #2) had elevated levels StBEL5 in stolons
(Figure 4C). These andigena lines produced more stolons per plant (Figure 4D) and had
enhanced tuber productivity under SD conditions in comparison to WT (Figure 4E).
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leaves (A) and stolons (B) of 3-week-old greenhouse plants. Data represents mean of three biological
and three technical replicates. Potato EIF3e was used for normalization of gene expression and
Ct values are represented next to the respective rows. #1 and #2 are the two independent lines of
respective CC used throughout the studies (as mentioned in Supplementary Figure S1). (C) Average
tuber weight in transgenic Désirée CC lines from 19-week-old plants from greenhouse. The numbers
below violin plots represent the number of plants per line (n). In the respective violin plot, a thick
central line represents a median and the dotted lines indicate the lower and higher quartiles of
the corresponding data points. In panels (A–C), Student’s t-test was used at p < 0.05 (* p < 0.05,
** p < 0.001, *** p< 0.005, **** p < 0.0001, ns, not significant). (D) Tuber images from greenhouse plants.
For imaging, tubers were pooled from 15 plants for each line. Scale bar = 2 cm. The experiment for
tuber productivity from greenhouse grown plants was performed two times and similar observations
were found. The current data is from the second experiment. Abbreviations: BEL, BEL1-LIKE
transcription factor; CDF1, CYCLING DOF FACTOR; CO2, CONSTANS2; GA2OX1, GIBBERELLIN
2 OXIDASE 1; IT1, IDENTITY OF TUBER 1; PIN4, PIN FORMED 4; PTB1/6, POLYPYRIMIDINE
TRACT-BINDING PROTEINS 1/6; SP5G, SELF-PRUNING 5G; SP6A, SELF-PRUNING 6A; SWEET11B,
SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER 11B.Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 14 
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exhibited increased tuber productivity in the range of 1.50 to 4.76-fold. Among the three 
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Figure 4. Assessment of tuber productivity in andigena CC lines under SD photoperiod. (A) Image of
wild-type (WT) and CC-3 lines of S. tuberosum ssp. andigena (a photoperiod-responsive ssp.) growing
in the plant growth chamber. (B) Representative images of WT and CC-3 andigena lines taken after
8 weeks of transfer to soil. Scale bar = 5 cm. (C) Relative levels of StBEL5 RNA in stolons of transgenic
CC-3 andigena lines compared to WT. Potato EIF3e was used for normalization of gene expression. For
RT-qPCR analysis, three biological replicates and three technical replicates were used (n = 3). (D) Average
number of stolons per plant after 3 weeks of SD induction in plant growth chamber. Student’s t-test
was used at p < 0.05. ns = not significant. (E) Tuber productivity of transgenic CC-3 andigena lines in
comparison to WT after 3 weeks of SD photoperiod. For panels (D,E), values inside the bars represent
the number of plants per line (n). For panels (C–E), values are represented as mean±SEM. Student’s
t-test was used at p < 0.05 (* p < 0.05, *** p < 0.001, ns, not significant). #1 and #2 are the two independent
CC-3 andigena lines used in this study (as mentioned in Supplementary Figure S2).
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2.3. Evaluation of Tuber Productivity under Field Conditions

To evaluate the performance of Désirée CC lines under field conditions, we grew
them in a contained facility at ICAR Central Potato Research Institute (CPRI), Shimla
(Figure 5A–C). These CC lines showed an average 2-fold increase in tuber weight per plant
compared to transgenic control (Figure 5A). Depending on the construct used, CC lines
exhibited increased tuber productivity in the range of 1.50 to 4.76-fold. Among the three
CC lines, CC-2 plants (line #1 and #2) showed highest tuber productivity. The morphology
of tubers from all CC lines were comparable to transgenic control (Figure 5B) and produced
viable sprouts following dormancy.
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Figure 5. Evaluation of tuber productivity in Désirée CC lines under field conditions. (A) Tuber
harvest data of the transgenic Désirée CC plants grown in field conditions for 19 weeks at the ICAR
Central Potato Research Institute (CPRI) located at Shimla, India. (B) Tuber images of transgenic
control and Désirée CC lines. Scale bar = 5 cm. (C) Image of transgenic plants growing in the field
conditions at CPRI. The field experiment was conducted two times in the year of 2021 and 2022
and similar results were obtained. #1 and #2 are the two independent lines of respective CC used
throughout the studies (as mentioned in Supplementary Figure S1). For panel (A), Student’s t-test was
used at p < 0.05 (* p < 0.05, *** p < 0.001, **** p < 0.0001, ns, not significant). SEM = Standard error of
mean. TC = Transgenic control. Figure contains the data obtained from the second field experiment.

3. Discussion

Tuberization in potato is a complex process governed by various intrinsic and ex-
trinsic factors. Numerous signals, such as StBEL5, StBEL11, StBEL29, POTH1, StPTB1,
StPTB6, microRNA156, microRNA172, and StSP6A, are pivotal in the governance of
tuber development [39]. Individual overexpression of StBEL11, StBEL29, or miR156 is
shown to have a negative effect on tuber formation [39], whereas that of StBEL5, StPTB1,
StPTB6, microRNA172, and StSP6A positively regulate tuberization [32–34,40]. StBEL5
mRNA is the first mobile signal discovered in potato and it belongs to the Three-Amino
acid-Loop-Extension (TALE) superfamily of TFs [32]. Under tuber-inductive conditions,
the potato RBPs (StPTB1 and -6) bind to cytosine/uracil-rich sequences present in the
3′ UTR of the StBEL5 RNA to form a RNP complex that facilitates the stability and tar-
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geted delivery of StBEL5 transcripts from leaf to stolon, the site of tuber formation [40].
Along with its KNOX partner, StBEL5 regulates key tuberization genes: StSP6A (tuber
initiation marker), StCDF1 (plant maturity), GIBBERELLIN 20-OXIDASE 1 (StGA20ox1),
GIBBERELLIN 3-OXIDASE 2 (StGA3ox2), GIBBERELLIN 3-OXIDASE 3 (StGA3ox3), GIB-
BERELLIN 2-OXIDASE 1 (StGA2ox1; gibberellin metabolism), ISOPENTENYL PYROPHOS-
PHATE TRANSFERASE (StIPT; cytokinin biosynthesis), StYUCCA4 (auxin biosynthesis),
and several other genes [36,43]. In addition, StBEL5 auto-regulates its own expression to
amplify the signals in stolon [36] and, in this way, acts as an important regulator of tuber
development in potato.

The constitutive expression of StBEL5 mRNA has consistently produced a positive
effect on tuber formation [32]. Individual overexpression of the two PTBs (StPTB1 or -6)
indirectly leads to enhanced tuber productivity by increasing StBEL5 transcript levels in the
stolon [40]. These early experiments demonstrate increased productivity in the transgenic
Désirée and ssp. andigena lines utilizing the constitutive 35S CaMV promoter or a leaf-
specific promoter [32,40,44,45]. In addition, in a few instances, mislocalization of StBEL5
transcripts either due to its ectopic expression (under 35S CaMV promoter) or the lack of
untranslated regions (UTRs) in the coding sequence (CDS) caused an induction of aerial
stolon/tubers accompanied with reduced tuber weight [32,44,45]. Therefore, to achieve
optimum expression in this dual system, it appears crucial to retain the native spatio-
temporal accumulation patterns and localization of StBEL5 transcript to the target organs.

To test the cumulative effects of the tandem expression of StBEL5 and/or StPTB1/6 on
tuber productivity in potato, we designed three CCs. To closely mimic the wild-type ex-
pression profiling of these genes, native promoters were included in these CCs to efficiently
drive their targeted, localized expression in the vasculature of phloem cells, stolons, and
leaf veins [32,40]. To achieve efficient transport of StBEL5, its full-length transcript (CDS +
UTRs) was used in all three CCs. Our rationale in this combinatorial system was that an
increase in both of these components in the phloem system would enhance the delivery of
StBEL5 to stolons, thereby creating a strong tuber sink that would lead to a positive effect
on tuber productivity.

Stable transgenic CC lines of a day-neutral potato cv. Désirée exhibited earliness for
tuberization under in vitro and greenhouse conditions accompanied with an increased
number of stolons per plant, suggesting that effective delivery of StBEL5 to stolons poten-
tiates the plant for increased tuber productivity. As expected, an upregulation of several
tuber marker genes (StCDF1, StSP6A, StPIN4, and StIT1) in leaves and stolons of these CC
lines was observed. These expression profiles suggest that StBEL5 and its PTB partners
are working in consonance to activate components of the downstream tuber pathway.
Notably, we found an increase of 2.1-fold tuber weight per plant in Désirée CC lines
compared to WT. These results were comparable to previously observed transgenic lines
containing StBEL5 or StPTB genes driven by the 35S CaMV promoter or a leaf-specific GAS
promoter [32,40,44,45], suggesting that our strategy of utilizing native promoters in a multi-
gene approach is equally effective as that of previously employed constitutive expression
approaches. Functionality of the CC-3 construct in andigena ssp. further validates that the
multi-gene approach is consistent and robust and could readily be applied to other potato
cultivars. The field evaluation of Désirée CC lines demonstrated that their average tuber
weight per plant was enhanced by 2.5-fold when compared to the control. Though the
fold increase in tuber weight of CC-3 lines (1.51 and 1.65) was not statistically significant,
it still holds promise. The performance of CC lines under field conditions signifies the
translational potential of our multi-gene approach for enhancing tuber productivity. Taken
together, our results from the in vitro tuber induction, greenhouse, and field experiments
clearly establish that the tandem expression of mobile signals (StBEL5 and StPTB1/6) driven
by their native promoters has exerted cumulative effects to increase tuber productivity in a
major food crop, potato.

An exciting observation arising from our current study was the effective use of the
multi-gene transformation (MGT) strategy to produce transgenic lines. The characteristics
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of our CCs are—(i) they contained multiple gene cassettes between the left and right border
of a single T-DNA fragment (two or three effect genes: StBEL5, StPTB1, and/or StPTB6 and
one antibiotic marker), and (ii) the effect genes are plant-specific from potato, driven by
their respective native promoters, and were not expressed ubiquitously or constitutively.
MGT has been applied in mustard, soybean, canola, maize, Arabidopsis, potato, rice, and
tobacco for regulating metabolic pathways and stress resistance [46–58]. Our current report
documents a technical advance in demonstrating enhanced crop productivity utilizing
mobile RNP components via a MGT approach.

Recent reports have identified the orthologs of potato mobile factors (StBEL5, POTH1,
StPTB1/6, and StSP6A) in five storage root crops: sweet potato, cassava, carrot, radish, and
sugar beet. In silico studies suggest that the RNA recognition motifs of RBPs, cytosine/uracil-
rich sequences in the UTRs of target RNA orthologs, and the gene-regulatory network
governed by mobile factors are also conserved between a tuber crop (potato) and these
storage root crops [59]. Previous experiments have confirmed the role of phloem mobile
StBEL5 in enhancing root growth in potato [43]. Based on the functions of these orthologs
and consistent with their potential role in root crop development, a similar tandem gene
expression strategy could be utilized to increase the yield of storage root crops.

Apart from potato, RBPs governing reproductive traits are reported from Arabidop-
sis [60,61] and rice [13]. AtPTB1 and -2 regulate the mobility of FLOWERING LOCUS K,
FLOWERING LOCUS M, PHYTOCHROME-INTERACTING FACTOR 6 to control pollen
and seed germination and flower development in Arabidopsis [60,61]. On the other hand,
GLUTELIN and PROLAMINE are associated with OsRBP-P regulate kernel development
in rice [13]. It remains to be seen whether the tandem expression of RNP components
in rice could also increase its yield. This approach of synergistic expression of mobile
macromolecular signals driven by their native promoters presents a novel strategy for
engineering plants to enhance crop productivity and represents an excellent example of
harvesting the translational knowledge gained from studying the fundamental processes
of plant development.

4. Materials and Methods
4.1. Plantlet Source and Culture

In vitro plants of two potato cultivars (Solanum tuberosum cv. Désirée and ssp. andigena
7540) were multiplied from the axillary node sub-cultures on Murashige and Skoog’s basal
medium [62] containing 2% (w/v) sucrose. In vitro plants were grown in a plant growth
incubator (Percival Scientific, Inc., Perry, IA, USA) under long-day (LD; 16 h light and 8 h
dark) conditions at 24 ◦C for three weeks and used for further experiments or maintained
under the same conditions in vitro using the axillary node sub-cultures.

4.2. Chimeric Constructs Preparation

The full-length mRNA sequence of StBEL5 (2716 bp; consisting of 147 bp 5′ untrans-
lated region [UTR] and 503 bp 3′ UTR) was amplified from the petiole complementary
DNA (cDNA) of S. tuberosum ssp. andigena 7540, whereas the StBEL5 promoter sequence
(2242 bp with last 55 bp of 5′ UTR deletion) was amplified from the shoot-tip genomic DNA.
Similarly, the full-length coding sequence (CDS) of StPTB1 (1338 bp) and StPTB6 (1348 bp)
were amplified from the petiole of S. tuberosum cv. Désirée plants, and their corresponding
promoter sequences (StPTB1- 2301 bp and StPTB6- 2458 bp, including the respective introns
from 5′ UTR) were amplified from genomic DNA isolated from the shoot-tip samples of
soil-grown plants. All six sequences (three promoters and three CDSs) were individually
cloned into the sub-cloning vector pGEM-T Easy (Promega Incorporation) and sequence
verified. A combination of StBEL5 and StPTB1 and/or StPTB6 CDS(s) were placed under
their respective promoter sequences and three multi-gene chimeric constructs (CCs) were
prepared in the pCAMBIA binary vector backbone. They are referred to as CC-1 (StBEL5 +
StPTB6; 20.3 kb), CC-2 (StBEL5 + StPTB1; 18.8 kb), and CC-3 (StBEL5 + StPTB1 + StPTB6;
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24.2 kb) (Figure 1B). These CC constructs were sequence verified and transformed into
Agrobacterium tumefaciens strain GV2260.

4.3. Generation of Stable Transgenic Lines

Several transgenic potato lines of a day-neutral cultivar, Désirée (CC-1, CC-2, and
CC-3) and a photoperiod-responsive ssp. andigena (only CC-3) were generated for CCs
along with a transgenic control line as per the method described in [24]. The transgenic
lines were confirmed by reverse transcription polymerase chain reaction (RT-PCR) using
gene-specific forward primer and terminator-specific reverse primer (Table S1) as well as
by reverse transcription quantitative PCR (RT-qPCR) analysis.

4.4. In Vitro Tuber Induction Assay

To evaluate the earliness for tuber formation in transgenic CC and wild-type (WT)
Désirée plants, an in vitro tuberization experiment was conducted as per the method
described in [63] with minor modifications. Single nodal explants (top four nodes per plant,
excluding the shoot apex) from four weeks in vitro plantlets (grown under LD conditions)
were sub-cultured on MS medium containing 8% sucrose (w/v; tuber-induction medium).
Culture plates were incubated under dark conditions in a growth incubator maintained at
24 ◦C. The rate of tuber formation was scored on alternate days until 21 days. A minimum
of 84 single node explants per line or WT were used for the experiment.

4.5. Tuber Productivity and Quantification of StBEL5 Transcript Levels

One month old plantlets of the selective transgenic CC lines (Désirée and ssp. andigena)
along with respective WT were grown in vitro under LD conditions. The plantlets were
transferred to soil in small size round pots (dimensions: height = 6.3 cm and radius = 3.5 cm;
volume: ~242 cm3), and hardened for 1 week under LD conditions in a growth chamber
(Percival Scientific, Inc.) with light intensity: 300 µmol m−2 s−1), day temperature 24 ◦C
and night temperature 22 ◦C. This was followed by additional two weeks of incubation
in the same pots. Thereafter, both types of cultivar lines were re-potted into the medium
size pots (dimensions: height = 10.5 cm, and radius = 5.75 cm; volume: ~1090 cm3) and
continued to grow under LD conditions for an additional 5 weeks. The tuber productivity
(gram fresh weight [g fr wt] per plant) for Désirée lines was recorded after 19 weeks of
plant growth (physiological maturity). When andigena plants attained the 10–13 leaf stage,
they were transferred to short-day (SD) conditions (16 h dark and 8 h light) with 22 ◦C and
20 ◦C day and night temperatures, respectively. After 21 days of SD induction, these plants
were scored for number of stolons and tuber weight. In an additional experiment, Désirée
CC lines and WT plants were scored for the number of stolons and the percentage of plants
tuberizing post three weeks of transfer to soil.

Stolons from all CC lines and WT andigena plants were harvested at the end of the
experiment and used for quantification of StBEL5 transcript levels. For Désirée plants,
leaves and stolons from CC lines and WT (4 plants per replicate) were harvested for
quantification of StBEL5 transcript levels as well as key tuberization genes. RT-qPCR
data represents the mean ± SEM (standard error of mean) of three biological and three
technical replicates. Total RNA was isolated using RNAiso Plus (DSS-TAKARA) and the
quality of RNA was checked on agarose gel electrophoresis. cDNA was synthesized using
2 µg of the total RNA, Superscript IV Reverse Transcriptase (Invitrogen) and oligo (dT)
primers. RT-qPCR reactions were carried out on the CFX96 Real-Time System (BIO-RAD)
with gene-specific primers and TAKARA SYBR® green master mix (Takara-Clontech) by
incubating at 95 ◦C for 3 min, followed by 40 cycles at 95 ◦C for 5 s, gene-specific annealing
temperature for 15 s and 72 ◦C for 20 s. Data were analyzed using either the 2–∆∆Ct relative
fold-change or 2–∆∆Ct relative abundance method [64]. Potato EIF3e was used as a reference
for normalization of gene expression. Students t-test was performed to analyze the data
from various experiments. One, two, three and four asterisks (*) represent the level of
significance at p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively.
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4.6. Field Experiments

Two field experiments were conducted under a contained facility at the Central Potato
Research Institute (CPRI) Shimla, India. In the first field experiment, tuber sprouts from
selective Désirée transgenic lines of each CC and the transgenic control (TC) were planted
in the field on 9 June 2021, and grown for 12 weeks (i.e., until 10 September 2021). The
second field experiment was conducted from 7–12 October 2022 (i.e., 19 weeks). The plants
(transformed control and transgenic Désirée CC lines) were harvested post-senescence and
the tuber parameters were recorded. For the first field experiment (2021), the average daily
temperature and relative humidity were 22.5 ◦C and 73.5%, respectively. During the second
field experiment (2022), the average daily temperature and relative humidity were 21.74 ◦C
and 70.0%, respectively.

5. Conclusions

To the best of our knowledge, this is the first report that explores the use of multi-
gene transformation tool for enhancing tuber productivity in potato. Using a multi-gene
stacking approach, we demonstrate the cumulative effects of key mobile RNA (StBEL5) and
its RNA-binding proteins (StPTB1 and StPTB6) driven by their respective native promoters
in tandem, enhances tuber productivity. This approach could be adopted to other crops
whose agronomic traits are governed by mobile macromolecules.
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