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Abstract: Natural ingredients have been used for centuries for skin treatment and care. Interest in the
health effects of plants has recently increased due to their safety and applicability in the formulation
of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones
are increasingly being used in natural products of plant origin. This review highlights the beneficial
effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa,
Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria,
Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and
Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and
Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe
javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g.,
Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound
healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and
Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia chara-
cias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza,
Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in
cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), pro-
tective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and
Verbena officinalis)).

Keywords: plants; skin; photoprotection; wound healing; anti-aging; anti-tyrosinase; essential oils;
colorants; cosmetics; pharmaceutics

1. Introduction

The skin consists of the epidermis and the dermis, below which lies subcutaneous
tissue. The five-layer epidermis consists of keratinocytes—cells taking part in keratiniza-
tion, melanocytes—pigment cells, Langerhans cells, mastocytes and Merkel cells. The
dermis is composed of connective tissue and consists of a papillary layer and a reticular
layer. It contains fibroblasts, which are responsible for the production of collagen, elastin
and glycosaminoglycans (GAG), as well as numerous blood vessels, nerve endings and
appendages, including hair follicles and sweat and sebaceous glands (Figure 1). The skin
performs multiple complex functions; it takes part in metabolic and homeostatic processes
and is responsible for the excretion, selective absorption and storage of substances. In
addition, it protects against biological (e.g., microbes), physical (e.g., UV radiation) and
chemical factors [1,2].

Botanical ingredients are one of the main sources of materials that are used in the
cosmetics and pharmaceutical industries. Recent years have seen increasing interest in
dermocosmetics and cosmeceuticals produced from plant materials, and thus, there has
been greater interest in plant-based products with skin care properties. Plant materials
can be applied topically for skin care purposes, as well as for the treatment of numerous
skin diseases [2] (Figure 2). Their advantage is that they are gentle but effective, safe and
non-toxic, without side effects. Cosmetics fortified with bioactive compounds are ideally
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suited to the needs of the skin and are more environmentally friendly than conventional
cosmetics. A group of natural ingredients widely used in cosmetics is plant extracts,
which are a rich source of biologically active substances significantly affecting human skin.
They may exhibit a wide range of properties, both medicinal (in certain skin disorders,
including inflammatory disorders such as acne, psoriasis or atopic dermatitis) and for
use in skin care (e.g., antioxidant, antibacterial, astringent, moisturizing, regenerating,
cleansing, smoothing or lightening) [3,4]. Plant extracts are obtained via extraction from
various parts of raw plants, e.g., using an appropriately chosen solvent, such as water,
ethyl alcohol, glycerine, glycols or vegetable oil. Plant extracts are obtained from whole
plants or parts of plants (fruits, leaves, roots, bark, stems, branches, seeds or flowers). The
composition and properties of plant extracts, which can be found in the formulas of natural
cosmetics, depend on a variety of factors, including cultivation and harvest conditions, how
and to what extent the material is broken up, or drying and extraction methods. Extracts
from whole plants as well as individual chemical substances contained in them are used in
cosmetics. Active plant substances are divided into primary and secondary metabolites.
The former are basic substances that are essential to the plant for life, constituting building
materials and energy sources. They include sugars, fats, proteins, amino acids and enzymes.
Secondary metabolites include terpenes, steroids, saponins, tannins, alkaloids, volatile oils,
resins, vitamins and phenolics [1,4].
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The aim of the present paper is to describe plants as bioactive cosmetic and therapeutic
substances. This review focuses on recent studies on the potential uses of plants and
their constituents as photoprotective, anti-inflammatory, regenerative, wound-healing,
anti-aging, depigmenting, aromatic and coloring agents.

2. Plants as Photoprotective Agents against Ultraviolet-Radiation-Induced
Inflammation and Skin Damage

Ultraviolet (UV) radiation is a physical inflammatory, mutagenic and carcinogenic
reagent, as well as a strong enhancer of reactive oxygen species (ROS) production. The
biological effects of UV radiation on the skin may be the result of early reactions (erythema
or sunburn) or long-term reactions (changes related to skin damage at the molecular
and biochemical level). The first response of the skin to UV radiation is the activation
of inflammation. UVB irradiation of keratinocytes leads to increased synthesis of pro-
inflammatory cytokines in the epidermis, e.g., TNF-α (tumour necrosis factor α) and
interleukins IL-1, IL-6, IL-8 and IL-10, which then influence immune cell activity. Another
important mediator of inflammation induced by UV radiation is cyclooxygenase-2 (COX-2).
COX-2 is an enzyme that is responsible for the synthesis of prostaglandins (PG) from
arachidic acid; these play an important role in the regulation of the inflammatory reaction
of skin exposed to UVB radiation [5–8]. Moreover, skin cells exposed to UV radiation
respond by activating a cascade of signaling pathways. Disruptions in the activation of
these pathways induced by UV radiation lead to disturbances of the homeostasis of the
skin, changes in gene expression or the regulation of cytokine secretion, or a loss of control
over the cell cycle, which in turn can lead to carcinogenesis [9]. Key signaling pathways
activated by UV radiation include transcription factor NFκB (nuclear factor of kappa
in B cells) and MAPKs (mitogen-activated protein kinases), including p38 kinases (p38
mitogen-activated protein kinases), JNK (Jun N-terminal kinase) and ERK 1/2 (extracellular
signal-regulated kinase 1/2). The p38 kinase is activated by a number of pro-inflammatory
cytokines or stress factors. Studies suggest that the p38 kinase is involved in the activation
of inflammation induced by UVB radiation through the regulation of COX-2 activity,
the production of IL-6, IL-8 and TNFα and the synthesis of nitric oxide (iNOS). Studies
have shown that the JNK serine-threonine kinase pathway is more strongly activated by
UVA radiation than by UVB radiation in human keratinocytes. The type and dosage of
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UV radiation have also been shown to determine the activation of ERK1/2 [10–13]. The
exposure of human keratinocytes to UV radiation results in ROS accumulation. Oxidative
stress may modulate various signaling cascades in human skin cells and mediate MAPK
activity, and it may also be associated with elevated levels of activator protein 1 (AP-1)
and NFκB in keratinocytes. Prolonged and intense exposure to UV radiation contributes
not only to premature skin aging but also to melanoma and nonmelanoma skin cancers
(cutaneous malignant melanoma, basal cell carcinoma or squamous cell carcinoma) [2,14].

Selected plant extracts and single compounds with antioxidant, anti-inflammatory
and immunomodulatory effects play an important role in the photoprotection of the skin.
Phytochemicals have shown the ability to act as free radical scavengers, radical chain
reaction inhibitors, metal chelators, oxidative enzyme inhibitors and antioxidant enzyme
cofactors. Some studies have reported that plant extracts promote endogenous antioxidant
enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase
(GSH-PX), which protect the skin against increasing ROS levels under oxidative stress.
Moreover, plant materials can modulate the expression and activation of a wide variety
of cytokines, such as TNF-α IL-1β, IL-6 and IL-8. Botanicals have also shown the ability
to regulate the expression of various pro-inflammatory genes and inhibit the activity of
pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS), COX-2 and
lipoxygenase (LOX) [15–17].

Plant extracts and natural compounds from plants have been reported in the earlier
literature to possess photoprotective properties. These include phytochemicals such as
ferulic, caffeic, cinnamic, rosmarinic acid, quercetin, apigenin, rutin, luteolin, chrysin,
hesperidin, dihydromyricetin, chrysanthemin, curcumin, genistein, resveratrol, carnosic,
ursolic, ellagic, asiatic acid, zerumbone, astaxanthin, β-carotene, lycopene, zeaxantin, lutein
and L-ergothioneine, as well as extracts from plants such as Opuntia humifusa [18], Camellia
sinensis [19], Punica granatum [20], Hibiscus furcatus, Atalantia ceylanica, Mollugo cerviana,
Leucas zeylanica, Ophiorrhiza mungos, Olax zeylanica [21] Silybum marianum [22], Polypodium
leucotomos [23], Vaccinium myrtillus [24], Lonicera caerulea [25], Thymus vulgaris [26], Opuntia
ficus-indica [27], Morinda citrifolia [28], Galinsoga parviflora, Galinsoga quadriradiata [29], Coffea
arabica [30], Amaranthus cruentus, Moringa oleifera, Malaxis acuminata, Schinus terebinthi-
folius [31], Schinopsis brasiliensis [32], Crataegus pentagyna [33], Sambucus nigra, Helichrysum
arenarium, Crataegus monogyna [34], Capnophyllum peregrinum [35], Dalbergia monetaria [36],
Baccharis antioquensis [37], Juglans regia [38], Dimorphandra gardneriana and Lippia micro-
phylla [39].

Some plants that are effective UV filters may be potential sunscreen ingredients [40].
These include plant extracts such as Astragalus gombiformis with an SPF value of 38 [41],
Sloanea calva with an SPF value of 35.4 [42], Hylocereus polyrhizus with an SPF value of
35.02 [43] or Rosa centifolia with SPF values of 32 [44]. Moreover, plant extracts, through
their synergistic effects with some physical or chemical UV filters (e.g., benzophenone-3
(BP-3), octyl methoxycinnamate (OMC) or titanium dioxide (TiO2)), may also play a role
as cosmetic components that enhance the SPF of sunscreen formulations [40]. This effect
has been shown for extracts from Sanionia uncinata [45,46], Vitis vinifera [47], Nephelium
lappaceum [48], Psidium guajava [49], Campomanesia adamantium and Campomanesia xantho-
carpa [50], as well as moss extracts from Leucobryum spp. and Holomitriopsis laevifolia [51].

Table 1 presents the results of research from the last five years on the protective
effects of plant-derived products on UVB-mediated damage, with potential applications in
photoprotective products.
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Table 1. Selected plant extracts from various species and their photoprotective properties.

Species (Family) Plant Material Method Effect Ref

Adenocaulon himalaicum
(Asteraceae) leaf, EE in vitro, HaCaT

exposed to UVB

↑ filaggrin, involucrin,
loricrin expression
↓MMP-1; MAPK,
AP-1 activation

[52]

Alpinia officinarum
(Zingiberaceae) rhizome, WE

in vivo, UVB-irradiated
hairless mouse;

in vitro, NIH-3T3
exposed to UVB

↓ of MMP-1 expression and recovered the
reduction in collagen content in

mouse skin;
↓ IL-6, IL-8, MCP-3 expression and
↓ phospho-Akt and phospho-ERK

in NIH-3T3

[53]

Antidesma
thwaitesianum

(Euphorbiceae)
fruit extract in vitro,

UVB-irradiated HaCaT

protects cells from UVB-induced
cytotoxicity; anti-inflammatory effect
through ↓ NO and ROS generation;

↓ phospho-p38 and
phospho-JNK

[54]

Astragalus gombiformis
(Fabaceae) aerial part, BE in vitro, SPF via

UV spectroscopy SPF 37.78 [41]

Calea fruticosa
(Asteraceae) aerial part, EE in vitro, SPF via

UV spectroscopy SPF 9.66 [55]

Camellia sinensis
(Theaceae) leaf extract in vitro, NHEK

exposed to UVB
efficacy in recovering TIMP-3 expression

downregulated by UVB treatment [56]

Chrysophyllum
lucentifolium
(Sapotaceae)

ME
in vitro, UVB and

H2O2-treated HaCaT
and HDF

↓ expression of COX-2, MMP-1, and -9,
HYAL-1, and -4 by downregulating the

NF-κB and MAPK (ERK, JNK and
p38) pathways;

↑ Col1a1 expression

[57]

Cistus incanus
Cistus ladanifer

(Cistaceae)

aerial part
extract

in vitro, SPF via
UV spectroscopy SPF 3.33—4.37 [58]

Ceratonia siliqua
(Fabaceae)

pod and seed
extract, WME

in vitro, SPF via
UV spectroscopy SPF 1.07–18.19 [59]

Corylus avellana
(Betulaceae) hazelnut skin extract in vitro, SPF via

UV spectroscopy
extract ↑ SPF value of

benzophenone 4.66–4.94 [60]

Cyclopia spp.
(Fabaceae) leaf and branch, WAE in vitro, SPF via

UV spectroscopy SPF 27.8 [61]

Diospyros kaki
(Ebenaceae)

fruit (pulp, skin and
seed) extract

in vitro, HaCaT
exposed to UVA

and UVB

↓ intracellular ROS production in cells;
exerts a photoprotective and regenerative

effect on UV-irradiated cells
[62]

Elaeagnus
angustifolia

(Elaeagnaceae)
leaf extract in vitro, SPF via

UV spectroscopy

SPF values of sunscreen
formulation (with 2%, 4%, 6%, 8%

extracts): 6.37–21.05
[63]

Euphorbia characias
(Euphorbiaceae) leaf, EE in vitro, SPF via

UV spectroscopy SPF 9.10 [64]

Helianthus annuus
(Asteraceae) flower, EE in vitro,

UVB-irradiated HDF

↓MMP-1, 3 and ROS production;
↓ procollagen type I reduction;

anti-photoaging action via the activation
of Nrf2, upregulation

of TGF-β, downregulation of AP-1 and
MAPK phosphorylation;

↓ UVB-induced VEGF and IL-6, COX-2,
iNOS and TNF-α secretion

[65]
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Table 1. Cont.

Species (Family) Plant Material Method Effect Ref

Hylocereus polyrhizus
(Cactaceae) fruit peel, EE in vitro, SPF via

UV spectroscopy SPF 35.02 [43]

Juglans regia
(Juglandaceae) male flower, ME in vitro,

UVB-irradiated HaCaT

prevents the overexpression of MAPKs,
AP-1, MMPs, Smad7;

↓ expression of TIMP-1/2, TGF-β1,
Smad3 and procollagen type-1 in cells

[66]

Kadsura coccinea
(Schisandraceae)

root, stem, leaf and
fruit, EE

in vitro, UVA and
UVB-irradiated HaCaT

alleviates anti-proliferative and cytotoxic
effects of UVA/UVB irradiation on cells; ↓

intracellular ROS level and
keratinocyte damage

[67]

Melaleuca leucadendron
(Myrtaceae)

flower,
EE

in vitro, UVB-
induced HaCaT

↓ COX-2 expression, ensures protection of
DNA damage, prevents the increase

in ROS;
↑ levels of the antioxidant enzymes SOD,

GPx and CAT

[68]

Moringa concanensis
(Moringaceae) stem bark extract

in vitro, SPF via
UV spectroscopy,

UVA/UVB
absorption spectra

SPF 10.46 and broad absorption spectrum
(UVA and UVB) ranges [69]

Oenanthe javanica
(Apiaceae) EE in vivo, UVB-

exposed mouse

↑ collagen types I and III productions; ↓
MMP-1 and MMP-3, TNF-α and

COX-2 expression
[70]

Penthorum chinense
(Penthoraceae) EE

in vitro, HaCaT
under UVB or

H2O2 treatment

↑ the promoter activity of the type 1
procollagen gene Col1A1; ↓MMPs,
COX-2, IL-6 expression and HYAL

induced by UVB irradiation or
H2O2-induced oxidative stress; ↓
phospho-p38 and phospho-JNK

[71]

Pradosia mutisii
(Sapotaceae) ME

in vitro, HaCaT, HDF
under UVB or

H2O2 treatment

↓MMP-1 and MMP-9;
↑ Sirt-1 [72]

Posoqueria latifolia
(Rubiaceae) flower, EE in vitro, SPF via

UV spectroscopy
SPF 35, broad-spectrum (UVA-UVB)

protection efficacy [44]

Ranunculus bulumei
(Ranunculaceae)

aerial part,
ME

in vitro,
UVB-irradiated HaCaT

↓mRNA levels of
MMP-9, COX-2; ↑mRNA levels of Sirt-1,

type-1 procollagen;
↓ phospho-p38; inactivates AP-1

[73]

Rosa centifolia
(Rosacea) flower, EE in vitro, SPF via

UV spectroscopy

SPF value of 32,
broad-spectrum (UVA-UVB)

protection efficacy
[44]

Rosmarinus officinalis
(Lamiaceae) leaf, HE in vivo, UV-

irradiated rat

↓ level of GSH, SOD, CAT;
↓ IL-1β, IL-6, and NF-kB;
↓MMP-1, GM-CSF, NEP

[74]

Rubus idaeus
(Rosaceae) EE

in vitro, HaCaT;
in vivo, mouse exposed

to UVB

alleviate UVB-caused erythema in
the skin;

↓ formation of 8-OHdG;
recover the expression of Nrf2 and
antioxidant enzyme proteins SOD

and CAT;
↓ phospho-p38 and NF-κB expression

[75]
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Table 1. Cont.

Species (Family) Plant Material Method Effect Ref

Sideritis raeseri
(Lamiaceae) aerial part, WEE in vitro, SPF via

UV spectroscopy SPF 4.54–18.01 [76]

Sloanea medusula
Sloanea calva

(Elaeocarpaceae)
leaf, EE in vitro, SPF via

UV spectroscopy
S. medusula, SPF 32.5

S. calva, SPF 35.4 [42]

Spatholobus suberectus
(Leguminosa)

stem,
WE, EE

in vitro, HaCaT
exposed to UVB

↓ ROS production;
block MAPK, NF-κB and c-Jun;
↑ Col1a1, ELN, HAS2 expression

[77]

Syzygium formosum
(Myrtaceae) leaf, EE in vitro, HaCaT

exposed to UVB ↓ IL-1 β, IL-6, IL-8 and COX-2 expression [78]

Silybum marianum
(Asteraceae)

sylimarin and
flavonolignans

in vitro, SPF via
UV spectroscopy

absorbs UVB and UVA;
SPF 2.01–6.07 [79]

Washingtonia filifera
(Arecaceae) seed, EE, WE, ME

in vitro, H2O2-
induced HaCaT;
in vitro SPF via

UV spectroscopy

↓ ROS generation;
SPF 1.52–3.35. [80]

Zanthoxylum
bungeanum
(Rutaceae)

sanshool, a
major component

in vitro,
UVB-irradiated HDF;

in vivo, mouse

↓ activation of JAK2-STAT3 signaling;
↓MMP-1 and MMP-3 secretion [81]

↓, inhibit/suppress/decrease; ↑, enhance/induce/increase; 8-OHdG, 8-hydroxydeoxyguanosine; AP-1, activator
protein 1; BE, buthanol extract; Col1a1, collagen type I alpha 1; EE, ethanol extract; ELN, elastin; ERK, extracellular
signal-regulated kinase; GM-CSF, granulocyte-macrophage colony-stimulating factor; HaCaT, human keratinocyte
cell line; HAS2, hyaluronan synthase 2; HDF, human dermal fibroblast cell line; HE, hexane extract; JNK, c-Jun
N-terminal kinase; MAPK, mitogen-activated protein kinases; MCP-3, monocyte chemotactic protein-3; ME,
methanol extract; MMP, matrix metalloproteinases; NEP, neprilysin; NF-κB, nuclear factor-kappa B; NIH-3T3,
skin fibroblast cells; NHEK, neonatal normal human epidermal keratinocytes; Nrf2, nuclear factor erythroid
2-related factor 2; Sirt-1, sirtuin 1; STAT3, signal transducer and activator of transcription; TIMP, tissue inhibitor
of metalloproteinases; WAE, water/aceton extract; WE, water extract; WEE, water/ethanol extract; WME,
water/methanol extract.

3. Plants as Regenerative and Wound-Healing Agents

The process of the regeneration and healing of the skin involves interactions between
many types of cells, including endothelial cells, inflammatory cells, keratinocytes and fibrob-
lasts. It consists of stages such as coagulation (haemostasis, fibrin clot formation and activa-
tion of the clotting cascade by platelets), inflammation (neutrophil and monocyte migration,
phagocytosis of bacteria and the release of proteolytic enzymes to debride the wound),
proliferation (angiogenesis by endothelial cells, granulation tissue formation by fibroblasts
and reepithelialization by keratinocytes) and tissue maturation (collagen/ECM remodeling
by fibroblasts) [82–84] (Figure 3). An important step in tissue formation, repair and the
maintenance of good skin conditions is proper cell proliferation and migration processes.
These depend on many factors, such as biochemical communication, adhesion strength and
mechanical flexibility, as well as organization of the cellular cytoskeleton [85–87]. Numer-
ous regulators take part in keratinocyte migration and proliferation, including epidermal
growth factor (EGF), insulin-like growth factor 1 (IGF-1), fibroblast growth factor (FGF),
granulocyte-macrophage colony-stimulating factor (GM-CSF), angiopoietin-related growth
factor (AGF), vascular endothelial growth factor (VEGF), transforming growth factor β

(TGF-β), connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF)
and platelet derived-endothelial cell growth factor (PD-ECGF). In addition, cytokines (e.g.,
IL-1, IL-6 and TNF-α), neuropeptides (G protein-coupled receptor (GCRP), vasoactive
intestinal peptide (VIP) and substance P (SP)), MMPs and extracellular macromolecules
also play various roles in the regulation of skin cell motility and proliferation [88,89].
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metalloproteinases.

A wound is an injury involving a breach of the integrity of the skin. A chronic wound
may lead to complications, such as bacterial infections. Bacterial infections also delay the
wound-healing process, prolonging inflammation. The surface of human skin is colonized
by commensal bacteria with low virulence, such as coagulase-negative staphylococci and
non-pathogenic corynebacteria and cutibacteria, but also by opportunistic pathogenic
microbes (such as Candida spp., Malassezia spp. or Staphylococcus aureus) and bacteria
with high pathogenic potential (e.g., Streptococcus pyogenes). The skin of hospitalized
patients who have undergone antibiotic treatment may be colonized by Gram-negative non-
fermenting bacteria (Pseudomonas aeruginosa or Acinetobacter baumannii) or yeasts, including
the opportunistic pathogen Candida auris. The choice of treatment for skin and wound
infections depends on various factors (e.g., the severity of the disease or host factors), but
plants and drugs of natural origin can undoubtedly have broad applications alongside
topical synthetic antibiotics and antiseptic agents [92–94].

Botanicals have been used topically for decades for skin regeneration and the treat-
ment of dermatological problems, such as chronic diabetic wounds, ulcers, bedsores, burns
and non-healing wounds. Numerous plants and drugs of natural origin support the normal
repair systems of the skin and therefore show great therapeutic potential in skin regenera-
tion and wound treatment by various mechanisms. These include effects on keratinocyte
migration and proliferation rates, modulation of the release of various growth factors,
cytokines, chemokines or neuropeptides by skin cells, increasing the formation of capil-
lary vessels and increasing fibroblast activity. Another important group of raw materials
comprises plants with astringent and antimicrobial properties, which contribute to wound
contraction and increase the rate of epithelialization [83,84,95]. The scientific literature
points to the important effects of plants (e.g., Achiella millefolium [96], Aloe vera [97], Althaea
officinalis [98], Calendula officinalis [99], Curcuma longa [100], Eucalyptus globulus [101], Sim-
mondsia chinensis [102], Pinus sylvestris [103] and Camellia sinensis [104]) and phytochemicals
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(e.g., triterpenes, alkaloids and flavonoids) on tissues and their potential to amplify skin
regeneration and accelerate the process of wound repair and healing [84,95].

Table 2 cites some original research carried out in the last five years on selected
plants and their constituents, as well as formulations based on raw materials of plant
origin exhibiting wound-healing activity and potential applications in regeneration and
skin treatment.

Table 2. The impact of selected plant extracts and natural products of plant origin on skin regeneration
and wound healing.

Plant (Family) Plant Material Cell/Animal Effect Ref

Agrimonia eupatoria
(Rosaceae) WE

in vitro, NIH 3T3, HDF
and HaCaT;
in vivo, rat

↑ ECM deposition, ↑ keratinocyte
proliferation/differentiation; ↑ wound TS

and contraction rates
[105]

Angelica polymorpha
(Umbelliferae) flower absolute in vitro, HaCaT

↑ cell migration, proliferation and
collagen IV synthesis; ↑ phosphorylation

of ERK1/2, JNK, MAPK p38 and Akt
[106]

Annona reticulata
(Annonaceae) leaf, EE in vitro, HaCaT ↑ VEGF and Akt; ↑ cell migration

and proliferation [107]

Astragalus floccosus
(Leguminosae) root, ME in vitro, NHDF;

in vivo, rat
↑ scratch wound healing, cell

proliferation, fibrosis and epithelization [108]

Betula pendula
(Betulaceae) bark, WE in vitro, HaCaT

strong activities against S. aureus, C. acnes
and S. epidermidis;
↑ wound closure

[109]

Boesenbergia rotunda
(Zingiberaceae) rhizome, EE in vitro, HaCaT ↑ ERK1/2 and Akt;

↑ cell migration and proliferation [110]

Bursera morelensis
(Burseraceae)

terpenes α-pinene and
α-phellandrene in vivo, mouse

↑ wound contraction due to collagen
deposition from the early stages; provided

better structure in scar tissue
[111]

Centella asiatica
(Apiaceae) WGE in vitro, HaCaT positively affected wound healing and

cell migration [112]

Cumin carvi
(Apiaceae) seed, WEE in vivo, rat

healing effects: ↑ total protein content and
biomechanical factors; ↑

re-epithelialization, granular tissue,
connective tissue, collagen and

angiogenesis index;
↓ inflammatory factors

[113]

Cyclopia spp.
(Fabaceae)

leaf and branch,
WE, WEE in vitro, HaCaT ↑ cell migration [61]

Derris scandens
(Fabaceae) stem, WE, EE in vitro, HSF ↑ cell migration and wound closure in a

scratch assay [114]

Digitaria ciliaris
(Poaceae) flower, EE in vitro, CCD986sk

HaCaT

↑ cell proliferation and migration; ↑
collagen I and IV syntheses; ↑

phosphorylation of ERK1/2 and
p38 MAPK

[115]

Fagus sylvatica
(Fagaceae) bark, WE in vitro, HaCaT strong activities against S. aureus, C. acnes

and S. epidermidis; ↑ wound closure [109]



Int. J. Mol. Sci. 2023, 24, 15444 10 of 36

Table 2. Cont.

Plant (Family) Plant Material Cell/Animal Effect Ref

Glycyrrihza glabra
(Fabaceae) root, EE in vivo, rat

↑ collagen synthesis, ↑ α-SMA, PDGFR-α,
FGFR1 and Cytokeratin 14 expression; ↑

angiogenesis and collagen deposition
through up-regulation of bFGF, VEGF and

TGF-β gene expression levels

[116]

Garcinia mangostana
(Clusiaceae) pericarp, EE in vitro, 3T3-CCL92 ↑ fibroblast proliferation and

wound recovery [117]

Greyia radlkoferi
(Melianthaceae) leaf, EE in vitro, HaCaT antibacterial activity against

wound-associated bacteria (S. aureus) [118]

Hydrangea serrata
(Hydrangeaceae) leaf, WE in vitro, HaCaT improved transcription levels of keratin

Ker5, Ker6 and Ker16 [119]

Jatropha neopauciflora
(Euphorbiaceae) latex in vivo, normal and

diabetic mouse
accelerated and improved the

wound-healing process [120]

Nigella sativa
(Ranunculaceae) seed, EE in vitro, 3T3-CCL92 ↑ cell proliferation and wound recovery [117]

Rosmarinus officinalis
(Lamiaceae) leaf, HE in vitro, HaCaT

↑migration and repopulation of
keratinocytes at the scratched area and

considerably narrowed the scratched gap
[74]

Salix koreensis
(Salicaceae) flower absolute in vitro, HaCaT

↑ cell proliferation, migration and
collagen I and IV production;

↑ phosphorylation of Akt, JNK, ERK1/2
and p38 MAPK

[121]

Sapindus mukorossi
(Sapindaceae) kernel oil in vitro, CCD-966SK

↑ cell proliferation and migration;
anti-inflammatory and anti-microbial
activities; ↑ wound healing, ↓ size of

the wound

[122]

Sorocea guilleminina
(Moraceae) leaf, WE in vitro, N3T3;

in vivo rat
↑ cell proliferation/migration rate,

↑ wound contraction [123]

Ulmus parvifolia
(Ulmaceae) root bark, ME in vitro, HaCaT;

in vivo, mouse

↑ cell migration;
upregulated the expression of the MMP-2

and -9 protein, ↑ TGF-β
[124]

Plant material Formulation Cell/animal Effect Ref

Aloe vera gel with EE in vitro, HaCaT, HFF1;
in vivo, rat

↑ cell proliferation; promoted wound
healing; accelerated re-epithelialization

and wound contraction
[125]

Avicennia schaueriana cream with leaf WE in vivo, mouse
↑ re-epithelialization and the number of
fibroblasts, exhibiting a healing activity

on skin injuries
[126]

Caralluma europaea ointment with aerial
part WEE in vivo, rat ↑ wound healing [127]

Cassia obtusifolia gel with aerial part EE in vivo, rat and mouse ↑ wound healing [128]

Clematis simensis ointment wit
h leaf WEE in vivo, mouse and rat

↑ wound contraction and epithelialization;
extract reduced inflammation and
demonstrated antioxidant activity

[129]

Cnestis ferruginea creams with root
bark ME in vivo, rat ↓ wound size; affected the formation of

well-regenerated tissue [130]

Convolvulus arvensis ointment with stem ME in vivo, rat
↑ wound closure; improved skin

architecture; healing potential comparable
to that of gentamycin

[131]



Int. J. Mol. Sci. 2023, 24, 15444 11 of 36

Table 2. Cont.

Plant (Family) Plant Material Cell/Animal Effect Ref

Centella asiatica
hydrogel with
asiaticoside-
rich fraction

in vivo, rabbit ↑ wound healing [132]

Cynara humilis ointment with root WE
and EE in vivo, rat

↑ wound contraction, epithelialization,
↑ collagen production; ↓ the number of

inflammatory cells during wound healing
[133]

Epilobium angustifolium hydrogel with EE, IE
and WE in vitro, HDF

↑ wound healing; activity against S.
pneumoniae, E. coli, E. faecalis, E.

faecium, S. lutea and B. pseudomycoides
[94]

Ginkgo biloba O/W cream with
leaf WE in vivo, diabetic rats ↑ wound closure associated with

increased collagen synthesis [134]

Loranthus acaci gel with aerial part EE in vivo, rat and mouse ↑ wound healing [128]

Marantodes pumilum ointment with leaf and
root WE in vivo, rat

↑ wound healing; re-epithelialization,
collagen deposition, fibronectin content

and fibroblast cells, and fiber
transformation from collagen III to I

[135]

Phlomis russeliana gel with aerial
part extract in vivo, mouse

↑ dermal and epidermal regeneration,
collagen formation, ↑ TGF-β, VEGF and

FGF levels
[136]

Punica granatum,
Matricaria chamomilla

ointment with
methanol fraction of

pomegranate and
chamomile flowers

in vivo, rat
↑ wound healing;

activity against S. aureus, S. epidermidis
and P. aeruginosa of plant extracts

[137]

Roylea elegans cream with leaf WE in vivo, rat

↑ wound contraction formation of
collagen, and tissue re-epithelialization; ↑

protein, GSH, SOD and CAT levels, ↓
MPO levels; ↑ IL-10, ↓ TNF-α and IL-6

[138]

Tamarix aphylla nanoemulsion W/O
with leaf ME in vivo, rabbit

↑ acid-burn wound-healing process
(improved cell attachment at the edge of

the wound, collagen content),
↓ healing duration

[139]

Urtica simensis ointment with
leaf WME in vivo, mouse ↑ wound contraction, ↓ periods of

epithelialization [140]

Virola oleifera cream with resin in vivo, rat ↑ wound contraction;
↓ LPO and protein oxidation [141]

Plant essential
oils

polysaccharide-based
hydrogel with

eucalyptus, ginger and
cumin EO

in vitro, L929 cells;
in vivo, mouse

antibacterial activity against S. aureus and
E. coli; ↑ cell migration and improved

burn wound healing
[142]

Cinnamaldehyde nanoemulsion in vivo, rat
↓ wound size; ↑ CAT and SOD, ↓ NAP3;

activity against S. aureus and
S. typhimurium

[143]

↓, inhibit/suppress/decrease; ↑, enhance/induce/increase; ECM, extracellular matrix; EE, ethanol extract; ERK,
extracellular signal-regulated kinase; FGF, fibroblast growth factor; HE, hexane extract; IE, isopropanol extract;
JNK, c-Jun N-terminal kinase; LPO, lipid peroxidation; MAPK, mitogen-activated protein kinases; ME, methanol
extract; MMP, matrix metalloproteinases; MPO, myeloperoxidase; NAP3, cytokine neutrophil-activating protein 3;
PDGFR-α, platelet-derived growth factor receptor-α; SMA, smooth muscle actin; TGF-β, transforming growth
factor β; TS, tensile strength; VEGF, vascular endothelial growth factor; WE, water extract; WEE, water/ethanol
extract; WGE, water/glycerin extract; WME, water/methanol extract.

4. Plants as Anti-Aging Agents

Preventing and combating signs of skin aging (dry skin, loss of firmness and elasticity
or wrinkles) is an age-old challenge. The skin is the organ on which these processes are
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most noticeable, hence the great interest in age-related changes at the level of the epidermis,
dermis and subcutaneous tissue. At the level of the epidermis, changes observed with age
include (1) thinning of all layers of the epidermis and flattening of the dermo-epidermal
junction; (2) disturbances of the production of natural moisturizing factor (NMF), leading
to dryness and increased peeling of the epidermis; (3) a reduction in the level of epidermal
lipids (mainly ceramides); and (4) oxidation of lipids of intercellular cement, leading to
increased transepidermal water loss (TEWL) [144,145]. Disturbed production of lipids bind-
ing the corneocytes of the stratum corneum not only causes skin dryness but also disrupts
the process of the exfoliation of keratinized epidermal cells. This is linked to the mal-
function of enzymes, enabling exfoliation when the water content in the epidermis is low.
For example, a deficiency of linoleic acid, a component of ceramide 1, with an important
role in the cohesiveness of cement, is associated with dry skin symptoms [146,147]. Major
age-related changes in the dermis include (1) a reduced number and activity of fibroblasts,
which are cells that are responsible for the synthesis of collagen fibers, elastin fibers and
hyaluronic acid; (2) degradation of collagen fibers, progressive collagen cross-linking and
a reduction in skin resilience and resistance to stretching; (3) changes in the structure of
elastin fibers, which clump together in an amorphous mass (elastosis), loss of elasticity and
wrinkle formation; and (4) a reduction in hyaluronic acid, with insufficiently moisturized
and resilient skin [144,145].

Over the centuries, the search for new substances to slow down the aging process
and restore the skin’s young appearance has not diminished. Bioactive substances with
anti-aging properties include moisturizers, which influence the hydrolipid barrier and
minimize destructive lesions occurring in the stratum corneum. The skin may be hydrated
through the external supply of water from moisturizing agents or via the application
of agents forming an occlusive lipid film to slow down water loss from the skin. An
important group of anti-aging agents comprises bioactive substances, which take part in the
synthesis and metabolism of skin components (e.g., proteins and essential unsaturated fatty
acids) and also exhibit collagenase, elastase and hyaluronidase inhibitory activity [1,144].
Collagenase is an enzyme belonging to the family of matrix metalloproteinases (MMP),
which can degrade collagen, the fibrous component of the extracellular matrix (ECM) and
the major structural protein in human skin. Elastase is a proteolytic enzyme involved
in the degradation of elastin, a protein responsible for skin elasticity. Hyaluronidase is
an enzyme (an endoglycosidase) responsible for the hydrolysis of hyaluronic acid, a skin
glycosaminoglycan, which is a major component of ECM [148,149].

Botanicals that support the health, texture and integrity of the skin are widely used
in cosmetic formulations for dry and mature skin. Plant extracts and natural products are
recommended because they increase skin hydration, reduce TEWL, display skin-barrier-
reinforcing properties, inhibit the degradation of skin components and help to maintain
the integrity of the skin’s structure. These are promising approaches to preventing skin
aging using products derived from plants. Plants can be a very interesting source of
ingredients with potential anti-aging properties, as confirmed by the results of in vitro
studies. However, further research is needed to confirm the efficacy of plant-derived
materials in vivo, as the most important factor determining the effectiveness of active
ingredients of natural origin is their bioavailability. In some studies, plants have been shown
to exert notable in vivo anti-aging properties. According to the literature, skin parameters
associated with skin aging, such as skin hydration (measured with a corneometer and
tewameter), skin elasticity (measured with a cutometer and elastometer) or facial wrinkles
(measured with a skin visiometer and camera for skin analysis) have been evaluated
following the application of cosmetic formulations based on various plant extracts, alone
or in combination [119,150–152]. Table 3 cites research from the last five years on selected
plant species and their extracts with potential uses as agents preventing and slowing down
skin aging.
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Table 3. Selected plant extracts from various species with anti-aging activity.

Species (Family) Part/Extract Method Results Ref

Aegopodium podagraria
(Apiaceae) WGE enzyme reaction assay,

spectrophotometric method in vitro ↓ ELA and COL activity [112]

Aerva lanata
(Amaranthaceae) EE, WE enzyme reaction assay,

spectrophotometric method in vitro
↓ ELA, COL and
HYAL activity [153]

Arachis hypogaea
(Fabaceae) peanut shells, UAE enzyme reaction assay,

spectrophotometric method in vitro ↓ COL activity [154]

Artemisia iwayomogi
(Asteraceae) 1% water fraction in vivo study on

21 women volunteers

anti-wrinkle effect after
using O/W cream for

8 weeks; ↓ depth of fine
wrinkles on facial skin

[155]

Asparagus officinalis
(Asparagaceae) aerial parts, EE enzyme reaction assay,

spectrophotometric method in vitro
↓MMP-1, ELA and

HYAL activity [156]

Borago officinalis
(Boraginacea)

aerial parts,
ME, WME

enzyme reaction assay,
spectrophotometric method in vitro ↓ ELA, COL activity [157]

Bruguiera gymnorhiza
(Rhizophoraceae)

leaf, root, twig, fruit,
EAE, ME

enzyme reaction assay,
spectrophotometric method in vitro ↓ ELA activity [158]

Cannabis sativa
(Cannabaceae) herb, WEE, MAE, UAE

enzyme reaction assay,
spectrophotometric method in vitro;

application analysis on
15 volunteers in vivo

↓ COL and ELA activity;
↓ TEWL;

↑ skin moisture level
[150]

Cyclopia spp.
(Fabaceae)

leaf, branches, WE,
WEE, WAE, BE

enzyme reaction assay,
spectrophotometric method in vitro

↓ COL and HYAL, weak
influence on ELA activity [61]

Curculigo latifolia
(Hypoxidaceae)

root, steam, leaf,
EAE, EE

enzyme reaction assay,
spectrophotometric method in vitro ↓ ELA activity [159]

Dimocarpus longan
(Sapindaceae)

seed extracts, PET,
EAE, EE

enzyme reaction assay,
spectrophotometric method in vitro ↓MMP-1 and HYAL activity [160]

Euphorbia characias
(Euphorbiaceae) leaf, EE enzyme reaction assay,

spectrophotometric method in vitro
↓ ELA, COL and
HYAL activity [64]

Hydrangea serrata
(Hydrangeaceae) leaf, WE in vitro, HaCaT and HDF; clinical

study (22 subjects)

↑ skin barrier components
and HAS, ↓mRNA levels of

HYAL-1, -2, -3; ↑mRNA
expression of Col1a1;
↑ skin moisture level,
↓ skin wrinkles

[119]

Nelumbo nucifera
(Nelumbonaceae)

whole flower,
stamen, EE

enzyme reaction assay,
spectrophotometric method in vitro

↓ ELA, COL and
HYAL activity [161]

Olea europaea
(Oleacea)

leaf, WE,
PPG, LA; MAE, UAE

enzyme reaction assay,
spectrophotometric method in vitro ↓ ELA and COL activity [162]

Plectranthus spp.
(Lamiaceae)

aerial part, WE, ME,
AE, EAE

enzyme reaction assay,
spectrophotometric method in vitro ↓ ELA and COL activity [163]

Pradosia mutisii
(Sapotaceae) ME in vitro, HaCaT and HDF

↑ expression of
moisturizing-related genes

HAS-2, TGM-1 and
Col1a1 gene

[72]

Premna odorata
(Verbenaceae) leaf, EO enzyme reaction assay,

spectrophotometric method in vitro

considerable anti-ELA and
anti-HYAL and mild
anti-COL potential

[164]
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Table 3. Cont.

Species (Family) Part/Extract Method Results Ref

Rosmarinus officinalis
(Lamiaceae) leaf, HE

enzyme reaction assay,
fluorometric and

spectrophotometric methods in vitro

↓ ELA, COL and
HYAL activity [74]

Spatholobus suberectus
(Fabaceae) stem, WE, EE enzyme reaction assay,

spectrophotometric method in vitro ↓ ELA activity [77]

Thunbergia laurifolia
(Acanthacea) leaf, EE, SE, RE

enzyme reaction assay,
fluorometric and spectrophotometric

methods in vitro;
in vitro, 3T3 cells

↓MMP-1, MMP-2, -9 and
HYAL activity [165]

Vitis vinifera
(Vitaceae) fruit, WEE single-blind placebo-controlled

in vivo study, 11 volunteers

improvement in skin
moisture and elasticity after

12 weeks of applying
W/O emulsion

[166]

Washingtonia filifera
(Arecaceae) pulp, seed, WE, EE, ME in vitro, HaCaT ↓ ELA and COL activity [80]

Warburgia salutaris
(Canellacea) bark, WE enzyme reaction assay,

spectrophotometric method in vitro
activity against

HYAL > ELA > COL [167]

Papaver rhoeas
Punica granatum
Clitoria ternatea

Carthamus tinctorius
Gomphrena globasa

flower, WEE

enzyme reaction assay,
spectrophotometric method in vitro;

application analysis on
15 volunteers in vivo

↓ ELA and COL activity;
SPF 20–31;
↓ TEWL;

↑ skin moisture level

[168]

Cannabis sativa
Foeniculum vulgare
Punica granatum

Vitis vinifera

seed, EE, WEE,
SFE UAE

enzyme reaction assay,
spectrophotometric method in vitro ↓ ELA and COL activity [169]

Phyllanthus emblica
Momordica

cochinchinensis
Centella asiatica

leaf, fruit extract
randomized double-blind

placebo-controlled in vivo study,
60 women

significant improvement in
skin hydration, elasticity and

wrinkles in eye and cheek
areas after 60 days of
emulsion application

containing an
extract combination

[151]

↑, enhance/increase; ↓, inhibit/decrease; AE, aceton extract; BE, buthanol extract; COL, collagenase; Col1a1,
collagen type I alpha 1; EAE, ethyl acetate extract; ELA, elastase; EE, ethanol extract; EO, essential oil; HAS,
hyaluronic acid synthase; HE, hexane extract; HYAL, hyaluronidase; LA, lactic acid; MAE, magnetic-stirrer-
assisted extraction; ME, methanol extract; MMP, metalloproteinases; PET, petroleum ether; PPG, polypropylene
glycol; RE, reflux extraction; SE, Soxhlet extraction; SFE, supercritical fluid extraction; TGM-1, transglutaminase-1;
UAE, ultrasound-assisted extraction; WE, water extract; WAE, water/aceton extract; WGE, water/glycerin extract;
WEE, water/ethanol extract; WME, water/methanol extract.

5. Plants as Anti-Tyrosinase Agents

Tyrosinase is an enzyme that is widely distributed in the cells of animals, plants and mi-
croorganisms. It is a key enzyme in the biosynthesis of melanin, responsible for the catalysis
of the first two synthesis reactions, i.e., the hydroxylation of tyrosine to DOPA and the oxida-
tion of DOPA to dopaquinone. At the stage of dopaquinone formation, the eumelanin and
pheomelanin pathways are separated. When thiol compounds (cysteine and glutathione)
are present, they attach to dopaquinone, and the biosynthesis pathway is redirected to-
ward pheomelanin. When the L-tyrosine concentration is low and that of cysteine is high,
cysteine attaches to dopaquinone, and cysteinyldopa isomers are formed [170,171]. In the
absence of thiol compounds, highly reactive dopaquinone easily undergoes intracellular cy-
clization, oxidation and transformation to dopachrome [170–173]. In the presence of TYRP2
(tyrosinase-related protein 2, also called dopachrome tautomerase—DCT) or metal cations
(Cu2+, Zn2+, Fe2+, Co2+ or Ni2+), dopachrome may be converted to 5,6-dihydroxyindole-
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2-carboxylic acid (DHICA) [170,173]. In the absence of DCT, dopachrome is converted to
5,6-dihydroxyindole (DHI) by nonenzymatic decarboxylation [170]. TYRP1 (tyrosinase-
related protein 1) causes the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid,
and TYR causes the oxidation of DHI to indole-5,6-quinone. The polymerization of the
resulting monomers (indole and quinone) leads to the formation of eumelanin [171,173]
(Figure 4).
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to 5,6-dihydroxyindole-2-carboxylic acid (DHICA) [170,173]. In the absence of DCT, do-
pachrome is converted to 5,6-dihydroxyindole (DHI) by nonenzymatic decarboxylation 
[170]. TYRP1 (tyrosinase-related protein 1) causes the oxidation of DHICA to indole-5,6-
quinone-2-carboxylic acid, and TYR causes the oxidation of DHI to indole-5,6-quinone. 
The polymerization of the resulting monomers (indole and quinone) leads to the for-
mation of eumelanin [171,173] (Figure 4). 

 
Figure 4. Participation of tyrosinase in the synthesis of melanins: eumelanin and pheomelanin. TYR,
tyrosinase; DOPA, dihydroxyphenylalanine; TYRP2, tyrosinase-related protein 2; TYRP1, tyrosinase-
related protein 1; DHICA, 5,6-dihydroxyindole-2-carboxylic acid; DHI, 5,6-dihydroksyindol (own
work based on [170,172,174]).

As a metalloenzyme, tyrosinase has two copper atoms in its active site, determining
its catalytic function. Substances belonging to the group of tyrosinase inhibitors inhibit
melanin synthesis by interacting with copper ions in the active site of tyrosinase, thereby
reducing the activity of the enzyme [175,176].

In recent years, anti-tyrosinase agents have attracted the attention of researchers
searching for substances that can whiten the skin and also treat skin pigmentation disor-
ders. Ongoing research indicates that many plant extracts and plant-derived chemicals
are strong tyrosinase inhibitors and prevent the overproduction of melanin in the epider-
mal layers. At the same time, importantly, they inhibit melanogenesis without exerting
cytotoxic or mutagenic effects on melanocytes [175,177–179]. Constituents of plant extracts
with depigmenting properties resulting from the inhibition of tyrosinase activity include
arbutin (found in, e.g., Pyrus pyrifolia peel (3.35 mg/g) [180], Origanum majorana herbs
(51.3 mg/g) [181], Arctostaphylos uva-ursi leaves (6.4%) [182], Vaccinium vitis idaeae leaves
(46.78 mg/g) [183] or Bergenia crassifolia leaves (22.59%) [184]), coumaric acid (present in,
e.g., Artocapus altilis fruits (11.85 mg/100 g) [185,186]), ellagic acid (occurs in, e.g., Juglans
regia leaves (16.25%), Castanea sativa stem bark (2.75%) or Eucalyptus camaldulensis leaves
(0.28%) [187]), aloesin (isolated from the Aloe vera leaves (64 mg/L) [188]), baicalein (present
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in Scutellaria baicalensis roots (16.61 mg/g) [189,190]) and glabridin (found in Glycyrrhiza
glabra roots (22.87 mg/g) [191]).

Table 4 presents research from the last five years on various plant species tested for
anti-tyrosinase activity with potential uses in products for depigmenting or lightening
the skin.

Table 4. Selected plant species and their anti-tyrosinase properties.

Plant Species Family Part of Plant Ref

Acanthus mollis Acanthaceae leaves [192]

Aerva lanata Amaranthaceae aerial parts [153]

Allium galanthum Amaryllidaceae bulbus [193]Allium turkestanicum

Anacamptis pyramidalis Orchidaceae tubers [194]

Anacardium occidentale Anacardiaceae leaves [195]

Anacardium occidentale Anacardiaceae fruits [196]

Andropogon virginicus Poaceae aerial parts [197]

Angelica keiskei Umbelliferae leaves, roots [198]

Arachis hypogaea Fabaceae peanut shell [154]

Areca catechu Palmaceae fruits [195]

Arctium minus Asteraceae flower heads, leaves, roots [199]

Artemisia verlotiorum Asteraceae whole plant [200]

Atractylodis macrocephalae Asteraceae rhizomes [201]

Berberis thunbergii Berberidaceae leaves [202]

Bergenia pacumbis Saxifragaceae plant and its rhizomes [203]

Blepharis linariifolia Acanthaceae aerial parts [204]

Bletilla striata Orchidaceae tubers, fibrous roots [205]

Breynia retusa Phyllanthaceae leaves [206]

Bridelia ferruginea Phyllanthaceae leaves, stem bark [207]

Bruguiera gymnorhiza Rhizophoraceae leaves, roots, fruits [158]

Cakile maritima Brassicaceae fruits, leaves, stems [208]

Cannabis sativa Cannabaceae seeds [169]

Carthamus tinctorius Asteraceae seeds [209]

Celastrus hindsii Celastracea leaves [210]

Cercis glabra Fabaceae leaves [211]

Cladium mariscus Cyperaceae seeds [212]

Clausena indica Rutaceae roots [213]

Combretum micranthum Combretaceae leaves [196]

Crotalaria burhia Fabaceae aerial parts, roots [214]

Croton hirtus Euphorbiaceae aerial parts [215]

Cudrania tricuspidata Moraceae fruits [216]

Cytinus hypocistis Cytinaceae aerial parts [217]

Dianella ensifolia Liliaceae roots [218]

Dodonaea viscosa Sapindaceae stems [219]

Elaeagnus angustifolia Elaeagnaceae fruits, leaves [220]
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Table 4. Cont.

Plant Species Family Part of Plant Ref

Euphorbia hirta Euphorbiaceae whole plant [196]

Feijoa sellowiana Myrtaceae leaves [221]

Foeniculum vulgare Apiaceae seeds [169]

Glochidion zeylanicum Phyllanthaceae leaves [195]

Girardinia diversifolia Urticaceae shoot tips [222]

Helichrysum rutilans Asteraceae aerial parts [223]

Heliotropium procumbens Boraginaceae aerial parts [224]

Heliotropium crispum Boraginaceae whole plant [225]

Hibiscus tiliaceus Malvaceae leaves [226]

Hypericum montbretii Hypericaceae aerial parts [227]Hypericum origanifolium

Iris pseudacorus Iridaceae aerial parts, rhizomes [228]

Jatropha curcas Euphorbiaceae stems, bark, leaves [229]Jatropha gossipiifolia

Limonium effusum Plumbaginaceae aerial parts [230]Limonium sinuatum

Litchi chinensis Sapindaceae roots [231]

Lonicera japonica Caprifoliaceae whole plant [232]

Mangifera caloneura Anacardiaceae leaves [195]

Manilkara kauki Sapotaceae fruits, leaves, seeds, stem
bark, woods [233]

Matthiola incana Brassicacea leaves, flower buds [234]

Melastoma normale Melastomacea roots [235]

Momordica cochinchinensis Cucurbitacea fruits (pulp, aril, seed) [236]

Monotheca buxifolia Sapotaceae leaves, stems [237]

Nelumbo nucifera Nelumbonaceae whole flower, stamen [161]

Onosma bourgaei, Boraginaceae aerial parts [238]Onosma trachytricha

Paliurus spina-christi Rhamnaceae fruits, leaves, stems [239]

Pistacia lentiscus Anacardiaceae leaves [240]

Phaseolus vulgari Fabaceae seed coat [241]

Phytolacca dioica Phytolaccacea fruits [242]

Plectranthus ecklonii, P.
namaensis, P. zuluensis Lamiacea aerial parts [243]

Punica granatum Punicaceae seeds [169]

Rheum palmatum Polygonacea roots, rhizomes [244]

Rhizophora racemosa Rhizophoraceae leaves, stem bark [245]

Rhizophora apiculata Rhizophoraceae leaves [226]Rhizophora mucronata

Rosa platyacantha Rosaceae flowers, leaves, buds [246]

Rubus fraxinifolius Rosaceae leaves [247]

Salvia chamelaeagnea,
Lamiacea aerial parts [243]Salvia dolomitica

Sartoria hedysaroides Fabaceae aerial parts [248]
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Table 4. Cont.

Plant Species Family Part of Plant Ref

Schisandra chinensis Schisandraceae fruits [249]

Secamone afzelii Asclepiadaceae leaves [250]

Streblus taxoides Moraceae wood [251]

Strobilanthes glutinosus Acanthaceae whole plant [252]

Tambourissa peltat Monimiaceae fruits, flowers, leaves [200]

Vitis amurensis Vitaceae root [253]

Vitis vinifera Vitaceae seeds [169]

Warburgia salutaris Canellacea barks [167]

Zingiber kerrii Zingiberaceae rhizomes [254]

Ziziphora taurica Lamiaceae aerial parts [255]
The in vitro spectrophotometric enzyme tyrosinase inhibition assay was used to measure anti-tyrosinase activity,
compared with kojic acid or β-arbutin as a reference tyrosinase inhibitor.

6. Plants as Aromatic Agents

Over the centuries, the aromatic applications of plant extracts have gained importance.
Plant essential oils, considered to be those with an oil content above 0.01% of the fresh
weight of the plant, are of particular importance. Some plant materials may contain even
20% essential oils (EOs) [256–258]. EOs are mainly obtained from plants of the Apiaceae,
Asteraceae, Lamiaceae, Lauraceae, Myrtaceae, Rutaceae, Verbenaceae and Geraniaceae
families [257,259] (Table 5). EOs can be found in all parts of the plant, i.e., the flowers
(rose, lavender, jasmine or ylang-ylang), leaves (eucalyptus, peppermint, geranium, rose-
mary or tea tree), herbs (basil, hyssop and lemon balm), roots (ginger and vetiver), wood
(cedarwood, camphor and sandalwood), bark (cinnamon and myrtle), seeds (anise, cumin,
cardamom and fennel) and fruits (pepper, nutmeg and juniper). They are obtained from
raw plant materials via distillation (water, steam or dry distillation), extraction (microwave,
ultrasound, solvent extraction, maceration or enfleurage) or mechanical or cold pressing.
EOs are mixtures of volatile substances, mostly colorless or light yellow, with an intense
odor and an oily consistency, and they are soluble in liquid fats, alcohol, ether or chloroform.
The biological activity and fragrance of EOs are determined according to their chemical
composition. Their composition depends on numerous factors, including the origin of the
plant materials or the conditions of plant growth. EOs are not chemically homogeneous.
They may contain up to several hundred chemical compounds, including terpene hydro-
carbons and their oxygen derivatives, alcohols, aldehydes, ketones, organic acids, esters
and ethers [256,257,259,260]. Some compounds of EOs have a characteristic aroma, e.g.,
bisabolol, with a sweet floral odor; geraniol, with a fresh, sweet and rose-like odor; linalyl
acetate, with a floral, sweet citrus odor; citronellol, with a strong floral, rose-like and sweet
odor; limonene, with a strong orange odor; linalool with a floral, grassy, pleasant and citrus
odor; myrcene, with a pleasant floral odor; terpineol, with a sweet, lilac odor; α-pinene,
with a fresh, camphor, sweet and pine odor; or β-phellandrene, with a mint, turpentine
odor [260].

Cosmetic aromatherapy utilizes EOs for skin, body, face and hair products. EOs are
added to skincare and bath cosmetics or massage preparations as substances providing
fragrance and as active ingredients. Smell is an important criterion in purchasing cosmetic
products. A wide range of essential oils is available, and their marketing potential is
enormous. Fragrance composition is an important element of the formulation of new
cosmetic preparations. Fragrances also play an important role in masking unpleasant
aromas from fatty acids, oils and surfactants used in cosmetic formulations [256,258,260].



Int. J. Mol. Sci. 2023, 24, 15444 19 of 36

Table 5. Selected plants with identified essential oil compounds and a description of their aroma.

Family Aromatic Plants Extraction of EO Single Constituent Aroma Description Ref.

Lamiaceae

Lavandula
officinalis hydrodistillation of air-dried flowers linalool, linalyl acetate, geraniol,

β-caryophyllene, lavandulyl acetate fresh, herbaceous, floral [261]

Origanum
vulgare

hydrodistillation of air-dried
aerial parts

carvacrol, γ-terpinene, p-cymene,
trans-sabinene hydrate, thymol

warm, spicy,
camphoraceous [262]

Thymus
vulgaris

hydrodistillation of shade-dried
flowers and leaves

thymol, γ-terpinene, p-cymene, linalool,
myrcene, α-pinene, α-thujene

strong, spicy,
herbaceous [263]

Mentha
piperita

hydrodistillation of shade-dried
aerial parts

camphane, menthone, menthol, β-pinene,
pulegone, β-cubebene, α-pinene,
γ-terpinene, γ-carane, piperiton

fresh, sweetish, menthol [264]

Hyssopus
officinalis

steam distillation, simple
hydrodistillation and

hydrodistillation in Dean–Stark
apparatus of air-dried flowering

aerial parts

elemol, spathulenol,
α-eudesmol, γ-eudesmol, virdiflorol,

hedycaryol, isopinocamphone,
cis-jasmone.

fresh, herbal, slightly
sweet, camphorous [265]

Apiaceae

Pimpinella
anisum hydrodistillationof mature fruits

trans-anethole, γ-himachalene,
trans-pseudoisoeugenyl 2-methylbutyrate,

cis-dihydrocarvone, methyl chavicol,
α-himachalen, β-himachalene

fresh, warm, sweet,
mildly pungent [266]

Carum
carvi

hydrodistillation and
microwave-assisted

hydrodistillation of air-dried seeds

carvone, limonene, apiole,
andrographolide, aromadendrene,
β-cadinene, friedelanol, barrigenol,

3-benzyloxyphenol

pungent, anise-
like, herbaceous [267]

Rutaceae

Citrus
limon hydrodistillation of peels limonene, α-citral, β-pinene, α-terpinene,

β-elemene, neryl acetate sharp, lemon, sweet [268]

Citrus
paradisi

molecular distillation from
cold-pressed fruits

limonene, β-myrcene, α-pinene, sabinene
(0.60%), carvone (0.41%), cis-limonene

oxide (0.43%), and trans-limonene oxide
(0.33%), caryophyllene (0.20%),

β-cubebene (0.14%), α-copaene (0.13%),

fresh, sharp, citrus [269]

Verbenaceae Verbena
officinalis steam distillation of leaves limonene, 1,8-cineole, ar-curcumeme,

caryophyllene oxide, spathulenol
lemony scent with

sweet, fruity undertones [270]

Lauraceae Cinnamomum verum hydrodistillation of shade-
dried leaves eugenol, linalol, benzyl benzoate, sweet, spicy, slightly

woody, clove-like [271]

Asteraceae Anthemis
nobilis

hydrodistillation of shade-
dried flowers

en-yn-dicycloether, β-caryophyllene,
aristolene epoxide, germacrene D,

widdrol, cis-caryophyllene

crisp, sweet, herbal,
floral, soft fruity

(reminiscent of apples)
[272]

Myrtaceae

Eucalyptus
globulus steam distillation of dried leaves eucalyptol, α-pinene, p-cymene, β-

myrcene, terpinen-4-ol, γ-terpinene
fresh, camphoraceous,

medicinal [273]

Melaleuca
alternifolia

steam distillation of young branches
and leaves

terpinen-4-ol,-terpinene,
1,8-cineole, p-cymene fresh, camphoraceous [274]

Syzygium
aromaticum

supercritical fluid extraction assisted
by cold pressing buds

eugenol, eugenyl acetate, β-
caryophyllene, α-humulene clove, strong [275]

Geraniaceae Pelargonium
graveolens

hydrodistillation of fully grown
aerial parts

citronellol, geraniol, caryophyllene oxide,
menthone, linalool, β-bourbonene,

iso-menthone, geranyl formate

floral, sweet, rose-like
with minty undertones [276]

EOs and their constituents, in addition to their aromatic effects, are also used in
modern cosmetics and dermocosmetics as absorption promoters and preservatives [258].
The absorption of active substances by the skin can also be increased by EOs, such as
eucalyptus, peppermint or terpentine oil, as well as by components of essential oils, such
as menthol, limonene, carvacrol, linalool, α-pinene or terpineol [258,259]. Due to their
antimicrobial action, EOs can act as natural preservatives to prolong the durability of
cosmetics, e.g., essential oils from lavender (Lavandula angustifolia) [261], thyme (Thymus
vulgaris) [263], peppermint (Mentha piperita) [264], cajuput (Melaleuca cajuputi), cinnamon
(Cinnamomum zeylanicum) [271], clove (Syzygium aromaticum) [275], eucalyptus (Eucalyptus
globulus) [273], sage (Salvia officinalis) [277] and tea tree (Melaleuca alternifolia) [274]. EO
constituents performing this function include phenols, aldehydes, alcohols, ketones and
esters [258,259].

The use of EOs may have side effects, such as allergic reactions, irritation or temporary
sensitivity to UV radiation. An allergic reaction or skin irritation may occur following the
use of cinnamon, clove or lemon grass oil, and oils with a photosensitizing effect include
citrus oils (e.g., bergamot, lime, bitter orange, lemon or grapefruit), as well as EOs present in
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angelica root (Angelica archangelica), rue (Ruta graveolens), parsley leaf (Petroselinum crispum)
and marigold (Tagetes minuta). Constituents of EOs that may trigger allergic reactions
include benzyl alcohol, cinnamyl alcohol, eugenol, hydroxycitronellal, isoeugenol, benzyl
salicylate, cinnamaldehyde, coumarin, geraniol, anisyl alcohol, benzyl cinnamate, farnesol,
linalol, benzyl benzoate, citronellol or limonene [258–260]. EO safety in the cosmetic
industry is monitored in a variety of ways, e.g., by the International Fragrance Association
(IFRA) and the International Organization for Standardization (ISO) [260].

7. Plants as Colorants and Dye Agents

The history of the human use of pigments dates back to prehistoric times. Dye
plants that are known to have been used in various periods include dyer’s madder (Rubia
tinctorum), true indigo (Indigofera tinctoria), dyer’s woad (Isatis tinctoria), dyer’s weed
(Reseda luteola) and logwood (Haematoxylum campechianum) [278]. Dyes that are currently
used in cosmetics were once used in various branches of industry. It is believed that dyes
were originally used for ornamental purposes. In ancient Egypt, mainly the skin and hair
were dyed, e.g., using henna (a pigment obtained from the shrub Lawsonia inermis). In
modern cosmetology, plant pigments are added to cosmetic products to give them an
aesthetic appearance. Like aroma, color plays an important role in marketing cosmetics
and pharmaceutical products [278–280]. In addition, colorants and dyes are used as beauty
enhancers, masking imperfections or correcting minor skin defects. Apart from color
cosmetics (e.g., fluids, lip pencils, lipstick, rouge or eyeshadow), plant pigments are also
a component of skin care cosmetics with protective and antioxidant properties, with the
ability to strengthen blood vessels and improve the condition of skin [281,282].

Plant dyes, which are varied in terms of chemical structure, are a group of compounds
that are present in plant parts such as flowers, fruits and leaves. Plant pigments include
quinones, polyphenols, chlorophylls, carotenoids and betalains [279,281–284] (Table 6).

Quinones are compounds whose color ranges from yellow to orange to red to brown.
Quinones, which include benzoquinones, naphthoquinones and anthraquinones, are a large
group of pigments. Anthraquinones are anthracene derivatives that are widespread in the
plant world. They can be found among plants of the Polygonaceae, Rubiaceae, Rhamnaceae,
Scrophulariaceae, Liliaceae, Hypericaceae and Fabaceae families. In traditional dyeing,
hypericin, a red dye obtained from St John’s wort (Hypericum perforatum), was used as well.
Natural fibers were also dyed using rhamnotoxin—a red pigment obtained from the bark of
alder buckthorn—as well as with alkannin, from the rhizomes and roots of dyer’s alkanet
(Alkanna tinctoria). This dye has been used since ancient times in color cosmetics, such as
lipsticks. Another source of alkannin, which is a naphthoquinone derivative, is the root of
common bugloss (Anchusa officinalis) [279,281,282].

A wealth of flavonoids can be found in plants of the Apiaceae, Asteraceae, Betulaceae,
Polygonaceae, Brassicaceae, Ericaceae, Fabaceae, Hypericaceae, Primulaceae, Lamiaceae,
Rosaceae, Rubiaceae, Rutaceae and Scrophulariaceae families. Apart from their role in skin
care, flavonoids are used in cosmetics as natural plant dyes, including flavonols (intense
yellow), flavones (light yellow and cream-colored), chalcones (light yellow) and aurones
(intense yellow) [279,281,282].

Anthocyanins are widespread plant dyes, the most common of which include red
pelargonidin (geranium and dahlia), blue-to-red peonidin (elderberry and peony) and
cyanidin (cornflower, chokeberry, cranberry and cherry), purple malvidin (mallow and
grapes), petunidin (petunia) and delphinidin (grape, elderberry and cranberry). Tannins
are broadly distributed in the plant kingdom and are generally classified into two types:
hydrolysable tannins (e.g., gallotannins and ellagitannins) and condensed tannins (cate-
chins and leucoanthocyanidins). Plants supplying brown, gray or sometimes rust-colored
tannin dyes include the species Uncaria gambir, Galla chinensis (Chinese gallnut), Acacia
catechu, Schinopsis balansae, Pteropcarpus marspinum, Eucalyptus rostrata, Quercus infectoria,
Quercus robur, Quercus sessilis, Potentilla erecta, Alchemilla vulgaris, Sanguisorba officinalis and
Polygonum bistorta [279,281,282,285].
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Chlorophylls are a pigment that is present in all green plants (in the stems, leaves, flow-
ers, fruits or seeds), e.g., Urtica dioica, Medicago sativa, spinach, lettuce and broccoli. Among
the known plant chlorophylls, two have significance as dyes: chlorophyll a (blue-green) and
chlorophyll b (yellow-green). Chemically, chlorophyll is an ester (magnesium porphyrin
composed of four pyrrole rings) with two alcohols (phytol and methanol) [280,282].

Carotenoids are polyene dyes, i.e., they have a conjugated double-bond system. Plant
sources of carotenoids include Crocus sativus, from which the stigma, containing the yellow
carotenoid pigment crocin, is used; Bixa orellana, whose fruits supply the yellow-orange
carotenoid pigment bixin (annato, orlean); and Calendula officinalis, whose flowers contain
α- and β-carotene, lutein, lycopene and violaxanthin [281,282,286].

Betalains are found in plants of the order Caryophyllales. Sources of betalain pigments
include beet root (Beta vulgaris), the fruits of the prickly pear (Opuntia ficus-indica) or
cacti of the Hylocereus genus and the flowers of numerous species of the Amaranthaceae
family [281,282].

Table 6. Classification of natural colorants according to chemical functional groups (structure)
[279,282,287].

Chemical Class Example of Class Source Color Produced

Quinones

benzoquinone 1,4-benzoquinone Pyrus lindleyi brown

anthraquinones alizarin Rubia tinctiorum red

napthoqinones

lawsone
(2-hydroxy-1,4-naphthoquinone) Lawsonia inermis brown, purple

grey and shades
of orangejuglone

(5-hydroxy-1,4-naphthoquinon) Juglans regia

Polyphenols

flavones

luteolin Reseda luteola

yellow and brownapigenin Chamomilla recutita

chrysin Passiflora incarnata

anthocyanins

protocyanins Centaurea cyanus

red, violet or blue
(depending on pH)

malvidin, peonidin, delphinidin Althaea rosea

3-delphinidin sambubioside
(hibiscin), 3-cyanidin sambubioside,

3-delphinidin glucoside
Hibiscus sabdariffa

3-cyanidin glucoside
(chrysanthemum),

3-cyanidin sambubioside

Sambucus nigra
fructus

Betalains

betacyanins betanin
Beta vulgaris

Amaranthus cruentus
Opuntia ficus-indica

red and purple

betaxanthins vulgaxanthin I and II,
indicaxanthin

Hylocereus polyrhizus,
Opuntia ficus-indica,

Beta vulgaris
yellow and orange

Carotenoids

carotenes α-, β-, γ-carotene, lycopene
Daucus carota,

Solanum lycopersicum,
Sorbus aucuparia orange, red and

yellow
xanthophylls lutein, zeaxanthin, violaxanthin Spinacia oleracea, Zea

mays, Tagetes erecta

Natural colorants and dyes of plant origin have the important advantages of being
nontoxic, safe, without side effects, non-carcinogenic, environmentally friendly (biodegrad-
able and compatible with the environment) and economical. For these reasons, they are
becoming an object of consumer interest with broad applications in the cosmetic industry.



Int. J. Mol. Sci. 2023, 24, 15444 22 of 36

Plant dyes can be an alternative to synthetic dyes, which involve the use of petrochemical-
based materials, and due to their allergic, toxic, mutagenic, genotoxic and carcinogenic
effects, they are responsible for various health and skin problems [280,283,287].

8. Future Perspectives and Challenges

In the European Union, before cosmetic products can be sold to customers, they must
be evaluated for safety in accordance with Regulation (EC) No. 1223/2009 of the European
Parliament and of the Council, and in the United States, the safety of cosmetics is regulated
by the Food and Drug Administration (FDA), mainly through the Federal Food, Drug, and
Cosmetics Act (FD&C Act) and the Fair Packaging and Labeling Act (FPLA). The global
cosmetics industry (encompassing products for the face, eyes, hair, nails, mouth and body,
which may be used externally for cleansing, beautifying or altering one’s appearance) is
continually growing, together with consumer awareness regarding health care, including
hygiene and skin care [288]. Among the entire range of cosmetics, plant-based products
have seen tremendous growth of about 15–20 per cent over the past five years. This review
presents a wide assortment of plants with various applications in cosmetic preparations
that have been reported in the last five years. It is also important to consider certain
aspects of the use of plants and bioactive compounds of plant origin in cosmetics and the
associated challenges.

First, attention should be paid to the ability of active ingredients of natural origin
to penetrate the first skin barrier, as the bioavailability of bioactive compounds is an
important factor determining their effectiveness. One promising solution for the future is
the development of delivery systems for bioactive ingredients that facilitate penetration,
through improved encapsulation and targeted delivery. A related issue is the fact that the
effects of these agents have not been conclusively demonstrated in all cases. For example,
although some natural agents appear to have promising sun-protection effects, when they
are added to sunscreens, this effect has been shown to be poor and to ensure only a modest
or low increase in SPF (e.g., lycopene [289] and Cucumis sativus extract [290]). Therefore,
in vitro research into the biological activity of plants must also be supported by in vivo
studies. Even when preliminary studies show promising effects, confirmation in clinical
trials is needed.

Second, it is important to consider the mechanism of action and the safety of plant-
derived bioactive ingredients. A good example is bergamot oil. The use of methoxypso-
ralens from the Citrus bergamia essential oil following sun exposure has been shown to
increase photosensitivity, causing further damage rather than providing photoprotection,
despite its stimulating effect on tyrosinase activity [291]. Other adverse effects, such as
acute toxicity, skin and eye irritation or skin sensitization, may occur following the topical
application of materials of plant origin. This is why it is essential to conduct research not
only on the effectiveness of these substances but on their safety as well, prior to including
them in a cosmetic formulation.

In addition, discussions about ingredients of plant origin and their biological activity
should take into account their chemical structure. One example is the role of flavonoids
and their effect on melanogenesis in relation to the chemical structure of this complex
group of compounds. For example, hesperetin [292] and genistein [293] have been shown
to stimulate melanogenesis, whereas compounds such as epicatechin (EGCG) [294] or
baicalein [189] act as inhibitors of melanin formation. It is interesting to compare the two
structurally similar compounds apigenin and luteolin. One additional hydroxyl group in
luteolin results in different cellular functions: apigenin stimulates melanin synthesis [295],
whereas luteolin inhibits it [296]. This suggests that the characteristic chemical structure of
individual bioactive compounds leads to differences in how they regulate melanogenesis.
Conflicting reports in the scientific literature regarding quercetin may also be puzzling, as
some data suggest that it stimulates melanogenesis [297], whereas other data indicate an
inhibitory effect against melanogenesis [298]. This demonstrates that there is still a need
for in-depth research leading to a better understanding of these plant-derived molecules.



Int. J. Mol. Sci. 2023, 24, 15444 23 of 36

Another important consideration is how the plant material to be used as a cosmetic
component is obtained (e.g., the extraction/separation technique, temperature or type of
solvent used). Some of the active compounds present in plants (e.g., polyphenols, essential
oils or vitamins) have low stability, and their sensitivity to light and heat limits their use in
cosmetics. Research in this area is aimed at the development of more stable derivatives or
the encapsulation of active substances in liposomes, which protects them from degradation.

The implementation of new solutions for obtaining and preparing plant-derived mate-
rials and including them in a cosmetic product is associated with the issue of intellectual
property. The mechanisms of the legal protection of innovations, such as patents, are also
worthy of attention. Naturally, not all research results can be patented. In the context
of plant-based cosmetic materials, no plant or substance extracted from it can be pro-
tected by the patent system; however, a complex or mixture of plant extracts or isolated
molecules, if it meets the criteria of novelty, inventive activity and industrial application, is
patentable [299,300]. Patents involving pharmaceutical and cosmetic applications may refer
to the ingredients, formulation, product type, use of pharmaceutical carrier systems or cos-
metic production/manufacturing methods [300]. In patents filed in the National Institute
of Industrial Property (INPI), types of applications of plant extracts in cosmetics include
multifunctional product innovation (e.g., the use of a plant extracts for the treatment of
gynoid lipodystrophy and acne), extraction processes used to isolate active ingredients
with potential applications in cosmetics and the use of extracts with anti-aging, skin/hair
pigmentation and conditioning or photoprotection properties [299,301]. An analysis of
patents related to cosmetics containing plant ingredients reveals a high proportion of inno-
vations involving the use of species from the Fabaceae, Asteraceae, Rosaceae, Lamiaceae,
Poaceae, Rutaceae, Lilliacae and Apiaceae families [301]. Examples of plants described in
patents for cosmetic applications include Pothomorphe umbellata root extract for anti-aging
activity and the treatment of cell damage caused by exposure to UV rays; Glycyrrhiza glabra
and Shophora flavecens roots for the treatment of skin hyperpigmentation; the Artemisia
plant species for whitening the skin and delaying aging; or the Pueraria plant species for
rejuvenation, lightening the skin and treating skin inflammation [299,301].

9. Conclusions

Plants and their constituents can be used to maintain the physiological balance of
human skin. Ongoing research provides valuable information on the chemical composition
and pharmacological properties of botanicals. Moreover, studies have confirmed their
effectiveness and have demonstrated new potential applications of plant materials in
products for topical use as skin care and therapeutic agents with multifaceted effects.
Natural products of plant origin can be used as a safe and efficacious alternative to synthetic
products. This is reflected in growing consumer interest in natural cosmetics and the market
trend expressed by the development and increasing number of products based on plant-
derived ingredients.
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94. Nowak, A.; Zagórska-Dziok, M.; Perużyńska, M.; Cybulska, K.; Kucharska, E.; Ossowicz-Rupniewska, P.; Piotrowska, K.;
Duchnik, W.; Kucharski, Ł.; Sulikowski, T.; et al. Assessment of the Anti-Inflammatory, Antibacterial and Anti-Aging Properties
and Possible Use on the Skin of Hydrogels Containing Epilobium angustifolium L. Extracts. Front. Pharmacol. 2022, 13, 896706.
[CrossRef]

95. Albahri, G.; Badran, A.; Hijazi, A.; Daou, A.; Baydoun, E.; Nasser, M.; Merah, O. The Therapeutic Wound Healing Bioactivities of
Various Medicinal Plants. Life 2023, 13, 317. [CrossRef] [PubMed]

96. Pain, S.; Altobelli, C.; Boher, A.; Cittadini, L.; Favre-Mercuret, M.; Gaillard, C.; Sohm, B.; Vogelgesang, B.; André-Frei, V. Surface
rejuvenating effect of Achillea millefolium extract. Int. J. Cosmet. Sci. 2011, 33, 535–542. [CrossRef]

97. Sajithlal, G.B. Influence of aloe vera on collagen turnover in healing of dermal wounds in rats. Indian J. Exp. Biol. 2000, 36,
896–901.

98. Rezaei, M.; Dadgar, Z.; Noori-Zadeh, A.; Mesbah-Namin, S.A.; Pakzad, I.; Davodian, E. Evaluation of the antibacterial activity
of the Althaea officinalis L. leaf extract and its wound healing potency in the rat model of excision wound creation. Avicenna J.
Phytomed. 2015, 5, 105–112. [PubMed]

99. Preethi, K.C.; Kuttan, R. Wound healing activity of flower extract of Calendula officinalis. J. Basic Clin. Physiol. Pharmacol. 2009, 20,
73–80. [CrossRef] [PubMed]

https://doi.org/10.1038/s41598-022-16592-7
https://doi.org/10.1155/2019/9529676
https://www.ncbi.nlm.nih.gov/pubmed/30723535
https://doi.org/10.3390/plants11202677
https://doi.org/10.3390/nu11061341
https://doi.org/10.3390/plants10112428
https://www.ncbi.nlm.nih.gov/pubmed/34834790
https://doi.org/10.3390/molecules24061022
https://www.ncbi.nlm.nih.gov/pubmed/30875758
https://doi.org/10.3390/plants10010151
https://doi.org/10.1038/s41419-018-1261-y
https://www.ncbi.nlm.nih.gov/pubmed/30622245
https://doi.org/10.1590/abd1806-4841.20164741
https://www.ncbi.nlm.nih.gov/pubmed/27828635
https://doi.org/10.1155/2019/2684108
https://doi.org/10.1242/jcs.03395
https://doi.org/10.1126/science.284.5415.765
https://doi.org/10.1016/j.cub.2003.09.014
https://doi.org/10.1089/wound.2014.0540
https://doi.org/10.3390/ijms24054607
https://doi.org/10.1021/acsnano.1c04206
https://doi.org/10.3390/ijms23010142
https://doi.org/10.3390/ijms221910746
https://doi.org/10.3389/fphar.2022.896706
https://doi.org/10.3390/life13020317
https://www.ncbi.nlm.nih.gov/pubmed/36836674
https://doi.org/10.1111/j.1468-2494.2011.00667.x
https://www.ncbi.nlm.nih.gov/pubmed/25949951
https://doi.org/10.1515/JBCPP.2009.20.1.73
https://www.ncbi.nlm.nih.gov/pubmed/19601397


Int. J. Mol. Sci. 2023, 24, 15444 28 of 36

100. Yen, Y.H. Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α, MMP-9,-
SMA, and collagen. Int. Wound J. 2018, 15, 605–617. [CrossRef] [PubMed]

101. Mumtaz, R.; Zubair, M.; Khan, M.A.; Muzammil, S.; Siddique, M.H. Extracts of Eucalyptus alba Promote Diabetic Wound Healing
by Inhibiting α-Glucosidase and Stimulating Cell Proliferation. Evid. Based Complement. Altern. Med. 2022, 2022, 4953105.
[CrossRef] [PubMed]

102. Ranzato, E.; Martinotti, S.; Burlando, B. Wound healing properties of jojoba liquid wax: An in vitro study. J. Ethnopharmacol. 2011,
134, 443–449. [CrossRef]

103. Wang, C.; Shang, H.; Cui, W.; Zhou, F.; Zhang, S.; Wang, X.; Gao, P.; Wei, K.; Zhu, R. Pine pollen polysaccharides promote cel
proliferation and accelerate wound healing by activating the JAK2-STAT3 signaling pathway. Int. J. Biol. Macromol. 2022, 210,
579–587. [CrossRef]

104. Chen, G.; He, L.; Zhang, P.; Zhang, J.; Mei, X.; Wang, D.; Zhang, Y.; Ren, X.; Chen, Z. Encapsulation of green tea polyphenol
nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway. Mater.
Sci. Eng. C 2020, 110, 110686. [CrossRef] [PubMed]
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M.; et al. Identification of Chemical Profiles and Biological Properties of Rhizophora racemosa G. Mey. Extracts Obtained by
Different Methods and Solvents. Antioxidants 2020, 9, 533. [CrossRef] [PubMed]

246. Sabitov, A.; Gaweł-Beben, K.; Sakipova, Z.; Strzepek-Gomółka, M.; Hoian, U.; Satbayeva, E.; Głowniak, K.; Ludwiczuk, A. Rosa
platyacantha Schrenk from Kazakhstan—Natural Source of Bioactive Compounds with Cosmetic Significance. Molecules 2021, 26,
2578. [CrossRef]

247. Desmiaty, Y.; Hanafi, M.; Saputri, F.C.; Elya, B.; Rifai, E.A.; Syahdi, R.R. Two triterpenoids from Rubus fraxinifolius leaves and their
tyrosinase and elastase inhibitory activities. Sci. Rep. 2021, 11, 20452. [CrossRef]

248. Dall’Acqua, S.; Sut, S.; Sinan, K.I.; Zengin, G.; Ferrarese, I.; Peron, G.; Yildiztugay, E.; Picot-Allain, C.; Mahomoodally, M.F. An
Integrated NMR, LC-DAD-MS, LC-QTOF Metabolomic Characterization of Sartoria hedysaroides: Correlation of Antioxidant and
Enzyme Inhibitory Activity with Chemical Composition by Multivariate Data Analysis. Antioxidants 2022, 11, 110. [CrossRef]
[PubMed]

249. Zagórska-Dziok, M.; Wójciak, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Hoian, U.; Klimczak, K.; Szczepanek, D.; Sowa, I.
Evaluation of the Antioxidant, Cytoprotective and Antityrosinase Effects of Schisandra chinensis Extracts and Their Applicability
in Skin Care Product. Molecules 2022, 27, 8877. [CrossRef]

250. Sinan, K.I.; Yagi, S.; Llorent-Martínez, E.J.; Ruiz-Medina, A.; Gordo-Moreno, A.I.; Stefanucci, A.; Mollica, A.; Bene, K.; Zengin, G.
Understanding the Chemical Composition and Biological Activities of Different Extracts of Secamone afzelii Leaves: A Potential
Source of Bioactive Compounds for the Food Industry. Molecules 2023, 28, 3678. [CrossRef]

251. Parndaeng, K.; Pitakbut, T.; Wattanapiromsakul, C.; Hwang, J.S.; Udomuksorn, W.; Dej-adisai, S. Chemical Constituents from
Streblus taxoides Wood with Their Antibacterial and Antityrosinase Activities Plus in Silico Study. Antibiotics 2023, 12, 319.
[CrossRef]

252. Aziz, M.; Ahmad, S.; Khurshid, U.; Pervaiz, I.; Lodhi, A.H.; Jan, N.; Khurshid, S.; Arshad, M.A.; Ibrahim, M.M.; Mersal, G.A.M.;
et al. Comprehensive Biological Potential, Phytochemical Profiling Using GC-MS and LC-ESI-MS, and In-Silico Assessment of
Strobilanthes glutinosus Nees: An Important Medicinal Plant. Molecules 2022, 27, 6885. [CrossRef]

253. Oh, K.-E.; Shin, H.; Lee, M.K.; Park, B.; Lee, K.Y. Characterization and Optimization of the Tyrosinase Inhibitory Activity of
Vitis amurensis Root Using LC-Q-TOF-MS Coupled with a Bioassay and Response Surface Methodology. Molecules 2021, 26, 446.
[CrossRef] [PubMed]

254. Pintatum, A.; Laphookhieo, S.; Logie, E.; Berghe, W.V.; Maneera, W. Chemical Composition of Essential Oils from Different
Parts of Zingiber kerrii Craib and Their Antibacterial, Antioxidant, and Tyrosinase Inhibitory Activities. Biomolecules 2020, 10, 228.
[CrossRef]

255. Tomczyk, M.; Ceylan, O.; Locatelli, M.; Tartaglia, A.; Ferrone, V.; Sarikurkcu, C. Ziziphora taurica subsp. taurica: Analytical
Characterization and Biological Activities. Biomolecules 2019, 9, 367. [CrossRef]

256. Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review.
Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [CrossRef]

257. Elshafie, H.S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. Biomed.
Res. Int. 2017, 2017, 9268468. [CrossRef]

258. Michalak, M. Aromatherapy and methods of applying essential oils. Arch. Physiother. Glob. Res. 2018, 22, 25–31.
259. Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [CrossRef]
260. Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for

Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [CrossRef]
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