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Abstract: Niemann–Pick disease type C (NPC) is an autosomal recessive disorder with progressive
neurodegeneration. Although the causative genes were previously identified, NPC has unclear
pathophysiological aspects, and patients with NPC present various symptoms and onset ages.
However, various novel biomarkers and metabolic alterations have been investigated; at present,
few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we
aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC
model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9
(KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF
approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in
the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis,
the construction of a protein–protein interaction (PPI) network and an enrichment analysis showed
that common characteristic pathways such as ferroptosis and mitophagy were identified in the two
model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents
ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were
previously suggested to be associated with NPC, supporting the link between the proteome analyzed
here and NPC. Therapeutic research based on these results is expected in the future.

Keywords: Niemann–Pick disease type C; global proteomics; liquid chromatography–electrospray
ionization tandem mass spectrometry; model cell; knock out; enrichment pathway analysis

1. Introduction

Niemann–Pick disease type C (NPC) is a progressive and life-limiting autosomal
recessive disorder characterized by progressive neurodegeneration [1–3]. Due to the devel-
opment of laboratory medicines for NPC [2,4–9], the number of NPC patients is increasing,
and the current estimated prevalence is approximately 1/100,000 [10]. NPC is caused by
mutations in NPC1 or NPC2. NPC1 codes for the NPC1 cholesterol transport membrane
protein in lysosomes, whereas NPC2 codes for the NPC2 intracellular cholesterol-binding
soluble protein in lysosomes [11]. NPC1 and NPC2 coordinate in the transport of cholesterol,
and NPC1 or NPC2 mutations can cause cholesterol traffic dysfunction [12,13]. Although
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NPC is not related to enzyme deficiency, it is considered a lysosomal storage disease
(LSD). In addition, various sphingolipids, including sphingomyelin [14,15] and glycosphin-
golipids, [16,17] accumulate in NPC. Glycosphingolipid metabolism is a therapeutic target
pathway in NPC, and miglustat, which inhibits glucosylceramide synthase, is currently the
only approved drug [18].

The pathophysiology of NPC involves patients presenting a variety of symptoms.
The onset age of NPC symptoms varies from the neonatal to adulthood, and the clinical
symptoms also differ widely [1,2,10]. Hepatosplenomegaly and cholestasis are typical
symptoms, and many patients develop various neurodegenerative disorders depend-
ing on their age [1]. Disease prognosis is generally improved when treatment begins
earlier [18]; therefore, earlier diagnosis is desired, and a number of clinical biomarkers
have been developed for the early discovery of this condition [4–7]. Since 2010, oxys-
terols [19,20], lysosphingomyelin [14,21], N-palmitoyl-O-phosphocholine-serine [22–25]
(previously called Lyso-SM-509), and abnormal bile acids containing conjugates [8,9,26–33]
have been reported as biomarkers of NPC. However, the detailed mechanisms underlying
the progression of this disease remain unknown [10].

Proteomics is an omics analytical technique used to elucidate the molecular and patho-
physiological alterations in expressed cellular proteins [34–42]. Although the genome is
static, the proteome is dynamic [43–45] and has a longer turnover time than the
metabolome [46,47]. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) is
commonly used for proteomic analyses [41,48–50], particularly in the form of nanoLC/MS/
MS [41,50,51]. In searching for the alteration pathways of various diseases, an untargeted
proteomics approach called global proteomics has been widely used [41,52].

In this study, to reveal the pathophysiology in the proteomic aspects of NPC and
discover novel therapeutic targets, we aimed to elucidate the altered pathway in NPC
model cells using the global proteomics approach.

2. Results and Discussion
2.1. NPC Model Cell Development

Gene editing was performed on NPC1 by knocking out NPC1 using the CRISPR/Cas9
method [53–55]. We attempted to target two different gene sites simultaneously. One
approach focused on sites A and C (for KO1 cells), and the other focused on sites B and
D (for KO2 cells). Sites A and B were located in the signal sequences, Site C was located
on exon 8, which is included in the first extracellular loop, and Site D was located on exon
22, which is in ninth transmembrane region. As a result of the mutation, NPC1 proteins
were not detected via immunoblotting in either KO1 or KO2 (Figure S1). Filipin staining,
which is the gold-standard method for NPC diagnosis of patients [56], was then performed,
and cholesterol accumulation was observed in both the KO1 and KO2 cells (Figure S2). In
addition, enzymatic free-cholesterol quantitation showed a significant difference between
the KO and WT cells (Figure 1).

NPC is caused by a lack of function of NPC1 or NPC2 [1]. A representative NPC
cell phenotype is the accumulation of lysosomal free cholesterol [12,13,57]. In the present
study, cell DNA editing engineering was successful (Figure S3a), and two types of NPC1
model cells were developed (KO1 and KO2). In the KO1 cells, mutations of exon 1 and
exon 8 were targeted. Exon 8 contains the second transmembrane region and the 1first
extracellular loop (Figure S3a,b). Therefore, gene editing provided an NPC 1 protein that
was undetectable via immunoblotting with the NPC1 antibody. In the KO2 cells, mutations
in the signal sequences on exon 1 and the ninth transmembrane region on exon 22 were
identified (Figure S3a,c). Similar to the KO1 cells, we succeeded in developing NPC1
mutant cells. Both filipin staining and enzymatic quantification provided the representative
NPC phenotypes.
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KO1—Sites A and C mutant NPC1 model cells; KO2—Sites B and D mutant NPC1 model cells. 
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analytes and covers a wide range of molecule sizes. 

First, we summarized the protein numbers identified from the LF global proteomics 
analysis (Figure 2, Tables S1 and S2). The regions that were not overlaid with any other 
regions contained a few proteins. Each cell line was analyzed in five biological replicates, 
and proteins identified in four or more replicates were used for a subsequent pathway 
analysis. As a result, a total of 3331 proteins were identified in all cell types, 3390 proteins 
were identified in the WT and KO1 cells, 3434 proteins were identified in the WT and KO2 
cells (Figure 2). 

Second, we investigated the characteristics of each sample using a multivariate anal-
ysis. A principal component analysis (PCA) was first performed using 3331 proteins 
whereby three samples (WT, KO1, and KO2) were plotted closely for each group. In addi-
tion, the KO1 and KO2 cells were shown in different areas (Figure 3a). This indicates that 
the characteristics of the NPC1 model cells are different from those of WT cells, and the 
proteins expressed in the KO1 and KO2 cells also differ from each other. NPC1 showed 
clinically diverse phenotypes [1,2,10]. In NPC patients, the gene mutations of NPC1 vary 
by race [58–61] and various gene mutations are known, with novel mutations currently 
being reported [62]. However, a detailed correlation between gene mutations and clinical 
phenotypes remains unknown [10]. In this study, the KO1 cells, which have two mutation 
sites on the signal sequence on exon 1 and the first extracellular loop on exon 8, and the 
KO2 cells, which have two mutation sites on the signal sequence on exon 1 and the ninth 
transmembrane region on exon 22, showed different results in the PCA. We also utilized 
a loading plot in order to infer which proteins are responsible for the difference in each 
type of cell (Figure 3b). In the loading plot, the cumulative contribution ratio of the first 
and second principal components (PC1 and PC2) was 93.3%, which is a large amount of 
information. Keratin, type II cytoskeletal 8 (KRT8), Keratin, type I cytoskeletal 18 (KRT18), 
60 kDa heat shock protein, mitochondrial (HSPD1), Actin, cytoplasmic 1 (ACTB), and Vi-
mentin (VIM) represent some of the largest absolute values of the major components of 

Figure 1. Accumulated cholesterol quantitation in wild-type cells and two types of NPC1 knockout
cells. Data represent the means ± SDs, n = 9, ** p < 0.01 (two-tailed Welch’s t-test). WT—Hep G2
cells; KO1—Sites A and C mutant NPC1 model cells; KO2—Sites B and D mutant NPC1 model cells.

2.2. Label-Free Global Proteomics

We then performed a global proteomics analysis known as the label-free (LF) method.
The global method is a nontargeted approach that does not define specific molecules as
analytes and covers a wide range of molecule sizes.

First, we summarized the protein numbers identified from the LF global proteomics
analysis (Figure 2, Tables S1 and S2). The regions that were not overlaid with any other
regions contained a few proteins. Each cell line was analyzed in five biological replicates,
and proteins identified in four or more replicates were used for a subsequent pathway
analysis. As a result, a total of 3331 proteins were identified in all cell types, 3390 proteins
were identified in the WT and KO1 cells, 3434 proteins were identified in the WT and KO2
cells (Figure 2).
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Figure 2. Venn diagram showing protein numbers identified from the results of the label-free global
proteomics analysis. WT—Hep G2 cells; KO1—Sites A and C mutant NPC1 model cells; KO2—Sites
B and D mutant NPC1 model cells.

Second, we investigated the characteristics of each sample using a multivariate anal-
ysis. A principal component analysis (PCA) was first performed using 3331 proteins
whereby three samples (WT, KO1, and KO2) were plotted closely for each group. In addi-
tion, the KO1 and KO2 cells were shown in different areas (Figure 3a). This indicates that
the characteristics of the NPC1 model cells are different from those of WT cells, and the
proteins expressed in the KO1 and KO2 cells also differ from each other. NPC1 showed
clinically diverse phenotypes [1,2,10]. In NPC patients, the gene mutations of NPC1 vary
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by race [58–61] and various gene mutations are known, with novel mutations currently
being reported [62]. However, a detailed correlation between gene mutations and clinical
phenotypes remains unknown [10]. In this study, the KO1 cells, which have two mutation
sites on the signal sequence on exon 1 and the first extracellular loop on exon 8, and the
KO2 cells, which have two mutation sites on the signal sequence on exon 1 and the ninth
transmembrane region on exon 22, showed different results in the PCA. We also utilized
a loading plot in order to infer which proteins are responsible for the difference in each
type of cell (Figure 3b). In the loading plot, the cumulative contribution ratio of the first
and second principal components (PC1 and PC2) was 93.3%, which is a large amount of
information. Keratin, type II cytoskeletal 8 (KRT8), Keratin, type I cytoskeletal 18 (KRT18),
60 kDa heat shock protein, mitochondrial (HSPD1), Actin, cytoplasmic 1 (ACTB), and
Vimentin (VIM) represent some of the largest absolute values of the major components
of both PC1 and PC2. These proteins could be responsible for the differences among
cell types.
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Figure 3. The principal component analysis of the LF method. (a) A PCA plot using 3331 proteins
identified in the KO1, KO2, and WT cells. (b) A loading plot using 3331 proteins identified in the KO1,
KO2, and WT cells. WT—Hep G2 cells; KO1—Sites A and C mutant NPC1 model cells; KO2—Sites B
and D mutant NPC1 model cells.

Finally, we created a volcano plot which shows the degree of change and statistical
significance simultaneously on the graph [63–65] (Figure 4). The selection criteria for differ-
entially expressed proteins (DEPs) were set at a two-fold change and statistical significance
(p < 0.05) between the NPC1 model and WT cells. The identified DEPs are summarized
in Figure S4, Table 1, and Table S3. In Figure S4, the total numbers of DEPs which were
both up- and downregulated in the NPC1 model cells are shown. The overlap of the two
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model cells is presented in Table 1. Twenty-five proteins were upregulated in both the
KO1 and KO2 cells, and 10 proteins were downregulated. Two proteins increased in KO1
cells but decreased in KO2 cells, and four proteins decreased in both KO1 and KO2 cells.
Other proteins were either upregulated or downregulated in KO1 or KO2 cells only. The
overlapping protein numbers were low among the total DEPs. The common DEPs in the
KO1 and KO2 cells were not the main DEPs observed. In addition, there were proteins
that were upregulated in the KO1 cells but were downregulated in the KO2 cells and vice
versa. As mentioned above, the NPC phenotype is diverse, and patients with NPC have
varied symptoms [1,2]. Therefore, the proteomic results for the KO1 and KO2 cells indicate
that the difference in mutation sites between the KO1 and KO2 cells affects the proteomic
expression pattern.
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Figure 4. Volcano plots from the results of the label-free global proteomics analysis. (a) KO1 versus
WT using 3390 proteins identified in KO1 and WT cells. (b) KO2 versus WT using 3434 proteins
identified in KO2 and WT cells. Red-colored plots—greater than 2-fold upregulated and p < 0.05
(adjusted using the Benjamini–Hochberg correction) proteins in NPC1 model cells; green-colored
plots—greater than 0.5-fold downregulated and p < 0.05 (adjusted using the Benjamini–Hochberg
correction) proteins in NPC1 model cells; grey-colored plots—non-differentially changed proteins.
WT—Hep G2 cells; KO1—Sites A and C mutant NPC1 model cells; KO2—Sites B and D mutant NPC1
model cells.

Table 1. Summary of protein numbers of DEPs in the label-free global proteomics analysis.

Upregulated DEPs
(Numbers)

Downregulated DEPs
(Numbers)

Total
(Numbers)

Identified in KO1
(numbers)

18 77 95

25
(a) 2 (b) 4

10 35 (41)
Identified in KO2

(numbers)
(b) 4 (a) 2

145 63 208

Total 188 6 150 338 (344)
(a) are identified as upregulated DEPs in KO1 cells and downregulated DEPs in KO2 cells, (b) are identified as
downregulated DEPs in KO1 cells and upregulated DEPs in KO2 cells. WT—hep G2 cells; KO1—Sites A and C
mutant NPC1 model cells; KO1—Sites B and D mutant NPC1 model cells.
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2.3. Bioinfomatics Analysis

We evaluated the interaction of the DEPs using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING). The DEPs of the KO1 cells provided us with a
protein–protein interaction (PPI) network consisting of 136 nodes and 154 edges. The
expected number of edges from the number of nodes was 96, which is a much lower
value than the actual edges, and the PPI enrichment p value was 3.36 × 10−8 (Figure S5a).
The DEPs of the KO2 cells provided us with a PPI network consisting of 249 nodes and
855 edges. The expected number of edges from the number of nodes was 452, which is a
much lower value than the actual edges, and the PPI enrichment p value was <1.0 × 10−16

(Figure S5c). The nodes of the upregulated proteins in the DEPs were displayed in red, and
downregulated proteins were displayed in green. These results show the overall picture
of up/downregulation and protein–protein interactions in the DEPs and suggest that the
DEPs have strong interactions in the KO1 and KO2 cells. In addition, an analysis excluding
text mining from the interaction sources showed 71 edges in the KO1 cells and 518 edges
in the KO2 cells, with percentages of 46.1% and 60.6%, respectively. It was confirmed
that there were enough reliable edges other than text mining, such as curated databases,
experiments, and co-expression.

In addition, we displayed the proteins coded via ferroptosis in blue and those coded
via ribosome biogenesis in eukaryotes in yellow. These pathways were identified as
particularly significant in the enrichment analysis (ferroptosis was the highest in both
KO1 and KO2 cells, and ribosome biogenesis in eukaryotes was the second highest in
the KO2 cells, Figure 5). In particular, ferroptosis was identified for both KO1 and KO2
cells. Marked proteins are linked by many edges and are in regions with many edges
in the figure, suggesting strong interactions of the DEPs in each cell at these pathways
(Figure S5b,d).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 5. Enrichment analysis in the KEGG pathway from the results of the label-free global prote-
omics analysis. (a) KO1 versus WT using 136 DEPs in KO1. (b) KO2 versus WT using 249 DEPs in 
KO2. Proteins with p < 0.05 (Fisher’s exact test) are shown in these figures. WT—Hep G2 cells; KO1—
Sites A and C mutant NPC1 model cells; KO2—Sites B and D mutant NPC1 model cells. 

The common DEPs in the KO1 and KO2 cells were not the main DEPs observed. As 
mentioned above, the NPC phenotype is diverse, and patients with NPC have varied 
symptoms [1,2]. Conversely, the DEPs identified in both KO1 and KO2 cells could be rel-
atively ubiquitous DEPs in NPC patients, making them more important for understanding 
the pathogenesis of NPC and searching for therapeutic targets. The proteins identified as 
DEPs and pathways in both KO1 and KO2 cells are mainly described below. 

Ferroptosis is a cell death pathway catalyzed by Fe2+ ions and lipid peroxidation [69]. 
Ferroptosis has been reported to be involved in various neurodegenerative diseases, in-
cluding amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease [70]. 
However, the relationship between ferroptosis and NPC remains unclear. Regarding Fe2+ 
metabolism, abnormalities in iron homeostasis in NPC mouse models have been reported 
[71]. In another report, the degradation of ferritin via intracellular autophagy and the pro-
gression of ferroptosis were also identified [72]. In an enrichment analysis using the 
KEGG, ferroptosis was identified with increased nuclear receptor coactivator 4 (NCOA4), 
ferritin light chain (FTL), ferritin heavy chain (FTH1), and microtubule-associated proteins 
1A/1B light chain 3B (MAP1LC3B). Of the four proteins identified in both KO1 and KO2 
cells, NCOA4 is the ferritin cargo receptor required for transport into the lysosome [73,74], 
targeting ferritin in the autophagosome via a selective autophagic process, ferritinophagy. 
Both light (FTL) and heavy-chain (FTH1) subunits comprise 24-subunit spherical shell 
protein ferritin [75]. MAP1LC3B is known as a representative human Atg8 orthologue 
which binds to cargo receptors on the surfaces of autophagosomes [73]. NCOA4, FTL, 
FTH1, and MAP1LC3B, identified in both KO1 and KO2 cells, are all specifically related 
to ferritinophagy [75,76], the autophagy of ferritin for iron homeostasis [76,77]. The deg-
radation of ferritin via ferritinophagy induces Fenton reactions by releasing ferric iron 
ions, resulting in the progression of ferroptosis [74,78], but it remains unclear whether 
increases in these DEPs cause ferritinophagy and ferroptosis or not. 

For BP, the term of cellular iron ion homeostasis was identified as the seventh at KO1 
and the synonymous term of iron ion homeostasis was identified as the fifth at KO2, and 
among the DEPs, NCOA4, FTL, and FTH1 increased and ATP-binding cassette sub-family 
B member 6 (ABCB6) decreased. The term represents all the processes involved in main-
taining the internal steady state of iron ions at the cellular level. ABCB6 is an energy-de-
pendent porphyrin transporter that catalyzes porphyrin transport from the cytosol to the 

Figure 5. Enrichment analysis in the KEGG pathway from the results of the label-free global pro-
teomics analysis. (a) KO1 versus WT using 136 DEPs in KO1. (b) KO2 versus WT using 249 DEPs
in KO2. Proteins with p < 0.05 (Fisher’s exact test) are shown in these figures. WT—Hep G2 cells;
KO1—Sites A and C mutant NPC1 model cells; KO2—Sites B and D mutant NPC1 model cells.

We performed an enrichment analysis, which is used for finding significant functions
and pathways [38,40,41,66]. We used data from the Gene Ontology database (GO) and
the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) [67,68]. In
the GO enrichment analysis, the results suggested that the DEPs in the KO1 cells are
involved in biological processes (BPs) such as autophagy, cellular components (CCs) such as
autolysosomes, and molecular function (MFs) such as RNA binding. Similarly, relationships
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with many functions were suggested for the KO2 cells (Figure S6, Table S4). In the KEGG
pathway enrichment analysis, seven and ten pathways were selected from the KO1 and
KO2 cells as significant, respectively (Figure 5). From the KEGG pathway analysis results
for both the KO1 and KO2 cells, ferroptosis (ranked No. ranked in both KO1 and KO2 cells),
lysosome (ranked No. 4 in KO1 cells and ranked No.3 in KO2 cells), mitophagy (ranked
No. 2 in KO1 cells and ranked No. 5 in KO2 cells), and metabolic pathways (ranked No. 7
in KO1 cells and ranked No. 8 in KO2 cells) were identified as significantly changed.

The common DEPs in the KO1 and KO2 cells were not the main DEPs observed. As
mentioned above, the NPC phenotype is diverse, and patients with NPC have varied symp-
toms [1,2]. Conversely, the DEPs identified in both KO1 and KO2 cells could be relatively
ubiquitous DEPs in NPC patients, making them more important for understanding the
pathogenesis of NPC and searching for therapeutic targets. The proteins identified as DEPs
and pathways in both KO1 and KO2 cells are mainly described below.

Ferroptosis is a cell death pathway catalyzed by Fe2+ ions and lipid peroxidation [69].
Ferroptosis has been reported to be involved in various neurodegenerative diseases, in-
cluding amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease [70].
However, the relationship between ferroptosis and NPC remains unclear. Regarding
Fe2+ metabolism, abnormalities in iron homeostasis in NPC mouse models have been
reported [71]. In another report, the degradation of ferritin via intracellular autophagy and
the progression of ferroptosis were also identified [72]. In an enrichment analysis using the
KEGG, ferroptosis was identified with increased nuclear receptor coactivator 4 (NCOA4),
ferritin light chain (FTL), ferritin heavy chain (FTH1), and microtubule-associated proteins
1A/1B light chain 3B (MAP1LC3B). Of the four proteins identified in both KO1 and KO2
cells, NCOA4 is the ferritin cargo receptor required for transport into the lysosome [73,74],
targeting ferritin in the autophagosome via a selective autophagic process, ferritinophagy.
Both light (FTL) and heavy-chain (FTH1) subunits comprise 24-subunit spherical shell
protein ferritin [75]. MAP1LC3B is known as a representative human Atg8 orthologue
which binds to cargo receptors on the surfaces of autophagosomes [73]. NCOA4, FTL,
FTH1, and MAP1LC3B, identified in both KO1 and KO2 cells, are all specifically related to
ferritinophagy [75,76], the autophagy of ferritin for iron homeostasis [76,77]. The degra-
dation of ferritin via ferritinophagy induces Fenton reactions by releasing ferric iron ions,
resulting in the progression of ferroptosis [74,78], but it remains unclear whether increases
in these DEPs cause ferritinophagy and ferroptosis or not.

For BP, the term of cellular iron ion homeostasis was identified as the seventh at
KO1 and the synonymous term of iron ion homeostasis was identified as the fifth at KO2,
and among the DEPs, NCOA4, FTL, and FTH1 increased and ATP-binding cassette sub-
family B member 6 (ABCB6) decreased. The term represents all the processes involved in
maintaining the internal steady state of iron ions at the cellular level. ABCB6 is an energy-
dependent porphyrin transporter that catalyzes porphyrin transport from the cytosol to
the extracellular fluid and from the cytosol to mitochondria, thereby contributing to heme
biosynthesis and iron homeostasis. It is involved in the regulation of heme biosynthesis and
iron homeostasis [79]. It is known that ABCB6 promote cellular defense responses against
various toxic insults, so significant decreases in it in the KO1 and KO2 cells could promote
the production of ROS [80,81]. In addition, the term of the intracellular sequestering of
iron ion was identified in the KO1 cells (also ranked and identified in the KO2 cells with
p = 0.072), the process through which iron ions are bound or sequestered intracellularly and
separated from the other components of the biological system. From the above, many DEPs
and pathways related to ferroptosis were extracted, indicating a link between ferroptosis
and NPC which has been rarely reported.

NPC is a type of LSD, and changes in the expression of various proteins in lysosomes
have been reported as the respective substrates accumulate in lysosomes due to deficiencies
in lysosome hydrolases or transporters as well as NPC1 [10–13]. Lysosomes were identified
via the KEGG analysis in both KO1 and KO2 cells, with decreased lysosomal acid gluco-
sylceramidase (GBA) and lysosomal alpha-mannosidase (MAN2B1) and increased CD63
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antigen (CD63). For CCs, autolysosomes were identified at the second and thirteenth posi-
tions in the KO1 and KO2 cells, respectively, and NCOA4, FTL, FTH1, and sequestosome-1
(SQSTM1) were increased. In CCs, autolysosomes are a type of secondary lysosome in
which the primary lysosome is fused to the outer membrane of an autophagosome.

Although not included in the term of the autolysosomes of the CC, VIM is a DEP
associated with autolysosomes. VIM is a type of intermediate diameter filament that
anchors and supports intracellular organelles in mesenchymal cells such as fibroblasts
and Schwann cells [82]. VIM plays a physiological role in the positioning of autophago-
somes and lysosomes and has been shown to be an important factor in the regulation of
autophagy. It has been reported that the inhibition of VIM results in the accumulation of
autophagosomes and the inhibition of autophagy [83,84]. In the present measurement,
VIM and nestin, an intermediate diameter filament that interacts with VIM in neurons,
were increased in both the KO1 and KO2 cells. In the NPC1 knockout cells, the phospho-
rylation of the intermediate filament VIM was decreased compared to the WT cells, and
this hypophosphorylation results from reduced protein kinase C activity [85]. It has been
reported that the intracellular translocation of LDL-derived cholesterol from lysosomes
is a VIM-dependent process, and the activation of protein kinase C solubilizes VIM and
eliminates the accumulation of cholesterol [86,87].

GBA and MAN2B1 are both lysosomal hydrogenases. Unlike Niemann–Pick disease
types A and B, which are caused by a deficiency in acid sphingomyelinase, deficits in
lysosomal enzymes are not direct causes of NPC. However, secondary alterations of lysoso-
mal enzymes in NPC have been reported [88,89], which were identified as DEPs. GBA is
responsible for the degradation of glucosylceramide in lysosomes [90]. A marked decrease
in activity due to mutations in the GBA leads to Gaucher’s disease, a type of LSD like NPC
which results in the accumulation of glucosylceramide and secondary cholesterol accumu-
lation [91]. Several reports have shown that the mass of GBA is reduced in NPC [16,92,93],
which is consistent with the results of the proteome variation analyses of the KO1 and
KO2 cells in this study. It has been reported that in NPC, cholesterol accumulation de-
creases GBA, and cholesterol depletion restores GBA levels [92]. GBA2, a glucosylceramide
hydrolyzing enzyme present outside the lysosome, has been reported to be particularly
abundant in Purkinje cells (PCs), one of the neuronal populations most affected by NPC, in
a compensatory manner due to reduced GBA. In Npc1 −/−mice, GBA2 was found to be
reduced in brain-permeable low-nanomolar inhibitors with significantly improved motor
coordination and prolonged lifespan despite no improvement in cholesterol or ganglioside
abnormalities. It is suggested that GBA2 activity is a therapeutic target for NPC [94]. Note
that although GBA2 was identified in all cell types in this study, no significant changes
were observed. In addition, miglustat, an inhibitor of ceramide glucosyltransferase, the
enzyme responsible for the synthesis of glucosylceramides, is the only currently approved
drug for the treatment of NPC. These results suggest that GBA and GBA2 are involved
in pathogenesis in relation to glucosylceramide accumulation in NPC and could even be
therapeutic targets.

Lysosomal alpha-mannosidase (MAN2B1) is a lysosomal protein that hydrolyzes
the alpha-linked terminal mannose of glycoproteins. Defects in MAN2B1 cause alpha-
mannosidosis, which is an autosomal recessive genetic disorder and an LSD like NPC. In
alpha-mannosidosis, oligosaccharides including mannose accumulate in lysosomes [95].
Symptoms include mental and cognitive impairments, hearing loss, and ataxia, with a wide
range of onset dates and similar symptoms to those observed in NPC [96,97]. MAN2B1 is
also known to be associated with Parkinson’s disease, which is a neurodegenerative disease
like NPC and has been reported to be a promising biomarker candidate in cerebrospinal
fluid from patients with Parkinson’s disease [98]. In another report, MAN2B1 was decreased
in the liver of Niemann–Pick-disease-model mice, which is consistent with the results in the
KO1 and KO2 cells observed in the present study [99]. Thus, MAN2B1 has been associated
with LSDs and neurodegenerative diseases, and the observed decrease in MAN2B1 could
have important implications in Niemann–Pick disease.
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CD63, also known as lysosomal membrane-associated protein 3 (LAMP3), is found
primarily in the inner membrane of late endosomes [100]. It is also abundant in extra-
cellular vesicles, and CD63 regulates the efflux of ferritin–Fe2+ complexes bound to the
cargo protein NCOA4 via extracellular vesicles [101]. It has been reported that CD63
expression increases in response to intracellular iron loading and decreases in response
to deficiency. The expression of CD63 is regulated by iron via the IRE-IRP system, which
is responsible for regulating the expression of iron metabolism-associated proteins such
as ferritin. Specifically, a canonical IRE in the 5′ untranslated region of CD63 messenger
RNA is responsible for regulating its expression in response to increased iron [102–104]. In
this proteome variation analysis, CD63, FTL, and FTH1 were all predominantly increased,
suggesting iron loading in the NPC model cells. This is consistent with previous reports of
iron accumulation in the brains of NPC1 knockout mice [71].

Other proteins closely related to NPC were also identified. NPC1 was identified in
all replicates in the WT cells but not in all replicates in the two types of KO cells. This
is consistent with the intent of creating the cells in this study and is one basis on which
the proteome reflects the pathogenesis of NPC. NPC2, one of the proteins responsible for
NPC, was increased in both the KO1 and KO2 cells (by 2.1- and 1.8-fold, respectively).
This is consistent with the previous proteomic analysis report [105]. Lysosome-associated
membrane glycoprotein 1 (LAMP1) and lysosome-associated membrane glycoprotein 2
(LAMP2) showed significant increases (by 1.4- and 1.8-fold for KO1 and 1.4- and 1.3-fold for
KO2, respectively), but were not DEPs. LAMP1 and LAMP2 account for approximately 50%
of lysosomal membrane proteins and contribute to autophagy and cholesterol homeosta-
sis [106]. LAMP1 and LAMP2 share many functions and play important roles in lysosomal
cholesterol homeostasis, especially in the absence of NPC1, by binding to cholesterol and
facilitating cholesterol efflux out of the lysosome [107]. These lysosomal proteins are also
known in relation to other lysosomal storage diseases, such as Fabry disease, and could be
associated with the neurodegenerative symptoms common to these diseases [108,109].

Mitophagy is a mitochondrial-selective form of autophagy for the elimination of dam-
aged mitochondria [110]. The relationship between mitophagy and NPC has been widely
reported. In NPC1-deficient cells, the activation of mTORC1 signaling and the associated
autophagy are suppressed [111–113]. In other reports, the accumulation of cholesterol in
lysosomes is observed in NPC which leads to lysosomal enlargement and the dysfunction
of autophagosomes and mitochondria [114–116]. Abnormal mitochondrial clearance and a
lack of mitophagy have been shown in NPC knockdown cells [117]. It was also reported that
in NPC1 knockout cells, the inhibition of mTORC1 signaling resolved proteolytic defects
in lysosomes and a lack of mitophagy without restoring cholesterol accumulation [118].
In the enrichment analysis, mitophagy was identified in the KEGG pathway in the KO1
and KO2 cells, with increased calcium-binding and coiled-coil domain-containing protein 2
(CALCOCO2), gamma-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2),
and MAP1LC3B and decreased SQSTM1. In BPs, macromitophagy was also identified
at the eighth and twenty-eighth terms in the KO1 and KO2 cells, respectively, with in-
creased MAP1LC3B and decreased SQSTM1 and GBA. Macromitophagy is defined as a
selective autophagy process in which mitochondria are degraded by macroautophagy in
a BP. CALCOCO2 is an autophagy adaptor, specifically known as a loading receptor for
xenophagy [119]. On the other hand, it has been reported to mediate autophagosome
maturation by binding to LC3B, GABARAPL2, and Myosin-VI (MYO6) in non-infected
cells, suggesting that CALCOCO2 is not only involved in targeting bacterial autophago-
somes, including all non-xenophagy autophagy [120]. GABARAPL2 is a member of the
Atg8 orthologue as well as MAP1LC3B and is also used in mitophagy [121,122]. It has
also been reported to be involved in autophagosome maturation in mitophagy in concert
with CALCOCO2 and others, as mentioned above. SQSTM1 is an autophagy receptor like
CALCOCO2 and others which is involved in mitophagy by recognizing ubiquitinated mito-
chondria together with CALCOCO2 [123,124]. Mitochondrial dysfunction based on the loss
of mitophagy has been reported in knockin mice with allelic mutations of GBA [125]. De-
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creased GBA could be one of the causes of the impaired degradation of NPC in lysosomes
and, as mentioned above, the inhibition of mTORC1 could restore function and mitophagy.
Although the relationship between the increase or decrease in DEPs and the widely re-
ported lack of mitophagy in NPC is not clear, the fact that a mitophagy-related term was
extracted at a high rank on the list in this study supports the association between NPC
and mitophagy. In addition, we also reported a decrease in steroid hormone metabolism
related to mitochondrial dysfunction [126] in which the steroid biosynthesis pathway was
significantly altered in the KO1 cells (Figures 5a and S6).

This study was analyzed using NPC-model hepatocellular carcinoma cells, and the
liver plays a pivotal role in metabolic pathways. Therefore, it is possible that there are
proteins in the metabolic pathway that are closely associated with hepatosplenomegaly
and other liver lesions. On the other hand, this enrichment analysis did not show any term
associated with liver damage in either the GO or KEGG. In addition, many studies have
been published regarding metabolic alterations, and we focused on lipid metabolism and
reported its use as a diagnostic biomarker [4–7]. Amino acid alterations were reported by
other groups [127,128].

There are a few proteome analyses using NPC-model cells or animals. In the two
reports that analyzed the proteome using hepatocytes from NPC1 knockout mice, annexin
A1, catechol-O methyltransferase (COMT), and lysosomal proteins such as cathepsin B
(CTSB), cathepsin D (CTSD), and ubiquitin-like-conjugating enzyme ATG3 (ATG3) were
identified as DEPs, but they were not DEPs in this analysis, although each protein was
identified [129,130]. On the other hand, several common terms were identified for the
GO in two reports and this analysis, including autophagy, iron homeostasis, and the
heme synthesis process. In neuroblastoma cells reacted with U18666A, a process which
causes symptoms similar to NPC, a number of common GO terms were identified from
the top to the bottom, including the sterol biosynthesis process, cholesterol biosynthesis
process, and lipid metabolic process [131]. In a proteome analysis of the cerebella of
NPC1 knockout mice, lysosomal proteins such as beta-hexosaminidase subunit alpha
(HEXA), beta-hexosaminidase subunit beta (HEXB), lysosomal acid lipase/cholesteryl
ester hydrolase (LIPA), MAN2B1, sialidase-1 (NEU1), prosaposin (PSAP), and tripeptidyl-
peptidase 1 (TPP1) were all identified as DEPs, but in the present study, none of them were
identified as DEPs which showed only a slight increase or decrease except for MAN2B1.
Since these measurements were performed via the LF method and not via quantification, the
reproducibility between measurements for each protein is limited. Although the directions
of the increase/decrease were in good agreement, the proteins detected as DEPs in these
assays only suggest that they could be involved in NPC. On the other hand, a pathway
analysis showed that many of the pathways were highly consistent regardless of the region
being analyzed, such as the liver or brain. In the pathway analysis, rankings are determined
based on variations in the results of multiple proteins, so it is possible that the LF analysis
also showed results with a certain degree of reliability. In the future, therapeutic targeting
should be performed based on these results.

2.4. The Accumulation of Lipid Peroxide Was Observed in Two Types of NPC Model Cells

The LF proteome variation analysis and subsequent enrichment analysis suggested a
relationship between ferroptosis and NPC model cells. However, it is not clear whether
ferroptosis progresses in the NPC model cells. Therefore, we measured the fluorescence
induced by lipid peroxide, which characteristically accumulates with the progression of
ferroptosis [77,132]. We used tert-butyl hydroperoxide (TBHP, 500 µM) which induces lipid
peroxidation and ferroptosis, as a positive control [133], and Liperfluo, which is widely used
in the study of ferroptosis due to its lipid peroxide-specific fluorescence emission [134,135]
(Figure S7). The results showed that the fluorescence intensities of both the KO1 and KO2
cells were significantly increased compared to the WT cells. Lipid peroxide accumulation
was observed in the two types of NPC model cells, suggesting that ferroptosis could be
underway in NPC.
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On the basis of iron accumulation in NPC knockout mice, meanwhile, it has been
reported that treatment with deferiprone, an iron chelator, did not extend lifespan or restore
symptoms [136]. This was contrary to the results of iron chelation therapy in AD and PD,
neurodegenerative diseases in which the same iron accumulation was observed, leading to
neurological improvement [137,138]. However, NPC differs from these diseases in that it
often develops in childhood [89]. Iron is essential for brain development, and balanced iron
levels are needed, especially during growth [139]. In mice, excessive iron removal at an age
of 3 months, equivalent to a human age of about 13.4 years, could lead to iron depletion
during growth and a lack of therapeutic efficacy in mice. Thus, regulated iron removal or
the inhibition of ferroptosis itself could be effective therapeutic targets in NPC.

There are several limitations to this study. First, further experimental validation is
needed to verify the involvement of the DEPs identified in this study with molecular
processes and pathways in NPC model cells. In particular, further validation is needed to
demonstrate the involvement of ferroptosis, not only by showing an increase in intracellular
lipid peroxides but also by showing intracellular Fe2+, the accumulation of ROS, and so
on [134,140]. Second, since we used an in vitro model of NPC, future studies are needed to
verify the roles of DEPs and the pathways analyzed from them in the pathogenesis of NPC
and their potential as therapeutic targets.

3. Materials and Methods
3.1. Chemicals and Reagents

Ultrapure water was prepared using a Puric-α apparatus (Organo Corporation, Tokyo,
Japan). Acetonitrile was purchased from Kanto Kagaku (Tokyo, Japan); formic acid,
methanol, and chloroform were purchased from FUJIFILM Wako Pure Chemical Co. Ltd.
(Osaka, Japan); and the nano-HPLC ODS capillary column (75 µm × 12.5 cm, 3 µm) was
acquired from Nikkyo Technos (Tokyo, Japan). The iodoacetamide (IAA), sodium dode-
cyl sulfate (SDS), tris(2-carboxyethyl) phosphine (TCEP), triethylammonium bicarbonate
(TEAB), trypsin, Dulbecco’s modified Eagle’s medium (DMEM), and non-essential amino
acid (NEAA) mixture reagents were obtained from Nacalai Tesque, Inc. (Kyoto, Japan).
The Acclaim PepMap 100 trapping column (75 µm × 2 cm, 3 µm), M-PER™ Mammalian
Protein Extraction Reagent, Pierce™ 660 nm Protein Assay Kit, Pierce™ Detergent Removal
Spin Columns, and Pierce™ Peptide Desalting Spin Columns were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). TBHP was purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan), and Liperfluo was purchased from DOJINDO LABORATORIES
(Kumamoto, Japan).

3.2. LC/MS/MS Equipment, General Conditions, Data Acquisition, and Data Analysis

An EASY-nLC (Thermo Fisher Scientific) was connected to a quadrupole ion trap
and an Orbitrap Fusion Tribrid tandem mass spectrometer equipped with an electrospray
ionization probe (Thermo Fisher Scientific). The electrospray voltage and ion transfer tube
temperature were set to 2000 V and 275 ◦C, respectively. The MS scan range, resolution,
maximum injection time, and RF lens were set at m/z 375–1600, 60,000 Da, 50 ms, and 60%,
respectively. Data acquisition was performed in the data-dependent analysis (DDA) mode
under positive ion detection. High-collision dissociation (HCD) was used as the activa-
tion type. For the MS/MS analysis, the dynamic exclusion duration, intensity threshold,
isolation window, HCD collision energy, and maximum injection time were set at 20 ms,
5 × 103 cps, 1.6 Da, 30%, and 35 ms, respectively.

Mixtures of formic acid/water (0.1:100, v/v) and formic acid/water/acetonitrile
(0.1:20:80, v/v/v) were used as mobile phases A and B, respectively. The flow rate was set
at 300 nL/min. A Nano HPLC capillary ODS column (75 µm i.d. × 12.5 cm, 3 µm; Nikkyo
Technos) and Acclaim PepMap 100 (75 µm i.d. × 2 cm, 3 µm; Thermo Fisher Scientific)
were used as the analytical and trapping columns, respectively. The equilibration of the
analytical and trapping columns was performed using flows of 5 and 7 µL of the initial
mobile phase, respectively.
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Data acquisition was performed using Xcalibur (version 4.3, Thermo Fisher Scientific,
accessed on 10 June 2022) and Proteome Discoverer (version 2.5.0.400, Thermo Fisher
Scientific, accessed on 10 June 2022) for data integration. Proteins were identified using
the UniProt database (Version 2022_05, accessed on 10 June 2022). The maximum number
of cleavage misses was set to 2. The carbamidomethylation of cysteine was considered
a fixed modification, and the oxidation of methionine and the N-terminal acetylation of
the protein were considered variable modifications. Proteins were identified with a false
discovery rate (FDR) of less than 1%. Measurements for each sample were standardized via
summed intensity. When comparing two cell types, proteins with a missing value in more
than 20% of replicates from one cell type were excluded from the analysis. A PCA was
performed using Metaboanalyst (Version 5.0, set to default, accessed on 11 October 2023).
PPI networks were constructed using STRING (version 11.0, with a minimum required
interaction score set to medium confidence (0.4), accessed on 10 October 2023) [141]. The
GO and KEGG enrichment analyses were carried out using the DAVID database (version
2022_04, set to default, accessed on 14 February 2023) [142].

3.3. The Establishment of NPC Cell Models

NPC cell models were developed using the CRISPR/Cas9method [53–55] summarized
in Figure S3. Hep G2 cells (WT) were used in this study. The NPC1 gene located on
chromosome 18 (18q11.2.) contains 80,715 bases and 25 exons (Figure S3a) [57]. In this
study, two types of knockout model cells were established by targeting multiple sites of the
NPC1 gene (Figure S3). The NPC KO model cell KO1 was developed using two sgRNAs
targeting 238–257 bp’s on exon 1 (Site A) and 1357–1376 bp’s on exon 8 (Site C) (Figure
S3b). The other model (KO2) was developed using two sgRNAs targeting 279–301 bp’s
on exon 1 (Site B) and 3589–3611 bp’s on exon 22 (Site D) (Figure S3c). Using GGGenome
(https://gggenome.dbcls.jp/ja/, accessed on 27 March 2019) and UCSC Genome Browser
(https://genome.ucsc.edu/, accessed on 27 March 2019) software, we selected each CRISPR
targeting site of the NPC1 gene which showed no homology with other genes. HepG2 WT
cells were seeded in 10 cm dishes on day 0 and transfected with px330-based CRISPR/Cas9
vectors (Figure S1) twice on days 2 and 3. On day 5, cell cloning was performed. From
the cells targeting Site A and Site C, 22 clones were obtained, and KO1 was selected as
a typical clone. From the cells targeting Site B and Site D, 18 clones were obtained, and
KO2 was selected as a typical clone. From genomic sequencing, KO1 has a deletion of g
at nt1373, an insertion of g after nt1373, and a large deletion between nt241 and nt1373,
and KO2 has a tc deletion at nt283 and nt284, an insertion of g after nt283, and a large
deletion between nt284 and nt3593. For the confirmation of NPC1 KO, an immunoblot
analysis using an NPC1 antibody (#ab55706, Abcam, Cambridge, UK) [118,143], filipin
staining [13,56], and cholesterol quantification with cholesterol E-test Wako [126] were
performed (Figures S1 and S2 and Figure 1).

3.4. Cell Culture and Cellular Protein Extraction

The WT, KO1, and KO2 cells developed were cultured in DMEM containing 10% FBS,
penicillin–streptomycin, and NEAA. The 2.0 × 106 cells were seeded in a 100 mm Petri dish
and grown in the medium. After confluent cultures, the cells were washed twice with 3 mL
of PBS and subsequently removed from the Petri dish using a scraper in 10 mL of PBS. The
suspended cells were counted using a cell counter, and equal numbers of cells were frozen.

The frozen cells were mixed with 1 mL of M-PER™ Mammalian Protein Extraction
Reagent. The mixture was shaken for 10 min and centrifuged at 14,000× g at 4 ◦C for
15 min. The supernatant was transferred to another tube, and the protein concentrations
were quantified using the Pierce™ 660 nm Protein Assay Kit.

A sample of the proteins (100 µg) was transferred into a separate tube and adjusted to
100 µL with a mixture of 0.1% SDS and a 100 mM TEAB aqueous solution. In succession,
5.3 µL of a mixture of 20 mM TCEP in 0.1% SDS and 100 mM TEAB was added, and
the mixed solution was heated at 95 ◦C for 10 min. Subsequently, 1.7 µL of a mixture of

https://gggenome.dbcls.jp/ja/
https://genome.ucsc.edu/


Int. J. Mol. Sci. 2023, 24, 15642 13 of 20

500 mM IAA in 0.1% SDS and 100 mM TEAB was added, and the solution was maintained
at 25 ◦C for 60 min in the dark.

To this alkylated protein fraction, 428 µL of methanol, 107 µL of chloroform, and
321 µL of water were added, and the solution was mixed and centrifuged at 15,000× g at
25 ◦C for 1 min. The supernatant was removed, and 428 µL of methanol was added to the
remaining solution. The mixture was again centrifuged at 15,000× g at 25 ◦C for 1 min,
and the supernatant was removed. The remaining material was dried at 25 ◦C using a
CC-105 centrifugal concentrator (TOMY, Tokyo, Japan). The dried pellet was dissolved in
100 µL of 0.1% SDS and 100 mM TEAB. To the solution, 4 µL of 0.5 µg/µL trypsin aqueous
solution was added, and the mixture was incubated at 300 rpm at 37 ◦C overnight. The
mixture was then sequentially placed onto a Pierce™ Detergent Removal Spin Column and
Pierce™ Peptide Desalting Spin Column, and the eluted solution was dried using a CC-105
centrifugal concentrator. The pellet was dissolved in 200 µL of a mixture of 0.1% formic
acid and 2% acetonitrile in water, and the solution was used as the sample (protein amount:
approximately 0.5 µg/µL).

3.5. nLC Condition for Label-Free Global Proteomics

The gradient program was as follows: 0–5% B over 1 min, 5–40% B over 60 min,
40–95% B over 2 min, and 95% B over 17 min (cycle time: 80 min). The injection protein
volume and amount were 2 µL and 1 µg, respectively. The injected sample solution was
diluted with mobile phase A up to 5 µL and applied to the trapping column. Five cell
dishes were prepared for each cell line and analyzed.

3.6. Cell Fluorescence Intensity Measurement

WT, KO1, and KO2 cells (40,000 cells per well) were seeded in 96-well plates, with
only DMEM medium (with serum) as a background, the WT cells as a control and pos-
itive control, and the KO1 and KO2 cells as comparisons, respectively. After overnight
incubation in a tissue culture incubator at 37 ◦C, the cells were washed with serum-free
DMEM medium, 70 µL of 10 µM Liperfluo was added, and the cells incubated for 30 min.
After washing the cells twice with Hanks’ Balanced Salt Solution (HBSS), HBSS was added
for background and samples, and 500 µM TBHP was added for the positive control and
incubated for 1 h. After washing the samples with HBSS twice, they were measured using
an Infinite® M200 PRO (Tecan, Männedorf, Switzerland) at an excitation wavelength of
488 nm and an emission wavelength of 535 nm. The mode was set to bottom, the gain
was set to optimal, and the number of flashes was set to 10. An analysis was performed
by eliminating background data due to the culture medium and excluding samples with
bubbles or samples with fluorescence intensities that were more negative than the back-
ground. Standard deviations were applied to error bars, and p values were derived using
the two-tailed, unpaired Welch’s t-test.

4. Conclusions

Here, we aimed to elucidate the pathophysiological aspects of proteomic expression.
We developed NPC1 model cells using the CRISPR/Cas9 method, and global proteomic
approaches were used. In result, many differentially expressed proteins were identified us-
ing the label-free method, and the two cell models exhibited different alterations; however,
commonly changing proteins were also observed. To identify the differential pathways
in the pathology of NPC, we performed a bioinformatics analysis. The identification of
NCOA4, FTH1, FTL, and various autophagy-related proteins as DEPs and the enrichment
of ferroptosis in the pathway analysis could suggest a relation between NPC and ferroptosis
which has rarely been reported. Associations between neurodegenerative diseases and
ferroptosis have been reported in many diseases, and our results also suggest an association
with NPC, which presents with clinical neurodegenerative symptoms. In addition, other
LSD-causing genes, such as the lysosomal enzymes GBA and MAN2B1 and the lysosomal
membrane protein CD63, were identified as DEPs, consistent with previous reports and



Int. J. Mol. Sci. 2023, 24, 15642 14 of 20

supporting the association with other LSDs and reports of abnormal iron metabolism.
These pathways and proteins could serve as novel therapeutic targets, and therapeutic
research based on these results is expected in the future.
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