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Abstract: Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism
process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral
deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process.
Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of
the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats
using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo
experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized
(NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA
scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC
and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed
by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a
95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new
bone formed with an organized and compact morphology that was rich in osteocytes and with maturity
characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with
normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated
superior osteogenic potential when compared to control groups. There was no significant difference in the
rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response
but negatively influenced the bone-defect repair process.
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1. Introduction

Severe bone injuries can cause disability, compromise quality of life and can hardly
be repaired naturally by the body [1], requiring scaffolds that simulate the bioactivity of
the extracellular matrix (ECM) and offer temporary support for bone regeneration [2,3].
Although the autologous graft presents unparalleled advantages for regenerative therapies,
tissue engineering has improved polymeric scaffolds to overcome weaknesses, such as
the risk of premature resorption, osteonecrosis and immunological rejection, and thus,
it can offer new therapeutic perspectives, avoiding additional surgical procedures and
donor-site morbidity [4–6]. Biopolymers have advantageous characteristics for clinical
applicability due to their availability, mechanical resistance, bioactivity, biocompatibility
and degradability, which can be controlled in acidic environments [7,8]. However, the
combination of two or more components may be necessary to achieve the properties
necessary to mimic the ECM and stimulate phenotypic expression [9].

Scaffolds for the recovery of bone defects can be made up of metal alloys, [10] bioce-
ramics, synthetic components of polyesters and polyurethanes [7], or natural components
such as polysaccharides and proteins [11]. There is a growing process of investigation into
proteins naturally present in bones, such as collagen and elastin [12–16]. Collagen is se-
creted by fibroblasts, being abundant for type I, while types III and V are present in smaller
quantities, and together, they make up heterotypic fibrils in the interstitial portion of the
ECM. The fibrils are organized in the form of a scaffold within an amorphous gel composed
of fibronectin and elastin, which contribute to the nanostructured and three-dimensional
organization [16].

Bioabsorbable collagen scaffolds can aid in biochemical signaling and wound heal-
ing [16] due to the hemostatic effects present even when implanted under unfavorable
clinical conditions [17,18]. Collagen is the most abundant protein in the human body and
makes up 80% of all protein content in bones. It is structured by polypeptide chains contain-
ing amino acids that interact through covalent bonds that intertwine with the chains [19].
In the initial phase of self-assembly, hydroxylations of proline and lysine residues and
glycated bonds to hydroxyproline residues occur [20]. Subsequently, post-translational
modifications begin through the transient integration of the molecular protector and the do-
mains of the procollagen chain through disulfide bonds, giving the triple-helical molecular
form [21].

Maturation is characterized by the removal of non-collagenous propeptides by procol-
lagen amino and carboxy proteases, originating an alpha chain measuring 1.25 nm wide
and 300 nm long with a mass of 285 kDa [22]. Five of these parallel chains form a microfibril
1 cm long and 1 mm in diameter with 67 nm bands, where the deposition of hydroxyapatite,
the main inorganic constituent of the osteoid matrix secreted by osteoblasts, subsequently
occurs [23]. Despite significant advances in collagen synthesis and purification processes,
there is still no scaffold that fully reproduces the properties of the native protein; there are
some minimal differences remaining in its structure [24] and it is susceptible to hydrolytic
and enzymatic degradation if it comes into contact with body fluid [25]. The proteins also
have low osteoinductivity [26], which favors premature resorption and the loss of mechani-
cal stability [27], and for these reasons, other components are often added to increase useful
life and resistance and obtain greater osteogenic potential [25–27].

An alternative for osteoconduction is the addition of hydroxyapatite, a bioactive ce-
ramic based on calcium phosphate [28] with a structure similar to biological hydroxyapatite,
and it represents 65% of the inorganic composition of bone tissue [29]. This composite has
been used for decades, and its osteogenic capacity and biocompatibility are well-established
in the literature [28–30]. In contrast to collagen, hydroxyapatite has high crystallinity and
low solubility, factors that influence the rapid adhesion and early fixation of the implant
to the recipient bed, making the interposition of connective tissue and, consequently, the
reabsorption of the implant difficult. Due to this characteristic, it is also not recommended
to use this ceramic in isolation [31]; it is more effective when combined with natural or
synthetic polymers [32], or even when it is customized into nanoparticles for applications in
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multicomponent scaffolds [33]. This allows it to obtain better mechanical properties and is
more favorable for cell recognition, osteoconduction and reducing the risk of infections [34].

Nanohydroxyapatite (nHA) is considered a reinforcement technology for scaffolds
capable of improving resistance and promoting greater biological activity at the bone–
implant interface [33]. The possibility of providing nanoroughness to the surface of the
scaffolds represents a differential for osteointegration, hydrophilic and piezoelectric po-
tential [29–35]. Currently, some collagen and hydroxyapatite biomaterials are regulated
and demonstrate results close to those of autologous grafts [27–36]. However, larger bone
defects or tissues with metabolic and mineral deficiency require scaffolds with greater
biomimetic capacity and functionality. In this context, mineralized collagen scaffolds with
nHA have demonstrated controlled biodegradation and positive effects for accelerating
osteogenesis [37,38] when applied to healthy organisms or under pathological conditions.

One of the unfavorable conditions for bone remodeling is osteoporosis—a metabolic,
systemic and progressive disease mainly associated with aging and estrogen deficiency
after menopause [39,40]. Osteoporosis is characterized by the inhibition of the activity
of osteoblasts and growth factors, such as: bone morphogenetic protein (BMP), platelet-
derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like
growth factors 1 (IGF-1) and fibroblast growth factor 2 (FGF-2) [35]. The low activity
of these factors predisposes individuals to a reduction in collagen synthesis and apatite
deposition, with osteoclast activity prevailing. The reduction in mineral density causes
bone fragility and increases the risk of fractures, morbidity and mortality, representing a
problem for global public health given the 9 million fractures treated annually [41].

Conversely, few studies have been carried out on the applicability of scaffolds with suf-
ficient bioactivity and conductivity to overcome the deleterious effects of the
disease [42,43]. To improve the performance of scaffolds, it is necessary to enhance an-
giogenesis and cell signaling pathways by adding osteoprogenitor cells, drugs, growth
factors [36] or proteins that are naturally present in bone tissue [27–44] to the scaffold.
Among proteins of natural origin, elastin also stands out, as it is a constituent of the ECM
that presents biological activity and is non-toxic and stable in the long term [45].

Elastin synthesis occurs from tropoelastin, a soluble precursor synthesized by fibrob-
lasts and, through its hydrophobic domains, is associated by covalent bonds with various
components of the ECM, such as proteoglycans, fibulins and latent binding protein TGF-β-4,
and this process is called coacervation [15–46]. Then, the tropoelastin and lysine precur-
sors undergo oxidative deamination by enzymes from the lysyl oxidases family, resulting
in the formation of lysine, and finally, the cross-linking phase begins in which reactions
occur between the remaining lysine domains with lysine, or there is aldol condensation
between two lysin residues [47], forming an elastin core covered by microfibrils composed
of glycoproteins, with type I and II fibrils being predominant [48].

Furthermore, elastin has fibronectin domains and arginine, glycine and aspartic acid
(RGB) amino acid sequences, which stimulate differentiation, cell adhesion and angio-
genesis [45] in addition to modulating coagulation [49]. Despite the risk of incomplete
decellularization in the process of manufacturing elastin polymers, this composite receives
attention due to the wide range of biochemical advantages, variety of obtaining and pro-
cessing methods, and the possibility of composing natural polymeric matrices [50,51]. The
synthesis of natural polymers may be economically unfeasible and therefore extraction
from mammals is normally chosen [52]. Collagen can be obtained from bovine or porcine
tendons, bones and pericardia, with porcine collagen xenografts presenting better prospects
due to biocompatibility and similarities with human collagen [53]. Elastin is present in most
connective tissues, mainly in the walls of blood vessels, ligaments, lungs, skin, heart valves
and cartilage [54], and like collagen, elastin can be purified through alkaline hydrolysis
and freeze-drying [55]. As for nHa, it is possible to produce it synthetically from calcium
phosphates [56].

This evidence supports the manufacture of natural and mineralized polymeric scaf-
folds for applications in critical bone defects and under different clinical conditions. There-
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fore, this present study aimed to determine the osteoconductive potential of polymeric
scaffolds made from collagen derived from porcine serosa, mineralized with nanohydrox-
yapatite and supplemented with elastin from bovine auricular cartilage. The scaffolds were
grafted into rats with a healthy skeletal system and into rats with bone-mineral deficiency
caused by ovariectomy.

2. Results and Discussion
2.1. Scaffolds

The photomicrographs show matrices with a porous surface (Figure 1A,C), and at
higher magnifications, the presence of nHA clusters is observed (Figure 1B,C).
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Figure 1. Photomicrographs of the matrices: (A) MSH 500×; (B) MSH 6000×; (C) MSHC 500×;
(D) MSHC 6000×. Arrows indicate nHA clusters.

Table 1 (below) shows the pore sizes of the scaffolds.

Table 1. Scaffolds pore sizes.

Scaffold
Pore Size (µm)

Smaller Bigger Mean ± SD

MSH 14.3 48.7 28.8 ± 7.8 a

MSHC 13.9 39.7 26.1 ± 5.2 a

In the same column, equal letters mean statistically equal values (p < 0.05). SD: standard deviation.

Figure 2 shows the histograms of the pore sizes of the matrices: (A) MSH; (B) MSHC.
Cell growth involves several factors, including pore size. The pore size required for

neovascularization to occur is 5 µm, and the penetration of fibrous tissue requires pores
between 10 and 75 µm [57]. The denaturation temperature of the MSH scaffold was 44.0 ◦C
and the presence of nHA and auricular cartilage did not modify this value. The transition
observed in DSC occurs due to heating and is generated by the transition of the collagen
triple helix to a structure in which the cross-links of the tertiary structure are broken. Thus,
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there is a transition from a highly organized structure to a disorganized one, which is
gelatin [58,59]. Figure 3 and Table 2 shows the uptake kinetics of phosphate-buffered saline
into the matrices. It is observed that the MSH matrix presents the smallest and slowest
absorption, obtaining 2290% in 24 h, while the matrices containing cartilage (MSHC)
showed greater swelling, with absorption being 2837%. Although auricular cartilage has a
hydrophobic chemical structure due to the presence of elastin [60], this hydrophobic effect
was not observed in relation to the MSH matrix.

1 
 

 
 Figure 2. Histograms of the pore sizes of the matrices: (A) MSH; (B) MSHC.
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Figure 3. PBS absorption (%): (�) MSH; (N) MSHC.

Table 2. PBS absorption (%).

Scaffolds
Absorption (%)

30 min 60 min 1440 min

MSH 745 ± 158 a 886 ± 276 a 2291 ± 105 a

MSHC 2566 ± 136 b 2574 ± 187 b 2837 ± 158 b

In the same column, equal letters mean statistically equal numbers (p < 0.05).

2.2. In-Vivo Macroscopic and Radiological Analysis

This present study evaluated the osteoconductive potential of natural polymeric scaf-
folds made of collagen from the serosa of the porcine intestine mineralized with nanohy-
droxyapatite and supplemented or not with elastin derived from bovine auricular cartilage.
They were implanted in bone defects in the tibia of rats under normal conditions of os-
teometabolism and in rats with bone-mineral deficiency caused by bilateral ovariectomy.



Int. J. Mol. Sci. 2023, 24, 15727 6 of 20

For this purpose, we hope that the results presented can offer new perspectives for the de-
velopment of biomaterials, with an osteogenic potential capable of overcoming the clinical
limitations caused by diseases such as osteoporosis.

The clinical applicability of natural collagen and elastin polymers is still restricted due
to a limited understanding of the mechanisms of interaction with cells and other compo-
nents of the ECM [61,62]. Natural polymers derived from animal sources require additional
care in the procurement and processing processes, due to the risk of disease transmission
and unwanted immunological response. In the case of bovine collagen, thrombin is one of
the main components that can cause inflammatory processes [63]. Despite the limitations in
the use of xenografts [64], studies demonstrate that natural polymers have greater potential
to stimulate cellular differentiation when they are implanted in bones of endochondral
origin [65,66].

The macroscopic analysis of this study revealed the expected healing of six weeks
after surgery to create the experimental defect. In none of the study groups were signs of
inflammatory processes observed, given the clinical conditions of the subcutaneous soft
tissues with perfusion and absence of adhesions, as shown in images A and B in Figure 4.
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(A) In-vivo macroscopic images; (B) Macroscopic images of the dissected tibiae; (C) Radiological
images of the tibias. Arrows indicate the area of the bone defect.

In the case of the tibia, a bone of endochondral origin, the bone repair process begins
with an important local sterile inflammatory reaction, observable by the presence of a
hematoma on the edges of the defect and in the bone marrow cavity. In this hematoma, the
formation of fibrous and cartilaginous granulation tissue occurs, which is then mineralized
due to the intense activity of osteoblasts [67]. Under normal conditions of osteometabolism,
this natural inflammatory process cannot exceed two weeks [68].

Contributing to the literature, no persistent edemas were identified in the areas of
the bone defect. Both in the healthy groups and in the groups with ovariectomy, the areas
grafted with porcine serosal collagen membranes mineralized with nHA (G2-NO-MSH and
G5-O-MSH) and with the membranes supplemented with cartilage-derived elastin bovine
ear tissue (G3-NO-MSHC and G6-O-MSHC) showed well-defined edges and a discreet
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presence of blood fluids around the biomaterials. This clinical finding is a positive indicator
regarding the stimulation of angiogenesis in the bone defect. The inability to provide blood
supply represents one of the main factors causing osteonecrosis, and consequently, scaffold
failure [69].

No other signs suggestive of infectious complications were observed. Gonadal hor-
mone deficiency also did not intensify the local inflammatory response in the diseased
control group and in the grafted groups (G4-O-C, G5-O-MSH and G6-O-MSHC). The clini-
cal results observed in the experimental groups were compatible with those identified in
the control groups (G1-NO-C and G4-O-C), indicating that the scaffolds did not exacerbate
the inflammatory response. These findings confirm the affinity of collagen with the ECM in
in-vivo therapies [17]. It is worth mentioning that the experimental protocol adopted in
this study applied the principles of the ARRIVE guidelines of the National Center for the
Replacement, Refinement and Reduction of Animals in Research–NC3Rs, with due pre-
and post-operative care with analgesic control measures and good aseptic practices for
carrying out the procedures [70].

The healing process of critical defects in bone with mineral deficiency can be altered
in order to stimulate heterotopic formation and stimulate the resorption of the edges of
the defect [71]. In the radiological analysis, well-preserved contours of bone defects were
observed, with radiopacity of the cortical margins of the tibia in all study groups, also
ruling out bone rarefactions or infectious processes such as osteomyelitis. In the center of
the bone defects, rounded areas with radiolucencies present and delimited by the cortical
margins were observed. No secondary fractures, pseudarthroses, carcinogenic processes or
any other morphological abnormalities were observed, as shown in image C of Figure 4.

2.3. Histomorphometric and Histomorphologic Analysis of Bone Defects

In recent years, the introduction of polymers into regenerative therapies has enabled
significant advances in tissue engineering [46]. In addition to collagen, other natural poly-
mers such as chitosan and fibroin and synthetic polymers such as polylactic acid (PLA) and
polycaprolactone (PCL) have stood out for their biocompatibility and osteoconductivity [72].
However, each material has limitations that hinder clinical applicability. Chitosan and
fibroin have poor osteoinductive and mechanical properties, causing instability in critical
defects [73–75], while synthetic polymers have low biological activity and resistance [76,77].
Furthermore, a low absorption rate and hydrophobic characteristics make the adsorption
of implants difficult, especially PLA, whose prolonged hydrolysis products create an acidic
environment that induces local inflammation [76]. For this reason, these polymers have
been combined with nHA to form scaffolds with better biological and osteoconductive
potential and greater mechanical resistance [72].

As an alternative to the critical aspects identified with the application of some natural
and synthetic polymers, this study tested the osteogenic and osteoconductive differentiation
capacity of collagen matrices mineralized with nHA and added elastin, a protein that
presents hydrophobicity, as well as synthetic polymers, which can confer greater resistance
to the scaffold but without causing cytotoxic effects in vivo. The viability of the biomaterials
was also evaluated in healthy rats and rats with gonadal deficiency caused by ovariectomy.
Another differentiator of these scaffolds is the use of nanotechnology, with the aim of
mimicking bone morphology. The stiffness of native bone is due to the deposition of nHA
in gaps measuring 40nm formed by collagen fibers, and for this reason, nanostructured
biomaterials have a clinical advantage [78]. Hydroxyapatite nanoparticles with a size of
1 to 100 nm present greater biological activity and enable the adhesion of mesenchymal
stem cells [79], avoiding a drastic increase in the rigidity and resistance to degradation of
the scaffolds [80]. This characteristic was interesting mainly for MSHC matrices, in which a
greater hardness of the biomaterial was already expected due to the presence of elastin.

The characterization of the MSH and MSHC blends demonstrated that the alkaline
hydrolysis and freeze-drying process generated average porosity of 28.8 and 26.1 µm,
where the pores remained interconnected and nucleated by the nHA particles inside,
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preserving the three-dimensional architecture for the absorption of fluids and the possibility
of stimulating angiogenesis. Busquets et al. (2016) describe that microporosity has the
bonus of stimulating cell adhesion and the burden of compromising vascular permeability,
hindering gas exchange and the removal of metabolic products. Contrasting this with the
smaller diameter of the pores of the MSHC matrix used in this study, they did not harm the
bone-defect repair process [81].

Regarding the nanotopography of the scaffolds used, calcination at a temperature of
550 ◦C was a positive strategy for obtaining hydroxyapatite nanoparticles. Normally, the
method of obtaining and purifying synthetic hydroxyapatite requires calcination at high
temperatures, which can cause the loss of carbonate, the formation of oxide and a change in
the composition and morphology of calcium phosphate crystals [82]. Studies indicate that
temperatures above 700 ◦C favor the appearance of β-tricalcium phosphate (β-TCP) and
the change from nanocrystals to microcrystals—factors that can influence clinical results
due to compromising the porosity of the scaffold [83,84].

Despite the addition of elastin in MSHC, both scaffolds showed similar bone formation,
both in healthy animals and in animals with bone-mineral deficiency. In contrast to
expectations, the addition of a hydrophobic protein did not provide greater resistance
to the matrices in in-situ absorption tests, which showed a higher degradation rate than
MSH. The same result was confirmed in vivo by the presence of smaller fragments of
the elastin-containing scaffolds in the bone defects. In contrast to the more accelerated
biodegradation of the MSHC scaffold, intense osteogenic differentiation was also observed,
especially in the healthy group (G3-NO-MSHC), in which it was possible to observe bone
neoformation with a more compact morphology; the bone was rich in osteocytes and had
maturity characteristics, confirmed by the predominance of the red color in slides stained
with Masson’s trichrome. However, in the group with ovariectomy (G6-NO-MSHC), the
new bone was more trabeculated, containing osteocytes and with hematopoietic tissue
interposed between the trabeculae; it had characteristics of immaturity due to the bluish
color found in the histological slides (Figure 5).

MSH and MSHC membranes offered support for osteoconduction in all experimental
groups since in histology it is possible to observe that the neoformation started at the
edges of the defect and migrated to the center of the bone lesion. The MSHC matrix,
when implanted in defects of healthy bone (G3-NO-MSHC), offers superior and significant
osteoconductive potential compared to the healthy control group (G1-NO-C) and the
homologous group with estrogen deficiency (G6-O-MSHC). However, the biomaterial with
elastin was not significantly better than MSH in terms of the rate of bone neoformation. This
result was verified in the statistical comparison between the healthy groups and between
the sick groups (Figure 6).

It is established in the literature that mineralized collagen offers advantages to the
cellular chemotaxis process [85,86], in addition to providing greater longevity to the scaf-
folds [25]. The inclusion of proteins and growth factors also represents a promising alter-
native, but errors in dosimetry are associated with osteolysis, ectopic bone formation and
carcinogenesis. These clinical problems have already been identified with the use of bone
morphogenetic protein (BMP), parathyroid hormone (PTH) and platelet-derived growth
factor (PDGF) [87]. The absence of toxicity and immunogenicity are also decisive factors for
the success of regenerative therapies guided by biomaterials. In the case of the rejection of a
foreign body, neutrophils are recruited and secrete protelytic and oxygen-reactive enzymes,
releasing chemokines that attract immune cells such as monocytes, which later differentiate
into macrophages. The latter release pro-inflammatory factors, attracting giant cells and
causing chronic local inflammation [88,89].

None of the scaffolds applied in vivo in this study demonstrate signs of immunological
rejection due to the absence of giant cells and the encapsulation of the scaffolds by fibrous
tissue. Especially in those with bone-mineral deficiency (G5-O-MSH and G6-O-MSHC),
the interposition of loose connective tissue was present between the remnants of the
membranes and the newly formed bone lamellae; however, it did not present encapsulation
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characteristics. However, better osteogenic results were expected for the collagen matrix
from porcine serosa that was mineralized with nHA and supplemented with elastin from
bovine auricular cartilage.
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One explanation for the similar results found between MSH and MSHC lies in the im-
portant capacity of collagen in the process of activating the enzymatic signaling pathways
for extracellular regulated protein kinase (ERK), protein kinase (PKB) and phosphatidylinos-
itol kinase (PI3K), which stimulate the osteogenic differentiation of mesenchymal cells [90].
It also has affinity for leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), which
through its two immunoreceptor tyrosine-based activation motifs (ITAMs), causes the phos-
phorylation of the Syk, zap70 and PLC-γ domains, and thus, there is a barrier to the action
of protein kinases and recruitment of protein tyrosine phosphatases I and II. In this way,
osteoclastogenesis mediated by LAIR-1 is inhibited, preventing bone resorption [71–91].
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The lower osteogenesis analyzed in all groups with gonadal deficiency may be re-
lated to changes in mineral metabolism, such as in the case of magnesium, which has
important implications for the cell adhesion process; zinc, which acts as a stimulating
agent for osteoblast differentiation; and potassium in the biochemical control and apatite
deposition [19]. One study incorporated magnesium ions into an intrafibrillar collagen and
HA scaffold, obtaining significant results for osteoinductivity [92,93].

The biomaterials analyzed in this study offer support for cell proliferation, even
under unfavorable osteometabolic conditions caused by ovariectomy. This is an important
finding and indicates the ECM’s ability to interact and mimic. Picrosirius-red histological
staining allowed for the analysis of the formation, density and orientation of collagen
fibers. In healthy groups, the collagen fibers of the newly formed bone tissue were marked
predominantly in red, with dense clustering indicating the formation of compact bone.
It was also possible to observe the collagen fibers of the connective tissue presenting the
same color pattern, but they were more spread out and in parallel, migrating in multiple
directions (loose and disorganized connective tissue).

In groups with gonadal deficiency, collagen fibers showed birefringence to polarized
light, with a color pattern in orange and greenish tones, present in bone neoformations and
in areas with interposed connective tissue. Sick animals showed a lower formation and
density of collagen fibers (Figure 7).

Considering that natural polymers composed of proteins present potential characteris-
tics for osteoregeneration, contributing to our results, Hejazi and collaborators analyzed the
capacity for bone regeneration guided by scaffolds composed of elastin, polycaprolactone
and nanohydroxyapatite that were seeded with mesenchymal stem cells and implanted in
the femurs of healthy and ovariectomized rats. Five weeks post-surgery, the experimental
groups showed a significant increase in stereological parameters, with a greater expression
of BMP and VEGF [35]. Rodrigues et al. (2021) describe that the association of elastin with
collagen enabled better cell adhesion [94].

This research represents the continuation of a line of research in bone tissue regen-
erative therapies supported by scaffolds derived from natural polymers. In a previously
carried out study, collagen/chitosan/hydroxyapatite polymeric membranes were produced
using two different methods for the deposition of calcium phosphate crystals (in-situ and
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ex-situ); they were implanted in experimentally caused bone defects in the tibia of healthy
rats and in rats with hormonal deficiency induced by ovariectomy. Both scaffolds showed
biocompatibility and osteoregenerative potential; however, the scaffolds produced with
the ex-situ deposition of calcium phosphate ions allowed for better results in healthy ani-
mals [5]. Another study applied supports to the femur of rats that were made with auricular
elastin, treated with different temperatures and times of alkaline treatment, and supple-
mented with hydroxyapatite and BMP. The most important finding was determining the
elastin treatment time, which is crucial for maintaining ideal porosity after HA deposition.
The scaffold processed for 96 h presented more favorable porosity for cell permeability
compared to the scaffold processed for 24 h [95]. Recently, Pandini et al. (2022) separately
determined the osteoconductive potential of three polymers (collagen, elastin and chitosan)
in healthy rats and rats with metabolic deficiency caused by alcohol ingestion. The high-
est rates of bone neoformation occurred with chitosan scaffolds, followed by elastin and
collagen, respectively. The same was observed in animals subjected to alcoholism [18].
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Among the limitations of the present study are the restriction on the number of animals
and the absence of other experimental groups, in which the effects of each composite could
be tested separately and under different processing conditions. The importance of further
investigations of natural components is highlighted for the development of more efficient
scaffolds with controlled biodegradability, bioactivity and mechanical resistance, with the
aim of providing support for tissue growth throughout the process of repairing serious
bone defects.

3. Materials and Methods
3.1. Biomaterials

The scaffolds were prepared and characterized by master’s student Claudio Fernandes
Garcia in the Biochemistry and Biomaterials Group of São Carlos Institute of Chemistry–
USP. The materials used were collagen obtained from porcine serosa, bovine ear cartilage
and synthesized nanohydroxyapatite.

3.2. Collagen Preparation

The anionic collagen was obtained from porcine serosa, purchased from a meat store.
The serosa was cleaned with water, cut, and washed in 0.5% acetic acid and 0.5% sodium
hydroxide solutions, to remove fat and blood. It subsequently underwent alkaline hydroly-
sis [55] in solution with hydroxides, chlorides and sulfates of K+, Ca2 + e Na+ for 120 h.
This solution promotes the selective hydrolysis of carboxyamide groups of the collagen,
increasing the negative charge of the biopolymer. Subsequently, all salts were removed
by washing in 3% boric acid solution, deionized water and 0.3% EDTA and again with
deionized water until pH 6.0. The material was lyophilized and solubilized in acetic acid,
pH 3.5, to obtain a 4% collagen solution.

3.3. Nanohydroxyapatite (nHA) Synthesis

For the synthesis of nHA, 100 mL of 0.01 mol L−1 of cetrimonium bromide (CTBA) was
slowly added to 0.6 mol L−1 of K2HPO4. The pH was adjusted to 12 with NaOH and the
mixture was stirred for 2 h. After, a 1.0 mol L−1 CaCl2 solution was added, under constant
stirring. The suspension formed was placed under reflux for 6 h and then ultrasonicated
for 1 h and washed with deionized water and ethanol. Afterwards, the precipitate was
placed at 40 ◦C for 12 h to evaporate the solvent and then calcined at 550 ◦C for 5 h. The
characterization of hydroxyapatite is presented in Garcia et al. (2021) [96], with a crystalline
grain size of 38.9 nm and a crystallinity percentage of 80.4%.

3.4. Bovine Ear Cartilage Treatment

Bovine ear cartilage was first cut and washed with 0.9% NaCl solution to remove blood
and other contaminants. After that, it underwent an alcaline hydrolysis treatment [55] as
described for the preparation of collagen but for a period of 15 h at 37 ◦C. The resulting
material was suspended in acetic acid solution, pH 3.5, and lyophilized.

3.5. Scaffold Preparation

Two kinds of scaffolds were prepared: porcine serosa collagen with nanohydroxyap-
atite (MSH) and porcine serosa collagen with nanohydroxyapatite and bovine ear cartilage
(MSHC). At first, the 4% collagen gel was diluted to 1.5% with a suspension of nanohydrox-
yapatite in HAc pH 3.5 using the ratio of 30 mg of nHA for every 10 g of 1.5% collagen gel;
it was used to prepare MSH by stirring at 900 rpm. Scaffolds containing bovine auricular
cartilage (MSHC) were made by adding 50 mg of cartilage for every 10 g of collagen/nHA
gel. The scaffolds were obtained by freeze-drying 6g of each preparation in 11 × 1.5 cm
Teflon® molds. The obtained scaffolds were neutralized in ammonia vapor for a period of
2 h and then aerated under air flow for at least 72 h.
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3.6. Scaffolds Characterization
3.6.1. Scanning Electronic Microscopy (SEM)

Analysis was carried out with the scaffolds glued to stubs using conductive carbon
tape, previously covered with a thin 6 nm thick layer of gold, in a metalizer Coating
System BAL-TEC MED 020 (BAL-TEC®, Liechtenstein) with a pressure in the chamber of
2.00 × 10−2 mbar, a current of 60 mA and a deposition rate of 0.60 nm/s, enabling the
analysis of their structures. ZEISS® LEO 440 (Cambridge, UK) equipment was used with
an OXFORD® (model 7060) detector, operating with a 20 kV electron beam. The pore size
was obtained using Image J software using 30 determinations at 500× magnification. An
approximation of the Martin diameter was used [97].

3.6.2. Differential Scanning Calorimetry (DSC)

The thermal stability of scaffolds was determined by differential scanning calorime-
try (DSC-2010®, TA Instruments) from 5 to 120 ◦C. Heating was performed in hermetic
aluminum pans in a nitrogen atmosphere (80 mL min−1) at a rate of 10 ◦C min−1 using
20 mg of sample. The temperature of denaturation was given from the inflection point of
DSC curves.

3.6.3. Phosphate-Buffered Saline (PBS) Absorption

Scaffolds were placed in a chamber containing NaOH for 24 h and then weighed.
After that, the scaffolds were placed in phosphate-buffered saline (PBS). At specific time
intervals, they were removed, and the excess of solution was removed using a 2 cm × 2 cm
filter paper. The scaffolds were weighed and returned to PBS for the further time taken.
The percentage of PBS absorbed was calculated by averaging the results found using Eq.
(1), where whumid is the mass of the swollen scaffold and wdry is the mass of the scaffold
before swelling. The process was carried out in quadruplicate.

absorption (%) =
whumid − wdry

wdry
· 100 (1)

3.7. Experimental Design

This study was approved by the Animal Experimentation Ethics Committee of the
Faculty of Medicine of Jundiaí (CEUA/FMJ–Brazil), protocol 246/2019, and included
sixty female Wistar rats (Rattus norvegicus), 20 weeks old and with an average weight
of 350 g. This work followed the standards of the National Council for the Control of
Animal Experimentation (CONCEA) and kept the animals in a vivarium with a controlled
temperature (23 ± 1 ◦C) and a 12/12-h light/dark cycle, receiving balanced food (Purina®)
and water ad libitum.

The sample was divided into three non-ovariectomized healthy groups (G1-NO-
C; G2-NO-MSH; G3-NO-MSHC) and another three bilaterally ovariectomized groups
to stimulate estrogen deficiency, and consequently, a reduction in bone-mineral density
(G4-O-C; G5-O-MSH; G6-O-MSHC), according to the distribution described in Table 3 and
Figure 8.

Table 3. Experimental groups, with their respective fillings in the surgically created bone defect.

Non-Ovariectomized
Rats (NO)

Ovariectomized
Rats (O)

Without Graft (only
Clot)

Collagen with nHA
Scaffold

Collagen with nHA
and Elastin Scaffold

G1-NO-C X X
G2-NO-MSH X X

G3-NO-MSHC X X
G4-O-C X X

G5-O-MSH X X
G6-O-MSHC X X
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3.8. Surgical Procedures

At 12 weeks of age, the animals in the ovariectomized groups (G4-O-C; G5-O-MSH; G6-
O-MSHC) were weighed and anesthetized with a xylazine solution at 1 mg/kg (Vetaset®)
(a sedative, analgesic and muscle relaxant) and ketamine (Dopalen®) at a dose of 70 to
80 mg/kg (an anesthetic agent with sedative effect), and both were applied intramuscularly
in a 1:1 ratio [98]. Tramadol was also administered subcutaneously at 10 mg/kg (2%
Cronidor®, Brazil) as a post-operative pain control measure [99]. After the trichotomy
and asepsis of the dorsal region with 2% chlorhexidine digluconate, a 2 cm skin incision
was made on both sides of the spine. The subcutaneous tissue was detached to visualize
the local muscles. It was sectioned in the longitudinal direction, giving access to the
retroperitoneum. In this way, the ovaries were identified and removed through the section
and surgical removal of the uterine lobes and fallopian tubes [100,101] (Figure 9).

After surgery, the tissues were sutured with nylon thread (Ethicon®, Johnson and
Johnson, São José dos Campos, Brazil) and each animal received an intramuscular dose
(0.1 mg/100 g) of antibiotic (Pentabiotic Veterinário Pequeno (Fort Dodge®, Campinas,
Brazil). At the site of the skin wound in the surgical region, antibiotic rifamycin spray
(Rifotrat®, Brazil) was applied as a second measure to control post-operative pain. The
surgical approach was adopted with the dilution of paracetamol (15 drops) in water
pipettes [60].

At 20 weeks of age, all animals in the healthy non-ovariectomized groups (G1-NO-C;
G2-NO-MSH; G3-NO-MSHC) and in the ovariectomized groups (G4-O-C; G5-O-MSH; G6-
O-MSHC) underwent a surgical procedure to create a bone defect in the left tibia.
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in planes on the left side (S); (D) Surgical approach to the left tibia and creation of the bone defect (BD); 
(E) Grafting of groups 2, 3, 5 and 6 with polymeric membrane (M); (F) Suture of the periosteum and 
leg muscles for subsequent skin closure. Note: Ovariectomy was performed bilaterally. 
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muscles of the left leg. Once the proximal metaphysis of the left tibia was exposed, the 
periosteum was detached and a bone defect of 2.5 mm in diameter was created with a 
trephine drill coupled to the pen of a minimotor (Beltec LB-100®, Brazil), with continuous 
irrigation until reaching the spinal canal, of which the hematopoietic content was aspi-
rated and washed with 0.9% saline. The bone defects in groups 2, 3, 5 and 6 were grafted 
with polymeric matrices, while control groups 1 and 4 remained empty with the defect. 
Then, the soft tissues, including the periosteum, muscles, fascia and skin, were sutured. 
The tibia procedure followed the same operative care protocol, including anesthesia, an-
tisepsis, antibiotic therapy and analgesia. 

3.9. Macroscopic, Radiological and Histomorphometric Analysis In Vivo 
Six weeks after the procedure on the tibia, the animals were sacrificed by an overdose 

of intramuscular anesthetic, followed by pneumothorax. The left tibia was carefully dis-
sected and removed, preserving the soft tissue over the bone defect area. After collecting 
photodocumentation to analyze clinical conditions, the tibias were X-rayed to evaluate the 
integrity and radiodensity of the experimental area. They were then kept in a formaldehyde 
solution for 15 days and were subsequently decalcified in ethylenediaminetetraacetic acid 
(EDTA) and reduced transversely, preserving the defect area. 

The samples were processed by histology with semi-serial sections of 5 µm, stained 
with Masson’s trichrome to characterize new bone formation, and stained with Picrosirius-

Figure 9. Bilateral ovariectomy of rats in groups 4, 5 and 6 and procedure to create the bone
defect in the tibia of groups 1 to 6. (A) Location of the uterine tube (UH) and left ovary (LO);
(B) Surgical resection of the left ovary with portion of the uterine tube; (C) Repositioning of the
uterus, suture performed in planes on the left side (S); (D) Surgical approach to the left tibia and
creation of the bone defect (BD); (E) Grafting of groups 2, 3, 5 and 6 with polymeric membrane (M);
(F) Suture of the periosteum and leg muscles for subsequent skin closure. Note: Ovariectomy was
performed bilaterally.

The animals were positioned in the supine position for the shaving and asepsis of the
left hind paw. A longitudinal skin incision was made to expose and separate the proximal
muscles of the left leg. Once the proximal metaphysis of the left tibia was exposed, the
periosteum was detached and a bone defect of 2.5 mm in diameter was created with a
trephine drill coupled to the pen of a minimotor (Beltec LB-100®, Brazil), with continuous
irrigation until reaching the spinal canal, of which the hematopoietic content was aspirated
and washed with 0.9% saline. The bone defects in groups 2, 3, 5 and 6 were grafted with
polymeric matrices, while control groups 1 and 4 remained empty with the defect. Then,
the soft tissues, including the periosteum, muscles, fascia and skin, were sutured. The
tibia procedure followed the same operative care protocol, including anesthesia, antisepsis,
antibiotic therapy and analgesia.

3.9. Macroscopic, Radiological and Histomorphometric Analysis In Vivo

Six weeks after the procedure on the tibia, the animals were sacrificed by an overdose
of intramuscular anesthetic, followed by pneumothorax. The left tibia was carefully dis-
sected and removed, preserving the soft tissue over the bone defect area. After collecting
photodocumentation to analyze clinical conditions, the tibias were X-rayed to evaluate the
integrity and radiodensity of the experimental area. They were then kept in a formaldehyde
solution for 15 days and were subsequently decalcified in ethylenediaminetetraacetic acid
(EDTA) and reduced transversely, preserving the defect area.

The samples were processed by histology with semi-serial sections of 5 µm, stained
with Masson’s trichrome to characterize new bone formation, and stained with Picrosirius-
red (saturated aqueous solution of picric acid plus 0.1 g of Sirius red F3B, Bayer®, Germany)



Int. J. Mol. Sci. 2023, 24, 15727 16 of 20

for the identification of the components of the fibrillar extracellular matrix by polarized
light microscopy. For the qualitative histological analysis, several aspects of the local mi-
croenvironment were observed, such as cell types, presence of granulation tissue, presence
and quality of immature or mature/lamellar bone, inflammatory infiltrate and the degree
of filling of the newly formed tissue.

For morphometry, three semi-serial sections were analyzed and stained with Masson’s
trichrome, obtained from the proximal, median and distal region of the bone defect area of
each sample, obtaining three data points on the volume of newly formed bone per animal
for the subsequent calculation of new training averages per study group. The quantification
of new formation was carried out using the Motic Images Plus 2.0 ML software to delimit
the total area of the bone defect and newly formed bone. The quantified volumes for the
samples from each group were transcribed into the BioEstat 5.3 software, and statistical
analysis was conducted using the ANOVA test followed by the Tukey test, with a confidence
interval of 95% and a significance level of p < 0. 05, to determine the differences between
the groups.

4. Conclusions

This study aimed to evaluate the osteoregenerative capacity of porcine serous collagen
scaffolds mineralized with nanohydroxyapatite, supplemented or not with elastin derived
from bovine auricular cartilage, used as a therapeutic resource for guided regeneration in
size defects created in the tibia of healthy rats and rats with bone-mineral deficiency induced
by ovariectomy. Macroscopic, radiological and histomorphometric analyses revealed the
formation of new organized and mature bone tissue, the absence of intense inflammatory
reaction or foreign body reaction, and osteoconductivity properties of both matrices (MSH
and MSHC), in animals from groups with normal conditions of osteometabolism and
groups with gonadal deficiency. The scaffolds demonstrated a higher percentage of bone
formation when compared to the control groups, and there was no significant difference in
the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the
immune response but negatively influenced the bone-defect repair process.
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