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Abstract: Ovarian cancer (OC) is the most lethal of all gynecological cancers. Due to vague symptoms,
OC is mostly detected at advanced stages, with a 5-year survival rate (SR) of only 30%; diagnosis
at stage I increases the 5-year SR to 90%, suggesting that early diagnosis is essential to cure OC.
Currently, the clinical need for an early, reliable diagnostic test for OC screening remains unmet;
indeed, screening is not even recommended for healthy women with no familial history of OC
for fear of post-screening adverse events. Salivary diagnostics is considered a major resource for
diagnostics of the future. In this work, we searched for OC biomarkers (BMs) by comparing saliva
samples of patients with various stages of OC, breast cancer (BC) patients, and healthy subjects using
an unbiased, high-throughput proteomics approach. We analyzed the results using both logistic
regression (LR) and machine learning (ML) for pattern analysis and variable selection to highlight
molecular signatures for OC and BC diagnosis and possibly re-classification. Here, we show that
saliva is an informative test fluid for an unbiased proteomic search of candidate BMs for identifying
OC patients. Although we were not able to fully exploit the potential of ML methods due to the small
sample size of our study, LR and ML provided patterns of candidate BMs that are now available for
further validation analysis in the relevant population and for biochemical identification.

Keywords: biomarkers; breast cancer; logistic regression; machine learning; mass spectrometry;
ovarian cancer; proteomics; saliva; SELDI-TOF-MS

1. Introduction

Worldwide, ovarian cancer (OC) is the most lethal malignancy of the female reproduc-
tive tract [1]. There is inconsistency in the availability of and access to treatment for OC.
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Additionally, outcomes are complicated by poor understanding of the disease, which is
characterized by complex epidemiology, histopathology, and genetic features [2]. OC is a
heterogeneous disease comprising several types and subtypes [3,4], and the extra-ovarian
origins of epithelial OC contribute to its intricacies.

Despite increasingly radical surgical approaches and huge efforts put into new, tar-
geted therapeutic agents, the prognosis for patients with OC has hardly improved in the
past three decades, and two-thirds of women still die within 10 years of diagnosis. This is
mostly due to late diagnosis: nearly 70% of patients are diagnosed with advanced disease
(stage III or IV) and have a five-year survival below 20% [5]. In contrast, the five-year
survival of patients diagnosed at stage I exceeds 90%. A yearly screening test that could
detect tumors below 0.5 cm in diameter would reduce mortality by 50% [6]. Therefore,
strategies for curing OC require identifying new biomarkers (BMs) to achieve two main
goals: to accurately detect OC early, at a point when outcomes could be improved, and to
perform a better stratification of patients with full-blown disease.

On the front of early detection, at least three high-quality studies evaluated the effect
of annual screening in asymptomatic women not known to be at high risk for OC [7–9].
None found that screening significantly reduced OC mortality. In 2018, the US Preventive
Services Task Force (USPSTF) updated its guidelines to recommend against screening for
OC in “asymptomatic women with no family history of cancer” [10] to avoid potential
serious harm from false positive results (e.g., unnecessary surgical removal of the ovary).

Presently, screening procedures include measuring the serum cancer antigen 125
(CA125), which is one of the most common serum BMs used in the diagnosis of OC.
However, CA125 is not specific to OC, as its level also increases in adenomyosis, uterine
myoma, endometrial pathology, and endometriosis of the ovary [11]. Moreover, CA125
increases in about 80% of all OC and in 50% of stage I epithelial OCs [12,13]; therefore,
using CA125 as the only diagnostic BM will miss those that do not express this antigen.
However, serum BMs other than CA125 are not currently used for screening in clinical
practice due to their low sensitivity or specificity [14].

At the same time, the current literature agrees that multi-BM panels perform bet-
ter than single markers for more personalized treatment in the context of precision
medicine [15,16] and for the detection of OC [2,17]. However, attention must be paid to
the type of markers combined for diagnostic purposes in relation to the intended use
of the panel. For example, it was shown that markers discovered in diagnostic samples
are significantly differentially expressed only when the tumor becomes large or clinically
apparent; therefore, such markers may have little value for early detection [18,19].

Thus, the need for more sensitive and specific tests that will minimize false positives,
predict metastasis, and provide better clinical management of OC patients remains unmet [16].

Among body fluids, saliva is a relatively simple, accurate, safe, and economical
material that can be tested for clinically significant molecules [20]. Saliva released by the
major salivary glands consists of 99% water containing inorganic and organic species,
including secretion and putrefaction products, lipids, over 2400 proteins, metabolites,
components of the microbiome and abundant, stable extracellular coding and non-coding
RNA species [21]. It can be collected without medical intervention, properly stabilized at a
minimal cost, and stored and shipped from the collection site to the testing site. Some of the
molecule types characterized in saliva are candidate BMs for cancer diagnosis, prognosis,
drug monitoring and pharmacogenetic studies, and a few such candidates have been
validated in multicenter studies with large sample sizes and standardized protocols [22].

Until now, only one study has reported the analysis of saliva proteome for detection
of OC BMs [23,24]; however, this study only compared OC patients to healthy women.
Therefore, we set out to (A) search for candidate biomarkers of OC using a broad, unbiased
approach based on high-throughput proteomics technologies, using saliva as a test fluid
from three cohorts of women: (1) patients with OC at various stages, (2) breast cancer (BC)
patients and (3) healthy subjects (HS); and (B) analyze the results using both a traditional
statistical approach based on logistic regression (LR) and a machine learning (ML) approach
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for pattern analysis and variable selection (VS) [25,26]. Our purpose was to highlight
relevant combinations of candidate BMs (signatures) for the diagnosis of OC and possible
re-classification of disease. HS and BC served as reference groups. BC patients were
introduced to rule out molecular species possibly shared by cancer patients in view of
similarities among the diseases both in terms of gene expression and genetic origins [27–29].

We opted for a two-fold approach to data analysis because with respect to standard
techniques, ML-based approaches also consider highly non-linear correlations between
the potential input variables and the classification task and, if properly tuned, allow
the selection of variables conveying the greatest amount of information by reducing the
sensitivity to the particular dataset [30]. For the classification tasks, different approaches
compatible with the small amount of available data were explored.

In this work, we show as a proof of principle that saliva is an informative test fluid for
an unbiased proteomic search of candidate BMs that can discriminate between OC patients
and other cohorts. LR and ML analysis provided patterns of candidate BMs that are now
available for further validation analysis in the relevant population and for biochemical
identification. The small sample size prevented the full exploitation of ML data analysis;
however, the results obtained are robust, suggesting that increasing the number of patients
will improve the performance.

2. Results
2.1. Proteome Profiling of Saliva Samples

Saliva samples of women belonging to three cohorts (OC; BC; HS), were examined with
Surface-Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry (SELDI-
TOF-MS) using CM10 (cationic exchange surface) ProteinChips to reveal qualitative and
quantitative differences in the ionic proteome profile. Typical results with mass spectra in
the range 2–50 kDa are shown for each group in the form of chromatograms (Figure 1A) and
virtual gels (Figure 1B). Differences between samples were mostly quantitative, although
some, especially in the spectra of OC samples, were also qualitative (Figure 1, arrows).
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Figure 1. Typical results with mass spectra in the range 2–50 kDa are shown for each cohort of subjects,
OC and BC patients, HS. Differences were mostly quantitative (red arrows) but also qualitative
(blue arrows), especially in the spectra of OC samples. (A) Chromatograms. (B) Virtual gels.
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2.2. Ionic Species Differentially Expressed in the Training Set

To search for differentially expressed peaks, spectra acquired from a training set of
147 samples were analyzed with ProteinChip Data Manager 3.5 software (BioRad Laborato-
ries, Segrate (MI), Italy), using m/z values and their relative intensities as variables in the
range 2–50 kDa. The software produced a cluster list of 77 peaks that were common to at
least 80% of all saliva samples of the training set (Table 1).

Table 1. Input variables (m/z peaks) included in the study are designated by cardinal numbers for
sake of simplification.

Peak No. m/z N◦ m/z N◦ m/z

1 2.117 26 5.269 52 11.514

2 2.237 27 5.292 53 11.602

3 2.377 28 5.368 54 11.767

4 2.509 29 5.385 55 12.193

5 2.625 30 5.431 56 12.345

6 2.654 31 5.801 57 12.713

7 2.788 32 6.355 58 13.211

8 3.018 33 6.675 59 13.319

9 3.163 34 6.739 60 13.485

10 3.297 35 6.920 61 13.865

11 3.376 36 7.143 62 14.342

12 3.449 37 7.167 63 14.725

13 3.492 38 7.892 64 15.164

14 3.671 39 8.002 65 15.927

15 3.720 40 8.290 66 17.555

16 4.041 41 8.581 67 20.966

17 4.127 42 9.990 68 21.692

18 4.139 43 10.116 69 22.395

19 4.370 44 10.213 70 23.578

20 4.426 45 10.304 71 24.346

21 4.547 46 10.467 72 25.333

22 4.577 47 10.683 73 25.709

23 4.929 48 10.864 74 26.056

24 5.226 49 11.038 75 27.855

25 5.244 50 11.253 76 28.169

51 11.382 77 28.816

Statistical analyses performed with a non-parametric Mann–Whitney U test for the
comparison between two groups, respectively, showed that among the 77 ionic peaks of
the cluster list, 33 were differentially expressed (Table 2).

Next, to identify candidate biomarkers specific to OC, we compared the three cohorts
of subjects to one another. We included BC samples in the study to rule out possible
biomarkers shared by the two gynecological cancers and possible non-specific biomarkers
associated with cancer, such as inflammation markers.

Peaks 9, 28, 29, 48 and 57 discriminate OC both from BC patients and from HS but do
not discriminate BC from HS. Of those, peaks 9, 28, and 29 are over-expressed in OC, while
peaks 48 and 57 are under-expressed in OC compared to BC and HS.
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Peaks 4, 5, 8, 10, 22, 24, 26, 27, 49, 67, 68, and 69 are shared by OC and BC, with
expression levels similar in the two groups.

Peak 22 distinguishes BC against HS.

Table 2. Peaks differentially expressed in the training set. The sign of differential expression in
cohorts of samples compared one to one is represented. Stars: statistical significance according to
non-parametric Mann–Whitney U test. ****: p = 0; ***: p < 0.001; **: p < 0.01; *: p < 0.05; Ns: not
significant. Cardinal numbers of peaks refer to m/z species listed in Table 1.

Peak No. OC vs. HS OC vs. BC BC vs. HS

2 Ns * OC > BC Ns

9 ** OC > HS ** OC > BC Ns

13 * OC < HS Ns Ns

16 Ns Ns * BC < HS

20 ** OC < HS Ns **** BC < HS

22 * OC < HS Ns (OC ≥ BC) ** BC < HS

27 Ns Ns * BC < HS

28 * OC > HS ** OC > BC Ns

29 * OC > HS * OC > BC Ns

32 ** OC < HS Ns * BC < HS

34 *** OC < HS Ns ** BC < HS

38 Ns * OC > BC Ns

41 ** OC > HS Ns Ns

43 Ns Ns * BC < HS

44 ** OC < HS Ns ** BC < HS

45 * OC < HS Ns * BC < HS

46 ** OC < HS Ns ** BC < HS

47 * OC < HS Ns * BC < HS

48 ** OC < HS * OC < BC Ns

56 * OC < HS Ns ** BC < HS

57 *** OC < HS ** OC < BC Ns

58 ** OC < HS Ns ** BC < HS

59 * OC < HS Ns ** BC < HS

60 ** OC < HS Ns ** BC < HS

63 Ns Ns * BC < HS

64 * OC < HS Ns Ns

67 *** OC < HS Ns ** BC < HS

68 ** OC < HS Ns * BC < HS

70 Ns Ns * BC < HS

71 ** OC < HS Ns ** BC < HS

72 *** OC < HS Ns ** BC < HS

73 Ns Ns * BC < HS

74 * OC < HS Ns ** BC < HS

Ionic species around 13,000 (peaks 58 to 61) were under-expressed both in OC and
BC compared to HS of the training set; in particular, peak 60 was significantly over-
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expressed in HS against all cancer groups, altogether suggesting the reduction or loss of
tumor-suppressor species in both forms of cancer. They were not further analyzed in the
testing set.

2.3. Ionic Species Differentially Expressed in the Testing Set

To validate the results obtained with the training set, we analyzed with CM10 an
independent set of samples belonging to the cohorts of HS, BC and OC patients.

Table 3 shows the 18 significantly differentially expressed peaks obtained with the
testing set.

Table 3. Peaks differentially expressed in the testing set. The sign of differential expression in
cohorts of samples compared one to one is represented. Stars: statistical significance according to
non-parametric Mann–Whitney U tests. ****: p = 0; ***: p < 0.001; **: p < 0.01; *: p < 0.05; Ns: not
significant. Cardinal numbers of peaks refer to m/z species listed in Table 1.

Peak No. OC vs. HS OC vs. BC BC vs. HS

17 Ns Ns * BC < HS

20 Ns Ns * BC < HS

22 Ns (OC < HS) Ns Ns

25 Ns Ns * BC > HS

30 Ns Ns * BC > HS

33 ** OC < HS Ns ** BC < HS

34 *** OC < HS Ns * BC < HS

38 Ns Ns * BC < HS

48 Ns * OC < BC Ns

49 Ns * OC < BC Ns

54 Ns * OC < BC ** BC > HS

56 Ns (OC < HS) Ns * BC < HS

58 * OC < HS Ns **** BC < HS

59 * OC < HS Ns **** BC < HS

60 * OC < HS Ns * BC < HS

63 * OC > HS Ns Ns

65 Ns ** OC < BC Ns

66 Ns ** OC < BC Ns

Six of the peaks highlighted from the training set, namely peaks 20, 34, 48, 58, 59 and
60, were confirmed here both for significance and trend of variation (Table 3). In particular,
peak 48 was confirmed to be over-expressed in OC compared to BC.

Six more peaks (peaks 22, 29, 32, 41, 56 and 71) showed the same trend as above
but lost statistical significance while still remaining close to the threshold, which was
likely because of a smaller number of samples in the testing set (Table 3 and Figure 2).
All 12 peaks were included in the logistic regression (LR) analysis performed to identify
the best-fitting OC biomarker signature. Scatter plots of the comparisons are shown
in Figure 2.
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Peak 20 Peak 22 Peak 29

Peak 32 Peak 34 Peak 41

Peak 48 Peak 56 Peak 58

Peak 59 Peak 60 Peak 71

Figure 2. Ionic species differentially expressed in the testing set. Scatter plots of intensity comparison
among m/z peaks of the three sample cohorts for the 12 peaks included in the LR analysis. Red: OC
cohort; Blue: BC cohort; Green: HS cohort. Cardinal numbers of peaks refer to m/z species listed
in Table 1.

2.4. Logistic Regression (LR)

We then applied an LR analysis by “stepwise backward” selection on the training
set, using the 12 peaks achieved as above, to obtain receiver operating characteristic
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(ROC) curves able to measure the accuracy of the diagnostic test in terms of sensitivity
and specificity.

This analysis generated a panel of six peaks with the highest accuracy in discriminating
OC from HS (Figure 3A). The ROC curve relative to the comparison between OC and HS
showed 0.971 specificity and 0.743 sensitivity with 0.905 AUC. The best cut-off value,
measured with the Youden index, was 0.714. The predictive model created with the
training set was then used to validate the biomarker panel with the testing set. Comparing
OC vs. HS, we obtained 60% sensitivity and 100% specificity, suggesting that all HS were
correctly classified (true negative); the AUC was 0.991 (Figure 3B).

AUC Sensitivity Specificity BCR
Training 0.905 0.743 0.971 0.857
Testing 0.991 0.6 1 0.8

AUC Sensitivity Specificity BCR
Training 0.736 0.571 0.882 0.73
Testing 0.636 0.4 0.8 0.6

A OC vs. HS OC vs. BC
20
22
29 29
41 41

56
58
59

CB

1- Specificity1- Specificity

Se
ns

iti
vi

ty

Se
ns

iti
vi

ty
ROC curve ROC curve

Figure 3. Results of LR analysis to discriminate OC from BC patients and HS. (A) List of the
discriminating protein peaks defined by LR for each comparison. The results show that saliva
contains ionic species able to discriminate OC patients. Cardinal numbers of peaks refer to m/z
species listed in Table 1. Peaks listed here and not present in Table 3 (which lists only statistically
significant peaks from the validation step) were among those whose trend was confirmed in the
testing set but lacked statistical power; however, they were used to build the LR model. (B) ROC curve
for the comparison OC versus HS, with relative area under the curve (AUC), sensitivity and specificity.
(C) ROC curve for the comparison of OC versus BC patients, with relative AUC, sensitivity and
specificity. BCR: Balanced Classification Rate. Green line: random classifier curve. Blue line: actual
test curve.

The same type of analysis to discriminate OC from BC with the highest accuracy
generated a further panel of three peaks (Figure 3A). The ROC curve relative to the com-
parison between OC and BC showed 0.882 specificity and 0.571 sensitivity; the AUC was
0.736 (Figure 3C). When the predictive model was used on the testing set, we obtained
0.8 specificity and 0.4 sensitivity with AUC of 0.636 (Figure 3C).

2.5. Machine Learning (ML)

In addition to the traditional approach of LR, we investigated whether ML might
provide additional insights. The proposed approach (see Methods) was tested on a dataset
including 77 input variables (Table 1).
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To evaluate the performances of both VS algorithms and classifiers, we considered
the entire initial dataset. A total of 100 classification simulations were performed for
each subset by periodically mixing the order of patients analyzed, thereby varying the
composition of the training and testing sets. The dataset was shuffled and then divided into
a training set and testing set. The training test included 75% of the whole dataset, while the
testing set included the remaining 25%.

These tests were performed with four classifiers, considering the different sets of input
selected variables. The results, in terms of mean Balanced Classification Rate (BCR), mean
sensitivity, mean specificity and mean AUC are shown in Tables 4–6.

Table 4. Classification performance concerning Subset 1 (HS vs. OC + BC).

Classifier Index

VS Approach

Filter Wrapper Embedded Hybrid
(Filter/Wrapper)

Bayes

BCR/devStd
Sensitivity
Specificity

AUC

0.64/0.06
0.85
0.42
0.65

0.54/0.08
0.36
0.72
0.51

0.57/0.08
0.42
0.68
0.72

0.54/0.04
0.95
0.12
0.55

SVM

BCR/devStd
Sensitivity
Specificity

AUC

0.59/0.05
0.95
0.22
0.69

0.60/0.07
0.95
0.26
0.69

0.55/0.06
0.89
0.21
0.77

0.59/0.03
0.98
0.04
0.62

DA

BCR/devStd
Sensitivity
Specificity

AUC

0.61/0.07
0.91
0.31
0.68

0.51/0.03
0.96
0.06
0.63

0.58/0.07
0.89
0.26
0.78

0.60/0.06
0.93
0.27
0.68

DT

BCR/devStd
Sensitivity
Specificity

AUC

0.62/0.08
0.78
0.45
0.67

0.65/0.06
0.79
0.51
0.62

0.74/0.08
0.85
0.63
0.72

0.59/0.08
0.78
0.39
0.68

Table 5. Classification performance concerning Subset 2 (OC vs. HS).

Classifier Index

VS Approach

Filter Wrapper Embedded Hybrid
(Filter/Wrapper)

Bayes

BCR/devStd
Sensitivity
Specificity

AUC

0.67/0.08
0.84
0.49
0.70

0.51/0.09
0.55
0.47
0.54

0.65/0.09
0.61
0.69
0.76

0.62/0.10
0.83
0.42
0.61

SVM

BCR/devStd
Sensitivity
Specificity

AUC

0.71/0.09
0.82
0.60
0.75

0.59/0.07
0.57
0.60
0.52

0.69/0.08
0.75
0.63
0.81

0.63/0.08
0.80
0.46
0.72

DA

BCR/devStd
Sensitivity
Specificity

AUC

0.68/0.08
0.80
0.56
0.76

0.66/0.08
0.56
0.75
0.54

0.69/0.08
0.76
0.62
0.86

0.64/0.09
0.80
0.47
0.77

DT

BCR/devStd
Sensitivity
Specificity

AUC

0.65/0.10
0.65
0.65
0.70

0.62/0.10
0.62
0.62
0.65

0.73/0.07
0.73
0.73
0.77

0.64/0.08
0.61
0.67
0.65
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Table 6. Classification performance concerning Subset 3 (BC vs. HS).

Classifier Index

VS approach

Filter Wrapper Embedded Hybrid
(Filter/Wrapper)

Bayes

BCR/devStd
Sensitivity
Specificity

AUC

0.65/0.07
0.46
0.83
0.78

0.61/0.08
0.44
0.78
0.50

0.66/0.08
0.49
0.83
0.66

0.59/0.07
0.24
0.94
0.75

SVM

BCR/devStd
Sensitivity
Specificity

AUC

0.66/0.08
0.59
0.74
0.82

0.53/0.08
0.52
0.54
0.58

0.76/0.07
0.71
0.80
0.70

0.65/0.08
0.55
0.76
0.77

DA

BCR/devStd
Sensitivity
Specificity

AUC

0.66/0.09
0.56
0.77
0.80

0.50/0.09
0.46
0.53
0.71

0.70/0.09
0.60
0.79
0.68

0.63/0.09
0.52
0.74
0.77

DT

BCR/devStd
Sensitivity
Specificity

AUC

0.70/0.10
0.67
0.72
0.69

0.78/0.09
0.75
0.81
0.62

0.79/0.07
0.79
0.78
0.70

0.65/0.09
0.63
0.67
0.65

Moreover, Table 7 shows the classifiers applied to the initial dataset, including all
available variables without any selection.

Finally, Table 8 shows a summary of the results and the percentage gain in terms
of performance obtained using the VS algorithm rather than by exploiting all avail-
able variables.

Table 7. Classification performance on whole dataset.

Classifier HS/OC + BC HS/OC HS/BC

Bayes

BCR
DevSt
Sens.
Spec.
AUC

0.61
0.07
0.56
0.66
0.65

0.56
0.08
0.51
0.61
0.63

0.60
0.08
0.50
0.67
0.57

SVM

BCR
DevSt
Sens.
Spec.
AUC

0.63
0.07
0.76
0.50
0.70

0.61
0.09
0.58
0.63
0.66

0.72
0.07
0.69
0.75
0.76

DA

BCR
DevSt
Sens.
Spec.
AUC

0.56
0.08
0.73
0.40
0.62

0.50
0.10
0.51
0.49
0.51

0.55
0.11
0.57
0.54
0.55

DT

BCR
DevSt
Sens.
Spec.
AUC

0.64
0.08
0.80
0.49
0.68

0.64
0.1

0.64
0.64
0.69

0.71
0.10
0.74
0.67
0.72



Int. J. Mol. Sci. 2023, 24, 15716 11 of 20

Table 8. Summary of results and the percentage gain in terms of performance obtained using the
VS algorithm.

Dataset Selected Variables BCR
(Embedded–DT)

BCR
(All Variables) % Gain

OC + BC/HS
2-3-12-14-16-17-18-

19-20-21-22-34-41-46-
49-54-68-72

0.74 0.64 13.5%

OC/HS 3-7-20-34-40 0.73 0.64 12.3%

BC/HS 19-20-21-22-30-34-49-
54-59 0.79 0.71 0.10%

3. Discussion

This work met its main goals of identifying candidate BMs differentially expressed in
OC patients through an unbiased, high-throughput proteomic approach and using saliva
as a suitable test fluid while comparing OC patients, BC patients and HSs.

To our knowledge, this is the first work to identify salivary proteomic signatures of
OC and BC concomitantly.

We used an unbiased approach consisting of recruiting all OC patients that approached
our reference clinic regardless of the different stages of the disease (see Section 4). MS in
the molecular range 2–50 kDa was applied for a high-throughput proteomic study, and LR
was used to identify the panel of candidate BM with the best score in terms of specificity
and sensitivity.

The comparative proteomic analysis showed several ionic species to be differentially
expressed in a statistically significant way among the three cohorts of subjects analyzed, first
in the training set (Table 2) and then in the testing set (Table 3). Looking for a signature that
could effectively discriminate OC patients from HS, LR showed that six ionic species (peaks
20, 22, 29, 41, 58, 59) provided the best combination (Figure 4), and the predictive model
created with the training set and validated with the testing set obtained 60% sensitivity and
100% specificity, suggesting that all HS were correctly classified as true negative.

Figure 4. Schematic representation of the proposed logical procedure for ML analysis.
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The specificity obtained with the testing set is particularly meaningful considering
that a potential harmful consequence of OC screening is unnecessary, invasive diagnostic
procedures in cases of false positives.

In addition, since we included BC patients in the study to rule out possible markers
common to the two types of gynecological cancers, this work generated a pattern of three can-
didate biomarkers (peaks 29, 41, 56) that discriminate OC from BC patients (Figure 4).

Moreover, it is interesting to note that even though the comparison between OC vs. BC
yielded 40% sensitivity and 80% specificity, peaks 29 and 41 still specifically characterized
OC patients vs. both BC and HS (Figure 4A), suggesting that these markers might provide
tools for the accurate diagnosis of OC patients against BC.

Furthermore, we extended our analysis to ML, which is an approach that is increasingly
taking off for reprocessing data derived from biomedical research and other fields as an
alternative to traditional statistical approaches [31–33]. In fact, statistical methods are
usually top–down approaches in which the relationship between input and output is
assumed to be known by the user, who creates a mathematical model. In contrast, ML
methods are bottom–up approaches. No assumptions are made about the model that links
inputs and outputs, and the algorithm develops a model whose main goal is prediction.
The resulting models are often complex, and some parameters cannot be directly estimated
from the data. Compared to other methods, ML algorithms can handle a larger number
of variables but also require a larger sample size for analysis. ML is able to highlight
the complex interactions between all variables while also eliminating those with minimal
contribution to outcome prediction.

With the above-mentioned methodology, we demonstrated (Table 8) the effectiveness
of performing VS as a starting analysis of our data: BCR values are lower when entering the
entire dataset with all 77 variables included (shuffled at each iteration for 100 simulations)
instead of using only the most suitable ones.

Among all the VS algorithms used, the best performing approach was the embedded
one (Tables 4–6); further, since the VS algorithm is embedded in the Decision Tree (DT), the
best classifier consequently was the DT. The use of a DT-based classifier has the additional
advantage of being a “white box” model, which is easy to interpret, as it is a chain of simple
if–then rules. Each node of the DT is connected to an input variable, a branch is related to a
range of values, and finally, leaf nodes are associated with both classes.

Our binary comparisons and results show that only variable 3 can discriminate OC
patients from BC patients and HS (Table 8). In contrast, variables 20 and 34 are less specific
to the OC group because they distinguish the two groups of cancer patients (OC + BC) from
HS but not from each other. Although identifying variables to specifically distinguish BC
patients from HS was not our main purpose, it is interesting to point out that the remaining
variables in Table 8 (i.e., peaks 19, 21, 22, 49, and 54) do distinguish BC from HS.

The variables obtained by VS have the power of classification and are considered an
impactful result, as they allowed us to reduce the dataset complexity and consequently
to focus only on those variables that better discriminate between the groups of subjects.
Furthermore, the accuracy index was high enough, considering the small number of
patients available for this study: a larger population would make the training phase easier
and more efficient for applying the results to different datasets.

In this study, when considering Subset 2 (OC vs. HS), the two approaches to data anal-
ysis, that is LR and ML, yielded results that are not completely overlapping in terms of the
identity of variables selected to compose the OC signature, of their number in the signature
and of their sensitivity and specificity (see Figure 3 and Table 5). This was expected based
on an ever-increasing body of literature dedicated to comparing the modeling performance
of the two approaches, which both have advantages and disadvantages.

As already mentioned, an important advantage of ML over conventional statistical
methods (like LR used here) is that the various ML algorithms do not require data to
conform to statistical assumptions, such as the independence of observations and the
avoidance of multicollinearity of independent variables [34]. Another often-cited advantage
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of ML is that it can model complex, non-linear relationships between the predictors and the
outcome [35,36], while the optimal application of the LR model provides better sensitivity,
fewer variables, and easier interpretability than the ML models [37].

While statistical analysis and ML share similarities, their predictive abilities may vary
according to the characteristics of datasets [38]. Indeed, the benefit of ML in prognostic
modeling may be dependent on factors like sample size, variable type, and even the
disease investigated [36].

In this study, as in others [36,39], features were in a number exceedingly high over
the number of patients to fully exploit the potential of ML and to give it a meaningful
benefit over LR. In addition, it might be that a non-linear relationship exists between
baseline and outcomes (cancer markers), which is not surprising given the great variability
(e.g., genetic background, concomitant therapies) among all the patients included in the
study independently of their specific OC condition.

Regarding the identification of the ionic species of interest, SELDI-TOF-MS does
not provide the biochemical identity of the m/z peaks. However, while predisposing
ad hoc experimental strategies for the biochemical identification of selected candidates,
bioinformatics tools may provide in silico clues. As a proof of concept, we used ExPASy
TagIdent [40] because it has already been used successfully for the in silico identity pre-
diction of m/z peaks in similar studies of BM screening and the generation of diagnostic
models from serum [41], tissue [42], and saliva [43]. Here, the analysis was performed
by setting for each peak of interest an m/z interval of 0.1%, isoelectric point from 4 to
12, and Homo sapiens as the species of interest. The algorithm generated a list from
which we selected proteins that are secreted, although proteins from other origins may
well be introduced into the circulation. In this way, peak 29 (m/z 5.385) was associated
with RAD51 isoform 2, which is involved in DNA damage repair and known to interact
with BRCA2, which is a protein associated with familial predisposition to BC and OC [44].
Peak 41 (m/z 8.581) was associated with both the Serum amyloid A (SAA) 1 protein or the
truncated form of Apolipoprotein (APO) A2. Both would be interesting to verify. SAA
protein synthesis increases in response to tissue damage, infection, or inflammation and,
based on proteomic studies, in several neoplasms (nasopharynx, kidney, stomach, liver,
breast, endometrial tumors, melanoma) [45]. Lipoprotein metabolism is dysregulated in
OC: APOA2, together with APOE, are independent classifiers of malignant OC [46]. Peak
56 (m/z 12.345) was associated with macrophage migration inhibitory factor (MIF), which
is a pro-inflammatory cytokine involved in many chronic inflammatory and autoimmune
diseases [47,48], which promotes tumor growth, metastasis and neo-angiogenesis [49]. MIF
is overexpressed in breast cancer [50].

4. Materials and Methods
4.1. Recruitment and Participation of Human Subjects

The study was conducted in accordance with the Declaration of Helsinki and approved
by the local Ethics Committee (Protocol no. 11168, of 11/07/2017, and amendment of
12/09/2018). All participants signed the informed consent.

Patients with documented diagnosis of OC and BC were enrolled at the Dipartimento
Oncologico—Azienda USL Toscana Centro, Ospedale Santa Maria Annunziata, Bagno a
Ripoli, Florence, Italy. Women with BC were recruited for the exclusion of non-specific
gynecological tumor biomarkers.

Inclusion criteria were as follows:

• Women diagnosed with epithelial OC potentially undergoing radical surgery and who
had not received previous chemotherapeutic or anti-hormonal treatments in the last
four weeks;

• Women diagnosed with BC subjected to radical surgery and who had not yet started
systemic treatments for the pathology.

Table 9 summarizes the available data regarding the subjects enrolled in the study.
Full details for enrolled subjects are shown in Supplementary Table S1.
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Table 9. Summary of demographic and clinical pathological characteristics of the participants in the
study subdivided into training and testing sets. All women were of Caucasian ethnicity.

Total Numerosity Numerosity of the Training Set Numerosity of the Testing Set

Healthy Women (HS) 48 33 15
Age (range) 45–73 45–73 49–73
Age (mean) 61.67 60.54 62.80

Ovarian Cancer (OC) Patients 50 35 15
Age (range) 43–84 43–84 49–80
Age (mean) 62.49 62.18 62.80
Serous 23 7
Other (see Supplementary Table S1) 12 7
Metastasis at diagnosis 12 8

Breast Cancer (BC) Patients 49 34 15
Age (range) 34–87 34–87 46–77
Age (mean) 61.26 59.71 62.80
Ductal 22 9
Lobular 6 3
Other (see Supplementary Table S1) 5 3
Metastasis at diagnosis 14 4

HS were enrolled through a screening campaign at the Institute for Cancer Research,
Prevention and Clinical Network (ISPRO, Florence, Italy). HS did not have cancer of
any kind and had not presented any oncological disease in the last five years, with the
exception of in situ carcinoma of the cervix and skin, and did not have any significant
systemic disease.

4.2. Preparation of Training and Testing Sets

A total of 147 individuals were selected (Supplementary Table S1): 50 OC patients;
49 BC patients; and 48 HS. Subjects were distributed among training and testing sets for
statistical purposes (Table 9). Specifically, 35 OC, 34 BC, and 33 HS were assigned to the
training set; the remaining 15 patients per group formed the testing set. Individuals in the
training and testing groups were matched based on their age.

4.3. Collection of Saliva Samples

Unstimulated whole saliva samples were collected with sterile Falcon tubes (Merck
Life Sciences, Milan, Italy), two tubes per woman, 3–5 mL of saliva per tube, between 9:00
and 11:00 am. Women were asked to refrain from eating, smoking and performing oral
hygiene in the two hours before collection. After collection, samples were immediately
frozen at −80 ◦C and shipped in dry ice to the laboratory in Pisa. Samples were then
centrifuged at 3800 rcf (15 min, 4 ◦C) to remove mucus and cellular debris, aliquoted and
stored at −80 ◦C again until analysis.

All samples were anonymized before further processing and a specific password-
protected database was established to store clinical data.

4.4. Surface-Enhanced Laser Desorption Ionization-Time of Flight-Mass Spectrometry
(SELDI-TOF-MS) Protein Profiling

Saliva samples were analyzed with SELDI-TOF-MS using ProteinChip Arrays (BioRad
Laboratories, Segrate (MI), Italy). The surface chemistry of hydrophobic (H50), weak
cation-exchange (CM10), strong anion-exchange (Q10) and immobilized metal affinity
capture activated with copper (IMAC30-Cu2+) was tested to determine which one would
yield the most informative ionic profile. All samples were loaded in duplicate. The initial
screening revealed that the CM10 ProteinChip was the most informative, and therefore, it
was selected for this study.
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Protein chips were prepared as in [51,52]. All chemicals and plasticware below, unless
specified differently, were obtained from Merck Life Sciences, Milan, Italy. Briefly, whole
protein extracts were added to the required binding buffer (100 mM Na-Acetate, pH 4.0)
and loaded onto pre-equilibrated spot surfaces. After incubation with horizontal shaking
(60 min at room temperature, RT), the unbound proteins were washed thrice with the same
binding buffer, salts were removed with HPLC-grade water; saturated Sinapinic acid (1 µL
in 50% Acetonitrile/0.5% Trifluoroacetic acid) was added twice to each spot and allowed
to dry. The reproducibility of SELDI-TOF-MS spectra from array to array on a single
chip (intra-assay) and between chips (inter-assay) was checked by comparing the pooled
saliva quality control sample at each run. Briefly, 500 µL was taken from five OC samples
and five BC samples and mixed. The resulting 5 mL pool was divided into aliquots that
were stored at −80 ◦C until use for SELDI-TOF-MS analysis. Ten cluster peaks, uniformly
distributed for mass range and peak intensity, including statistically significant peaks, were
used to calculate the coefficient of variance, both within and between assays, that is, 15%
and 24% for intra- and inter-assay, respectively.

4.5. Data Acquisition and Analysis

Protein chips were analyzed with a linear TOF mass spectrometer (PCS 4000, BioRad
Laboratories, Segrate (MI), Italy) using the following protocol: laser power 3500 nJ, matrix
attenuation 1000, focus mass 10,000, sample rate 800 and 25% spot surface fired for ion pro-
filing over a m/z range of 2000–50,000. Proteomics datasets were analyzed with ProteinChip
Data Manager 3.5 software (provided with the hardware) as previously reported [51,52].
Variation of peak intensity (in microA) was assessed with a non-parametric Mann–Whitney
U-test for two-group comparison.

4.6. Logistic Regression (LR)

The LR method was used for prediction model building, using IBM SPSS Statistics
software, version 23 (IBM Italia, Segrate (MI), Italy). Validated salivary biomarkers were fit
into LR models for each group comparison, and stepwise backward model selection was
performed to determine final combinations of biomarkers. For each of these models, the
predicted probability for each subject was obtained and used to construct the ROC curve to
estimate the AUC and its 95% confidence interval. The sensitivity and specificity for the
biomarker combinations were estimated by identifying the cut-off point of the predicted
probability using the Youden index.

Validation was performed by applying the final combinations of biomarkers to in-
dependent samples and calculating sensitivity and specificity using the cut-off points of
predicted probability identified in the model building procedure.

4.7. Variable Selection (VS) for Machine Learning (ML) Analysis

ML is a subset of artificial intelligence. Its methods involve bottom–up approaches that
highlight the complex interactions between all variables while simultaneously eliminating
those with minimal contribution to outcome prediction [53].

In ML, software recognizes patterns and creates data clusters with common character-
istics that can influence outcomes. VS is a fundamental stage in ML model development, as
it allows selecting input variables that most significantly affect the concerned target. This is
a necessary step when the number of input variables is high compared to the number of
available samples, which is frequent in many real-world applications, including those in
medical research.

VS techniques can be divided in three main groups: filters, wrappers, and embedded
approaches [54]. (1) The filter approach is a pre-processing step independent of the devel-
oped classifier. The variables subset was created by considering the association between
input and output. Its main advantages are simplicity, speed and suitability to the treatment
of large and complex databases. FUFES is an effective filter approach [55] which selects the
most important input variables using a fuzzy logic-based approach [56]. (2) The wrapper
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approach estimates the performance of the model in order to select a subset of variables
based on their predictive power. It considers the developed classifier as a black box without
explaining how the algorithm works. Compared to the filter, it is more expensive from
the computational point of view but more effective in terms of accuracy, as it is based on
the performance of the selected model. In recent years, hybrid VS approaches have been
introduced [57–59]. An example of the hybrid approach is proposed in [60], where the set
of available variables is firstly reduced through a filter method, and then an exhaustive
search is implemented in order to achieve a sub-optimal set of variables in a reasonable
time. (3) The embedded approach integrates feature selection into the classifier algorithm.
During the training phase, the classifier regulates its internal parameters and defines the
suitable weights given for each feature to determine the best classification accuracy. A
typical embedded approach is provided by DT [61–63].

The objective of the method proposed here was to automatically select the most
suitable VS algorithm and, as a consequence, the best performing binary classifier based on
the available data. The 77 variables obtained with SELDI-TOF-MS were used as input. Of
note, with this approach, we did not apply any a priori knowledge about the specific nature
of the data under analysis. The proposed logical procedure is schematized in Figure 4.

Three different binary subsets were considered: Subset (1) HS vs. OC + BC; Subset
(2) OC vs. HS; Subset (3) HS vs. BC. Subset 1 was used to identify putative markers shared
by the oncological patients OC and BC, whose specificity to one or the other cohort was to
be highlighted by Subsets 2 and 3.

The dataset was pre-processed to eliminate outliers that can negatively affect the per-
formance of the training procedure [63,64]. Then, the dataset was split into two groups: 75%
of samples were used for training and the remaining 25% were used for testing. Finally,
four different VS approaches were applied, and for each of them, the informative variables
were selected. To improve stability, each VS algorithm was executed repeatedly by ran-
domly varying every time the composition of the training dataset and including only the
variables that were more frequently selected.

We adopted VS algorithms belonging to four different categories: filter, wrapper,
embedded and hybrid. In particular, we applied the following methods: FUFES (filter);
GIVE A GAP (wrapper); Decision Tree (DT, embedded). A hybrid method (filter + wrapper)
was also used.

Four different classifiers were applied to each subset of selected variables: Bayesian
classifier [65], Support Vector Machine (SVM) [66], Discriminant Analysis (DA)-based
classifier [67] and DT [68].

For each subset and classifier, 100 iterations were performed by randomly varying the
set of samples for training and testing at each iteration to overcome the eventual instability
resulting from the VS. An average value of the classifier accuracy was computed.

The classifiers’ accuracy was measured in terms of BCR, which is a performance index
widely adopted in the literature on binary classifiers because it can also be used with
imbalanced datasets [69]. BCR is defined as the average value of two further indexes,
namely sensitivity and specificity, which measure the proportion of correctly identified
positive and negative samples.

BCR is computed as follows [70]:

BCR =
1
2
(sensitivity + specificity) =

1
2

(
TP

TP + FN
+

TN
TN + FP

)
where true positive (TP) and true negative (TN) represent the number of positive and
negative samples correctly classified, while false negative (FN) and false positive (FP)
represent the number of misclassified negative and positive samples, respectively.

5. Conclusions

In a meta-analysis by Ferraro et al., the specificity of CA125 for detecting OC was
reported to be 78% [71]. Furthermore, according to Dochez et al., to date, the most efficient
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biological diagnostic tool to diagnose OC is in fact the combination of CA125 and HE4,
with an AUC of 0.96, based on their review of markers for diagnosing OC, specifically
HE4, CA 125, RMI and ROMA algorithms [72]. Taking into account the epidemiological
characteristics of the disease, Charkhchi et al. claimed that due to the low prevalence
of OC, the ideal screening test must have a sensitivity above 75% and a specificity of at
least 99.6% [73]. Based on these findings, we propose that the signature of candidate BMs
presented here, with sensitivity of 60% and specificity of 100% (Figure 3), shows interesting
and promising potential not far from the ideal threshold, especially for its specificity. Of
course, further studies and validation in the general population are necessary.

The comparison of the proteomic profile of saliva from HS with OC and BC patients,
analyzed with LR and ML models, provided different sets of candidate BMs. This is both
encouraging and intriguing; at any rate, the results in terms of both BCR and AUC show
that the performances of LR and ML methods are similar even if the two approaches are
completely different. Since the number of samples under study was small, ML methods
could not be fully exploited. However, the fact that they are comparable with other less
sophisticated methods leads us to think that although the size of the dataset is not ideal for
these types of systems, they are still robust. We expect that the results, albeit already quite
satisfactory, can drastically improve by increasing the number of patients. Furthermore, it
is important to emphasize that the developed software is modular, does not require any a
priori information and can already be tested as soon as data from other patients become
available to improve accuracy.

On a biological level, further work is necessary to identify the biochemical nature of
selected m/z peaks, and a whole validation phase will test their actual usefulness as OC
BMs and possible application in stratifying patients. Yet ours and others’ work [23] make
it possible to think of developing tools for the detection of the most appropriate BMs for
screening purposes in the relevant population, using saliva as a safe, applicable, cheap
body fluid that can be potentially gathered without medical intervention. This would
allow the health care system to reach appropriate female individuals, even in remote areas,
to collect samples for subsequent analysis in centralized, high-technology health hubs to
improve OC diagnosis and save lives.
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