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Abstract: Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative
diseases result from progressive damage to nerve cells in the brain or peripheral nervous system
connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunc-
tion of these brain and nerve functions is associated with Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these,
50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems
collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread
use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems
have a pathological correlation and play a critical role in developing neurodegenerative diseases.
Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which
has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a
discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly
disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis
that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegener-
ative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal
injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate
neurotransmission systems for their role in the etiology of neurodegenerative disorders.

Keywords: HIV-1 Associated Neurocognitive Disorders; Dopamine; neurotransmitters;
neurodegenerative diseases

1. Introduction

The prevalence of neurodegenerative disorders (NDs) is increasing in the United
States. It is projected that 13.8 million people will be affected by Alzheimer’s disease (AD)
by 2050 [1]. Additionally, the incidence of Parkinson’s disease (PD) has increased from
1990 to 2019 [2]. FDA-approved medications for alleviating the symptoms of AD and
PD involve the rebalance of neurotransmitter (NT) systems. For instance, in AD patients,
acetylcholine esterase inhibitors are used to increase acetyl choline (ACh) available for
signaling [3]. Moreover, levodopa (L-DOPA), along with monoamine oxidase (MAO)
inhibitors and dopamine (DA) agonists, have been used clinically as major medications for
the treatment of symptoms associated with PD [4]. The current generation of medication
in development for NDs is being designed to target underlying disease pathogenesis
and pathology rather than alleviating disease-induced symptoms. For the treatment of
AD, Aducanumab was approved for medical use in the United States by FDA in 2021.
Aducanumab is a medication used in the management and treatment of AD, which is
an amyloid-β (Aβ) -directed monoclonal antibody [5]. However, the use of medications
targeting Aβ is controversial, as this class of drugs has not been highly efficacious at
rescuing cognitive decline in AD patients. Regardless, the development of drugs that target
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the underlying etiology of NDs, which function to prevent neuronal injury, is of great
clinical interest.

While the etiology of different NDs varies, a unifying feature of NDs is the activation
of downstream pathways that activate cellular death, including but not limited to apoptosis
and pyroptosis. Activation of these pathways is brought about by neurotoxic molecules
which promote inflammation and/or mitochondrial dysfunction. Importantly, dysregula-
tion of NTs induces such neurotoxic molecules. For example, methamphetamine (meth)
dysregulates DA homeostasis via interaction with the DA transporter (DAT), leading to
autooxidation of DA and the production of neurotoxic reactive oxygen species (ROS). The
meth-induced production of ROS from dysregulation of DA metabolism has been directly
linked as the cause of meth-induced neurotoxicity [6].

We propose there are two paths underlying NT-mediated neurotoxicity. First, the
direct path involves neurotoxic NT metabolites, which can directly influence cell stress
response pathways. As described above, neurotoxicity and cell death induced by meth
represents the direct pathway for NT-mediated neurotoxicity. This phenomenon has
been observed in the context of PD, where inappropriately formed DA metabolites in the
brain were found to be directly responsible for mediating alpha-synuclein (αSyn) induced
cell—death [7]. Second, the indirect path involves the overactivation of NT receptors by
dysregulated NT systems. Specifically, the inappropriate activation of G-protein coupled
receptors (GPCRs) can increase intracellular Ca2+ levels. Increased Ca2+ can then perturb
mitochondrial function and activate mitochondrial-induced apoptosis [8]. In this review,
we will discuss the dopaminergic and cholinergic neurotransmission, two NT systems
commonly dysregulated in NDs. Further, we will discuss evidence for both pyroptosis and
mitochondrial-mediated apoptosis in NDs. We will also review the possible mechanisms
by which dysregulated NT systems observed in NDs can activate downstream pathways to
bring about neuronal death. Lastly, we will highlight the role of DA as a critical mediator
of both synaptodendritic injuries as well as neuronal loss observed in HIV-positive persons.
With this review, we aim to shed light on how the dysregulation of NT systems impacts the
neurobiology of NDs.

2. Dopaminergic Neurotransmission
2.1. Regulation of Dopamine Synthesis

DA is a neurotransmitter that is involved in several pathways in the brain, including
the nigrostriatal, mesolimbic, and mesocortical projections. The production of DA, its vesic-
ular localization and release, and its extracellular persistence are regulated by the activity
of tyrosine hydroxylase (TH), the vesicular monoamine transporter (VMAT-2), and the
DAT [9]. DA is produced from the aromatic amino acid tyrosine, after which it is converted
by the rate-limiting enzyme TH into L-3,4-dihydroxyphenylalanine (L-DOPA). L-dopa is
then converted into DA via the enzyme aromatic amino acid decarboxylase (AADC) [10].
Once in dopaminergic terminals, DA molecules are sequestered and packaged into secretory
vesicles via transport proteins [11]. The signal termination and degradation mechanisms
for DA transmission include enzymatic processing by monoamine oxidase (MAO-B), which
is located inside of the presynaptic terminal, and catechol-o-methyltransferase (COMT),
which is located inside the synaptic cleft [9,12]. When DA is released into the synapse, it can
bind to both presynaptic and postsynaptic DA receptors, after which it is transported back
into the presynaptic terminal by the DAT. Once in the cytosol, DA will either be repackaged
into synaptic vesicles or become degraded [13].

2.2. Dopamine Transporter Regulation

DA receptors can be divided into either D1- or D2-like receptor families. The D1 type
family includes G protein-coupled receptors D1 and D5, which are excitatory and expressed
post-synaptically. D1-like receptors are coupled to the stimulatory G-protein Gs and can
induce excitatory transmission by upregulating adenylate cyclase activity and subsequent
production of cyclic AMP (cAMP). Conversely, the D2-like family includes D2, D3, and D4
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receptors, which are expressed in both presynaptic and postsynaptic terminals. D2-like
receptors are coupled to the G protein Gi and induce inhibitory transmission by reducing
cAMP production via inhibition of adenylate cyclase activity [14]. DA signaling is primarily
terminated by the reuptake of DA by DAT into the cytosol and then by VMAT-2, which
transports DA from the cytosol into synaptic vesicles [9]. DAT is a member of the Na+/Cl−

coupled neurotransmitter solute carrier 6 (SLC6) family and is highly conserved among hu-
mans and other mammals [9,12]. The DAT consists of 12 transmembrane helices and large
N and C terminal tails located intracellularly, which contain sites for post-translational mod-
ifications [15,16]. The kinetics of DA transport through DAT follow the Michaelis-Menten
model [17]. DAT transports DA into the cytosol by a channel-like mechanism involving
the transition between inward-facing and outward-facing confirmations [12,15,18]. This
alternation of conformations is accomplished by the symport of two sodium ions and one
chloride ion into the cytosol along their concentration gradients, which are established by
the Na+/K+-ATPase [19]. First, DAT occupies the “outward facing” conformation wherein
substrates bind to their uptake sites on the extracellular side of the transporter. Once
the substrate binds the DAT, a conformational change occurs wherein DAT occupies the
“inward facing” conformation, and the translocates into the neuron.

Dopaminergic neurotransmission is altered by DAT-binding pharmacological agents
which bind near the DA uptake site, including cocaine and meth [12,17]. Specifically,
cocaine competitively inhibits the DA uptake site on DAT and induces DAT conforma-
tional transition at the outward-facing stage, leading to increased extracellular DA levels.
Conversely, meth-like drugs act as a DAT substrate and stabilize the inward-facing con-
formation of DAT, thus causing the efflux of DA through DAT from the intracellular to
the extracellular space. While these drugs interact with DAT near the DA uptake site,
modulation of DAT function at allosteric binding sites also alters DA transport dynamics.
Currently, the development of allosteric modulators for the DAT is being investigated for
their therapeutic potential for substance use disorder and comorbid HIV-1 infection [20,21].

Post-translational modification of DAT by phosphorylation is important for modifying
DAT function [9,22]. Specifically, the four threonine (Thr43, 46, 48, 62) and eight serine (Ser
2, 4, 7,13, 14, 44, 45, 64) residues on the N terminus of DAT can undergo phosphorylation
by protein kinase C (PKC), protein kinase A (PKA), protein kinase G, and Ca2+ calmodulin
protein kinase II [9,23]. PKC-mediated phosphorylation of DAT regulates DAT endocy-
tosis, transport, and efflux. Specifically, PKC can phosphorylate serine residues on the
intracellular N-terminus tail [15,22,24]. PKC-mediated phosphorylation of DAT changes
DAT function by stimulating clathrin and dynamin-mediated endocytosis to remove DAT
from the surface of the plasma membrane [25,26]. Another kinase that may modify DAT
function is the extracellular signal-regulated Kinase (ERK). ERK phosphorylates the proline
residue next to Thr53, thus altering DAT structure and increasing DAT’s DA transport
capacity [15].

Other post-translational biochemical modifications to DAT can also regulate the pro-
tein’s function, including glycosylation, palmitoylation, and ubiquitination. Glycosylation
of asparagine residues located on the extracellular loop of DAT helps to stabilize DAT
localization to the plasma membrane and increases DA uptake via DAT. Further, glyco-
sylation of DAT is increased with age and has been shown to play an important role in
the susceptibility of substance use disorders [9]. Palmitoylation of C-terminus residues
to add saturated fatty acids to DAT functions to reduce PKC-mediated endocytosis of
DAT. Specifically, palmitoyl acyltransferases known as DHHC enzymes (2, 3, 8, 15 and 17)
covalently attach a palmitoyl group via a thioester bond to the Cys580 reside of DAT on
the C-terminus. This, in turn, stabilizes DAT expression and uptake kinetics [27]. Lastly,
ubiquitination of the lysine residues on the N terminus by ubiquitin E3 ligases Nedd4-2
and Parkin regulates the recycling and degradation of DAT [22].

In addition to biochemical modifications, DAT function is also regulated through
protein–protein interactions, such a D2 receptors (D2R) and sigma receptors. D2R expressed
in presynaptic terminals can interact with the N-terminus of DAT via its intracellular loop.
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D2R interaction with DAT has been shown to enhance DA uptake and facilitate recruitment
of DAT to the plasma membrane [28], and further, has been attributed to DA-induced
neurotoxicity [29]. Sigma receptors expressed in dopaminergic regions have been shown
to affect DA synthesis, release, and reuptake in the substantia nigra (SNr) and the ventral
tegmental area (VTA) [30,31]. There are two established sigma receptor types, σ1R and σ2R.
The σ1R functions to regulate Ca2+ homeostasis; however, σ1R, which is generally localized
near the plasma membrane, has been shown to regulate several different transmembrane
protein activities through direct protein–protein interaction. Regarding dopaminergic
proteins, σ1R has been shown to directly modulate D1 and D2 receptors, as well as DAT.
The impact of σ1R interaction with DAT on DA transport remains unclear, but evidence
does suggest that σ1R activation may increase DA uptake through DAT [31]. Considering
the importance of σ1R in mediating the effects of DAT inhibitors such as meth on DA
release, characterizing the σ1R/DAT interaction is of significant interest [32].

2.3. Vesicular Monoamine Transporter Regulation

Vesicular monoamine transporters, including VMAT-1 and VMAT-2, belong to the
SLC18 family of vesicular amine transporters. VMAT-1 is primarily expressed in neuroen-
docrine cells, whereas VMAT-2 is expressed in the central peripheral and enteric nervous
systems and is localized in presynaptic terminals [9,33]. VMAT-2 plays a critical role in
sorting, storing, and releasing NTs in order to protect neurons by counteracting intracellular
toxicity [34,35]. Generally, VMAT-2 inhibitors are classified as being either “reserpine-”
(irreversible) or “tetrabenazine” (TBZ)-like [36,37]. VMAT-2 is critical for mediating the
psychoactive effects of amphetamines. Amphetamines both inhibit DA uptake through
VMAT-2 at reserpine sites and release DA from vesicles into the cytosol, which is then
reverse transported through DAT [38]. The loading of NTs into vesicles by VMAT-2 occurs
against their concentration gradient. Therefore, VMAT-2 functions as an H+-antiporter,
releasing two protons from the vesicle for every monoamine translocated into the vesicle.
This process is accomplished using proton gradients, which are established using H+-
ATPases located on the lumen of vesicles [35]. Amphetamine-induced release of DA from
vesicles is a result of disrupting this proton gradient.

VMAT-2 localization and function are regulated by post-translational modifications,
including glycosylation and phosphorylation. VMAT-2 is synthesized in the ER and then
glycosylated in the Golgi apparatus. Colocalization of the N-linked glycosylation loop
(located between TM1 and TM2) and the C-termini tail of VMAT-2 is necessary for the
localization of VMAT-2 to large dense core vesicles [39]. Further, phosphorylation of serine
residues near the C-terminus of VMAT-2 by serine/threonine-directed kinase CKII is also
thought to contribute to VMAT-2 localization to large dense core vesicles, as evidenced
in PC12 cells [40]. Lastly, phosphorylation is also suspected to regulate VMAT-2 function.
Phosphorylation of N-terminal residues Ser15 and Ser18 by PKC was found to be necessary
for meth-stimulated efflux of 5-HT [41]. Thus, the N-terminal and C-terminal domains of
VMAT-2 located in the cytoplasm are important for regulating VMAT-2 localization as well
as function.

3. Cholinergic Neurotransmission
3.1. Regulation of Acetylcholine Transmission

Cholinergic neurotransmission is essential for cognitive function, synaptic plasticity,
and memory [42,43]. Acetylcholine (ACh) is released by cholinergic neurons, which are
primarily located in the subcortical regions with projections to the cortical areas [44,45].
Choline acetyltransferase (ChaT) is responsible for ACh synthesis and is required for
cholinergic neurotransmission in the central and peripheral nervous system [46]. ChaT is
produced in the soma and then localized mainly in the axon terminal, where it catalyzes
the synthesis of ACh from choline and acetyl-CoA [44,47]. Like DA release, the exocytotic
release of ACh is dependent on the SNARE protein complex [48]. After exocytotic release,
ACh interacts with cholinergic receptors to relay information in the CNS and PNS and
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mediate synaptic transmission at neuromuscular junctions [49]. Acetylcholinesterase
(AChE), primarily found at postsynaptic neuromuscular junctions, metabolizes ACh in
the extracellular space into acetate and choline, thus terminating the ACh signal [50].
Inhibition of AChE causes an accumulation of ACh in the synaptic cleft and continuous
activation of the cholinergic receptors. Therefore, AChE inhibitors are used in various
pharmacological treatments, including the treatment of AD, which is characterized by
deficits in ACh levels [44]. However, inappropriate inhibition of AChE has negative
consequences, as increased ACh can lead to overstimulation of cholinergic receptors and
have harmful effects [51]. Finally, released choline in the synaptic cleft is transported back
into synaptic terminals by the choline transporter (CHT). The CHT is a sodium-coupled
transporter containing 13 transmembrane domains and belongs to the SLC5A7 family of
glucose transporters. Regulation of choline uptake is primarily accomplished through the
trafficking of CHT to the plasma membrane. CHT recycling occurs via clathrin-mediated
endocytosis, wherein endosomes either reenter the synaptic vesicle cycle or mature into
lysosomes, upon which CHT is then degraded [52].

3.2. Acetylcholine Signal Transduction

There are two types of cholinergic receptors: nicotinic and muscarinic receptors [51].
Nicotinic acetylcholine receptors (nAChRs) are found in the central and peripheral nervous
system and neuromuscular junction [51,53]. nAChRs are formed by the assembly of five
transmembrane subunits. Here, we mainly discuss neuronal nAChRs, which are assembled
either as homo-pentamers of α7, α8, and α9 or hetero-pentamers of α2–α6 in combination
with β2–β4 or α9 with α10 subunits [54,55].

Activation of nAChRs initiates the opening of an ion pore channel, allowing sodium
and calcium influx and potassium efflux across the cell membrane, which in turn regulates
neuronal membrane potential and excitability [42]. The nAChRs-mediated ion channel
activation initiates a tertiary conformational transition of nAChRs, which includes distinct
resting, open, and desensitized states. These conformational state transitions are dynamic
and depend on nAChRs subtype and agonist concentration [56]. The most predominant
subtypes of nAChRs expressed in the human brain are the heteromeric α4β2 and the homo-
meric α7 [57,58]. The α4β2 subtype is important for mediating nicotinic effects on DA in the
mesolimbic system, whereas the α7 subtype is involved in glutamatergic and dopaminergic
release in the CNS. Both α4β2 and α7 subtypes contribute to the pathogenesis of a range of
neurological disorders, including AD, schizophrenia, PD, and depression [59–61].

The muscarinic receptor family includes five different metabotropic G-coupled protein
receptors involved in the parasympathetic nervous system in the brain, which can activate
a multitude of signaling pathways important for the modulation of neuronal excitability,
synaptic plasticity, and feedback regulation of ACh release [44,51]. Receptors M1, M3,
and M5 are coupled with a Gq subunit, leading to IP3-mediated Ca2+ release through
phospholipase C activation, while M2 and M4 receptors are coupled with a Gi subunit and
function to inhibit adenylate cyclase and prevent the formation of cAMP [14]. For example,
M2 can inhibit beta-adrenergic stimulated relaxation, and further, M3 plays a role in the
control of the contraction of airway smooth muscle [62]. In the CNS, muscarinic receptors
are located both pre- and post-synaptically on neurons. Expression patterns of muscarinic
receptor subtypes vary across the CNS. Due to the role of ACh in cognition and substance
use disorders, drugs that modulate the function of muscarinic receptors are of great interest
and have been reviewed extensively [63].

3.3. Vesicular Acetylcholine Transporter Regulation

At the presynaptic terminal, synthesized ACh is packaged into synaptic vesicles for
storage by the vesicular acetylcholine transporter (VAChT). VAChT is the third member
of the SLC18 gene group, SLC18A3. The structure of VAChT includes 12 transmembrane
domains, which are bundled into two groups (TM1–6 and TM7–12), with the N- and
C-termini extending into the cytoplasm [64]. VAChT functions to transport ACh against
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its concentration gradient by coupling ACh transport to the efflux of two protons [65].
These protons are transported with their concentration gradient, which is established by
an H+-ATpase. ACh release is triggered by Ca2+ influx through specific presynaptic Ca2+

channels. VAChT trafficking is regulated by a di-leucine motif on its C-terminus, which
helps to localize VAChT to synaptic vesicles. One well-established drug that targets VAChT
function is vesicamol, a cell-permeable non-competitive inhibitor that interacts with the
C-terminus of VAChT to prevent repackaging of ACh into vesicles. In the context of NDs,
decreased VAChT mRNA levels have been observed in patients with AD compared to
healthy controls [66]. Decreased VAChT availability reduces the amount of ACh available
for release, thus negatively impacting memory. Henceforth, changes in VAChT expression
may underlie observed deficits in memory associated with AD.

4. Neurotransmitter Hypothesis of Neurodegeneration
4.1. Evidence for Pyroptosis in Neurodegenerative Diseases

One major form of cell death evidenced in NDs is the inflammatory-mediated process
called pyroptosis [67]. Pyroptosis is caused by the activation of inflammatory caspase-1/4/5
or 11) and is distinct from traditional apoptosis, as pyroptosis leads to the release of inflam-
matory cytokines [68]. Specifically, the cytosolic pattern recognition receptor (PRR) protein
NLRP3-mediated inflammasome has been implicated as a mediator for NDs [69,70]. In the
context of PD, the release of the inflammatory cytokine IL-1β is promoted by the misfolded
αSyn protein, a key hallmark of PD. IL-1β primes NLRP3-inflammasomes for activation by
αSyn, thus producing pyroptosis [71]. The canonical proteins thought to mediate AD, Aβ,
and phosphorylated Tau have also been shown to initiate NLRP3- and NLRP1-mediated
neuronal pyroptosis [72,73]. Recent evidence identified cleaved Gasdermin D (GSDMD), a
marker for pyroptosis, in microglia and astrocytes near local neuronal loss sites and Aβ
plaques in post-mortem brain tissue of AD patients [74]. Lastly, Huntington’s disease (HD)
is characterized by a repeat expansion of CAG (>35) in the IT15 gene, which encodes for a
protein associated with axonal transport [75]. Several forms of neuronal cell death, includ-
ing necroptosis, ferroptosis, and apoptosis, have been implicated in HD. Recent evidence
also suggests the role of pyroptosis in HD, as evidenced by reduced disease progression
in an HD mouse model treated with the NLRP3 inhibitor MCC950 [76,77]. While multiple
forms of neuronal cell death are involved in the neurodegeneration of NDs, activation of
NLRP3 inflammasomes is of great interest in the pathophysiology of neurodegeneration.

4.2. Dysregulation of Neurotransmission in Neurodegenerative Disorders

AD is a neurodegenerative disorder characterized by memory loss and behavioral
and psychological symptoms. An imbalance of different NTs, including glutamate (Glu),
γ-Aminobutyric acid (GABA), ACh, DA, and 5-HT, is well evidenced in AD. For example,
cholinergic neuronal loss and decreased molecules responsible for ACh metabolism and
neurotransmission, such as acetylcholine esterase, are observed in AD [78]. Furthermore,
monoaminergic systems are reduced in patients with AD, which may be due to increased
MAO activity observed in at-risk persons carrying the ε4 allele of apolipoprotein E [79].
Specifically, disturbances in the dopaminergic system have been evidenced in both AD
and PD. Moreover, patients with AD have reduced D1R and D2R expression [80] and
selective neuronal loss in the VTA [78]. Regarding the major neurotransmitters in the CNS,
Glu, and GABA, Aβ peptides can impact glutamatergic (excitatory) neurotransmission
through several routes, including inhibition of Glu reuptake, enhanced Glu release, and
dysregulation of Glu/glutamine synthesis [81]. Circulating levels of GABA, which are
responsible for the inhibition of synaptic firing, are reduced in the CSF of AD patients.
A feedback loop between GABAA receptor activation and an increase in neurofibrillary
tangles (NFTs) as a result of increased tau phosphorylation has been postulated as a
contributor to AD pathology [82].

In PD, neuronal loss is restricted to dopaminergic neurons, primarily in the SNr [83].
Specifically, neurotoxic dopaminergic metabolites (primarily aminochrome and 5,6-indoleq-
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uinone) are hypothesized to mediate dopaminergic loss due to the adducts they form
with αSyn [84]. Indeed, DA metabolites and catabolites are a major source of oxidative
stress observed in PD and are elevated in clinical CSF samples from PD patients compared
to healthy controls [85]. Together, these present a possible role for dysregulation of DA
homeostasis in the pathology of PD. Further, the serotonergic system is implicated in the
difficulty of treating PD. While it is controversial whether PD pathology directly impacts
5-HT systems, it has been reported that the serotonergic system plays a vital role in L-
DOPA-induced dyskinesias (LID) by promoting the non-physiological release of DA [86].
Understanding how serotonergic pathways influence dopaminergic release and motor
function is of critical interest for improving therapeutic interventions for PD.

4.3. Evidence for Neurotransmission as a Mediator of Neurodegeneration
4.3.1. Calcium Function in the Neuron

Due to its electrochemical nature and ability to interact with complex binding sites,
Ca2+ plays a variety of roles in the body, serving as a versatile carrier of information in many
signaling networks [87]. Here, we will mainly focus on Ca2+ as it functions in neurons and
in the context of NDs. In neurons, Ca2+ regulates the exocytotic release of NTs from vesicles.
Voltage-gated channels (Cav) expressed on the plasma membrane of axon terminals are
activated in response to membrane depolarization. Upon activation, these channels allow
for the influx of Ca2+ ions into cytosolic space. Various Cav channels have been identified
and are characterized based on the threshold of depolarization required for their activation.
In synapses, there are two primary Cavs responsible for Ca2+ influx, Cav 2.1 and Cav
2.2, and are differentiated by their specific α1 subunit composition (Cav 2.1 is α1A, Cav
2.2 is α1B) [88]. Vesicles that are “primed” at the plasma membrane in the active zone
undergo fusion in response to Ca2+ binding. Specifically, Ca2+ causes synaptotagmin-1
to be released from the SNARE (soluble N -ethylmaleimide sensitive factor attachment
protein receptor) complex. The synaptotagmin-1 interacts with the plasma membrane and
cooperates with the SNARE complex to trigger vesicle fusion [89]. The SNARE complex
forms within milliseconds due to “nanodomains” of localized increases in Ca2+, which
occur after Cav activation. These local increases in Ca2+ are coupled to the active zone
such that NT release may occur on a sub-second timescale. After the tripartite complex is
formed, fusion occurs, at which point NTs are released via exocytosis into the synaptic cleft,
completing the transmission of the signal [90].

In both neuron and non-neuronal cells, Ca2+ acts as a secondary messenger to carry
information and mediate changes at the level of transcription. Although the role of Ca2+

in many different modulatory functions in cells has been reviewed previously [91], we
will focus on the role of Ca2+ within the context of the GPCR (Gαq) activation pathway.
Upon binding to a ligand, a guanosine diphosphate (GDP) bound to the α subunit of the
GPCR is replaced with GTP, upon which the Gαq-GTP subunit dissociates from the GPCR
complex to interact with downstream effector molecules [92]. The Gαq is inactivated by
intrinsic hydrolysis of GTP to GDP, upon which the inactive Gαq-GDP complex binds
to the GPCR again to await reactivation. The canonical pathway in which the Gαq-GTP
effects changes in intracellular activity is through activation of phospholipase C (PLC)
enzymatic hydrolysis of phospholipid phosphatidylinositol bisphosphate (PIP2) to Inositol-
1,4,5-triphosphate (IP3) and diacylglycerol (DAG) [93]. DAG activates protein kinase
C (PKC), which in turn can activate protein kinase D (PKD) through phosphorylation
of PKD residues Ser744 and Ser748. PKD activation is associated with many different
cellular functions, including the promotion of antiapoptotic pathways [94]. On the other
hand, IP3 functions to mobilize the release of intracellular stores of Ca2+ from the ER
through the activation of IP3 receptors (IP3Rs). Intracellular stores of Ca2+ in the ER are
maintained in the millimolar range, whereas cytosolic levels of Ca2+ generally do not
exceed 100 nM. Two major types of channels are expressed on the ER, which are Ca2+

permeable: ryanodine receptors (RyR) and IP3 receptors (IP3R). When activated, these
channels increase cytosolic Ca2+ concentrations. The function and structure of RyRs and
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IP3Rs have been reviewed elsewhere [95]. To return the cytosol back to its low-level Ca2+

state, Ca2+ ions are transported back into the ER for storage by sarcoendoplasmic reticulum
calcium ATPase (SERCA) pumps. Additionally, negative feedback is provided by the
elevated Ca2+, which can subsequently regulate this effect by inhibiting the opening of
the RyR and IP3R channels. Further, Ca2+, along with DAG, can activate PKC-mediated
phosphorylation of PLC. This, in turn, reduces PLC activity, thus providing an additional
level of negative regulatory feedback for intracellular Ca2+ release from the ER.

4.3.2. Mitochondrial Function in the Neuron

Mitochondria are double-walled organelles that hold the electron transport chain and
play host to the final steps of anaerobic respiration. It is estimated that a single neuron
may contain millions of mitochondria [96]. This is necessary, as the brain relies primarily
on mitochondria for ATP production as its energy source. In neurons, mitochondria are
important for tight regulation of intracellular Ca2+ levels. Mitochondria interact with the
ER at specific sites called mitochondria-associated membranes (MAMs). It is at these sites
where Ca2+ (released from the ER via IP3Rs) can be transported into the mitochondria via
the mitochondrial calcium uniporter (MCU) [97]. The coupling of Ca2+ release from the ER
to uptake into the mitochondria at MAMs functions to provide Ca2+ for calcium-dependent
enzymes functioning in the Krebs Cycle during anaerobic respiration. While Ca2+ transport
to the mitochondria is necessary for meeting bioenergetic demands, excessive Ca2+ in the
mitochondria is not conducive to cell survival [98]. When mitochondrial Ca2+ levels are
excessive, mitochondrial permeability transition pores open (mPTPs) [99]. The formation
of mPTPs causes depolarization of the mitochondrial membrane and swelling of the
mitochondria, thus releasing pro-apoptotic proteins. Specifically, depolarization of the
outer mitochondria membrane releases apoptotic peptidase activating factor 1 (APAF1),
which activates caspase 9, to then activate downstream “executioner caspases” 3 and 7.
Additionally, Ca2+ regulates mitochondrial depolarization by regulating the activation of
the pro-apoptotic family of B cell lymphoma (Bcl-2) proteins, which contains both pro-
(Bax) and anti- (Bcl-2) apoptotic proteins (Figure 1) [100].
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response. The indirect pathway involves the overactivation of G-protein coupled receptors to
increase Ca2+ levels past physiologically normal levels, resulting in cellular stress responses and
subsequent activation of mitochondrial-mediated apoptosis. Both pathways may facilitate synaptic
injury through increased ROS formation. Molecular factors that contribute to the dysregulation of
NT systems may mediate mild Neurocognitive Impairment (NCI) or neuronal cell death through the
outlined pathways.

4.3.3. Neurotransmitter Mediated Dysregulation of Ca2+

Various neurotransmission systems are disrupted in NDs. Independent from this,
mitochondrial function is highly dependent on homeostasis Ca2+, and disruption of mito-
chondrial function (with or without Ca2+ disturbances) can mediate mitochondrial-induced
apoptotic pathways. Therefore, understanding how NTs disrupt intracellular Ca2+ to then
(indirectly) initiate mitochondrial-mediated apoptosis is of great interest.

Extracellular levels of NTs and intracellular levels of Ca2+ regulate one another. As
described previously, local influxes of Ca2+ via Cav channels are required for the exocytotic
release of NTs into the synaptic cleft for neurotransmission. Conversely, NTs can regulate
intracellular Ca2+ levels through activation of GPCRs, which are expressed pre- or post-
synaptically, as well as near the soma. GPCRs regulate NT release through modulation of
Ca2+, primarily through inhibition of voltage-gated calcium channels by Gβγ subunits [101].
However, more importantly, NTs can activate GPCRs coupled to Gαq/s can increase
intracellular Ca2+ levels [14] by generating IP3 (Gαq path) to release intracellular stores of
Ca2+ [102]. There are many GPCRs coupled to Gαq that are involved in the transmission of
signals across synapses. Some examples include metabotropic Glu receptors (mGluRs) 1
and 5, heteromers D1R-D2R and D2R-D5R, mAChR-1, 5-HT-R 2C, α-1 adrenergic receptors,
and heteromeric GABAB(1,2) receptors [103–108]. Considering each NT system contains at
least one Gαq coupled receptor in its toolbox of receptors used to transduce its signal, there
are many possible pathways by which NTs can dysregulate intracellular Ca2+ levels through
overactivation of GPCRs. Considering the role of GPCRs in regulating internal Ca2+ levels
and the importance of Ca2+ in promoting mitochondrial-induced apoptosis, overactivation
of GPCRs by disturbances in NT levels is a major concern for the pathophysiology of
NDs [109].

In AD, increased intracellular Ca2+ is regulated by several factors, including GPCRs
such as mGluRs and mAChRs [110,111]. Indeed, increased ROS and reduced mitochondrial
function and size are observed in AD [112]. In the context of PD, neurotoxic elevated
cytosolic DA is regulated in the SNr by Ca2+ steady-state levels [7]. In the SNr, mitochondria
must work to meet a high bioenergetic demand due to the SNr’s extensive axonal arbor.
This is accomplished in part due to the coupling of Cav1.3 channel-mediated Ca2+ release to
mitochondrial oxidative phosphorylation. However, while this feature helps SNr neurons
to meet energy demands, it puts these neurons at higher risk for mitochondrial stress and
ROS [113]. Independent of NTs, αSyn aggregation, the hallmark of PD pathology, increases
with Ca2+ levels. IP3 kinase B (ITPKB), which inactivates IP3, a secondary messenger
that increases the release of Ca2+ from ER stores, was found to negatively regulate αSyn
aggregation. Considering how NTs and Ca2+ levels regulate one another, disruption of
NTs to increase cytosolic Ca2+ may contribute to αSyn aggregation. Understanding how
disturbances in NTs may translate to changes in GPCR activation is needed to understand
how NTs may contribute to the neurobiology of AD and PD.

5. Neurodegeneration and HIV-1 Associated Neurocognitive Disorders
5.1. NeuroHIV Background

HIV-1-associated neurocognitive disorders collectively referred to as “HAND” include
asymptomatic neurocognitive impairment (ANI), HIV-associated mild neurocognitive
disorder (MND), and HIV-associated dementia (HAD) [114]. The most severe form of
HAND, HAD, includes Parkinsonian-like symptoms such as bradykinesia, rigidity, and
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hypophonia [115]. In addition to the other NDs discussed in this review, NLRP3 inflamma-
somes have been evidenced in the neurobiology of NeuroHIV. The HIV-1 protein transacti-
vator of transcription (Tat) induces expression of microglial NLRP3 and IL1β, which results
in synaptodendritic injury to neurons [116]. Another HIV-1 protein tied to HAND progres-
sion, glycoprotein 120 (gp120), also has been shown to promote neuroinflammation and
death through microglial NLRP3 and IL1βmediated pyroptosis [117]. NLRP3-mediated
inflammasome-induced pyroptosis is a major pathway toward neuronal loss, which should
be characterized further in the context of NeuroHIV.

5.2. Disturbances in Neurotransmitter Systems in HAND

Dopaminergic neurotransmission has been implicated as a mediator of HAND pathol-
ogy. Brain volume measured in patients with HAD post-mortem showed a reduced volume
of basal ganglia, which correlated with the severity of HAD [118]. Further, clinical re-
ports of DA in the CSF of HIV-1 infected persons show increased DA levels in early
disease [119,120] and decreased DA in late disease stages [121–123], even when HIV-1
viremia is suppressed under combined antiretroviral therapy (cART) treatment [124,125].
Combined computational modeling and mutagenesis approaches identified the HIV-1 pro-
tein Tat as a negative allosteric modulator of the DA transporter (DAT) [126,127], as well as
the NE transporter (NET) [128–130]. Acute expression of physiologically relevant levels of
Tat [131–134] increases phasic-like vesicular release of DA, an effect that can be reversed by
a novel allosteric modulator of DAT in inducible transgenic mice [20,135]. In addition to Tat,
gp120 has also been shown to disturb monoamine systems through inhibition of DA uptake
through DAT in various cell models [136–138]. Unsurprisingly, clinical reports using PET
scan imaging found decreased expression of DAT in patients with HAD, independent of
comorbid substance use status [139]. Indeed, disturbances in DA function are an important
feature in NeuroHIV, which persists even in the post-cART era.

5.3. Evidence for Mitochondria and Ca2+ Disturbances in HAND

It has long been evidenced that Tat and gp120 are neurotoxic proteins, inducing
neuronal apoptosis [140–142] preferentially in dopaminergic neurons [136,143,144]. Tat and
gp120 have long been shown to disturb Ca2+ homeostasis by initiating IP3-mediated Ca2+

release from ER stores [145,146]. Further, Tat has been shown to initiate mitochondrial-
induced apoptosis through Ca2+-mediated mitochondrial generation of ROS and caspase
activation in hippocampal neurons [147]. Therefore, Tat-induced disturbances in Ca2+

homeostasis, which induce mitochondrial-mediated neurotoxicity, in addition to NLRP3
inflammasome-mediated pyroptosis, may also be a major contributor to the neurobiology
of HAND [148].

While downstream effects of Tat on Ca2+ disturbances are well evidenced at this
point, mechanisms by which these two key neurotoxic HIV-1 proteins initiate these effects
are still coming to light. Tat-induced increases in intracellular Ca2+ levels have been
attributed to the overactivation of L-type Ca2+ channels [149], as well as the potentiation of
N-methyl-D-aspartate receptor (NMDAR) mediated Ca2+ influx [150]. In cortical neurons,
Tat induces Ca2+ release from ER stores through a ryanodine receptor (RyR) dependent
mechanism [151]. Although these reports do well to show that Tat does indeed disrupt
Ca2+ through multiple Ca2+ regulatory mechanisms, it is not known whether Tat directly
interacts with these channels to alter their function. Tat-induced disturbances of Ca2+

have been considered as the underlying mechanism for Tat-induced alterations in NT
systems [152], including not only DA systems but GABA [153] and ACh as well [154]. It
would not be surprising if Ca2+ dysregulation contributed to the Tat-induced disruption of
NT systems, considering the critical role of Ca2+ in exocytotic NT release. However, direct
interaction between Tat and molecular players has, to our knowledge, only been confirmed
with monoamine transporters DAT and NET [130,155]. Therefore, the inverse relationship,
wherein Tat-induced disturbances in Ca2+ homeostasis are downstream effects of Tat-
induced disturbances in NT systems, we argue, is a possibility. NTs can dysregulate Ca2+
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homeostasis by signaling through GPCRs and downstream signaling cascades triggered
by activation of specific GPCR subtypes. Tat-induced effects on ACh release in cortical
synaptosomes were shown to involve the mGluR1. These receptors, upon activation,
provided regulatory feedback to increase Ca2+ release from the ER, increase Ca2+ influx
from NMDARs, and finally increase noradrenaline release [156]. Additionally, Tat alters
the expression and activity of DA receptors, another family of GPCRs. Expression of
various DA receptors (D1, D2, D4, and D5) is reduced in the NAc of iTat-tg mice [157].
Further, Tat increases the excitability of D1 medium spiny neurons in the NAc by triggering
IP3-mediated release of Ca2+ to depolarize the neuronal membrane [158]. Independent
of Tat, extracellular DA can increase IP3-mediated Ca2+ release in macrophages via D5
receptors coupled to Gq proteins [159]. DA has also been shown to increase the release of
inflammatory cytokines from human macrophages [160]. Considering the ability of Tat to
increase extracellular DA release in the striatum [135], the aforementioned studies present
two different mechanisms by which Tat-induced perturbances in extracellular DA may
contribute to dopaminergic-specific neuronal damage observed in HAND. Specifically,
Tat-induced disruption of DA neurotransmission may initiate neuronal loss not only due to
mitochondrial-associated apoptosis via GPCR-mediated release of internal Ca2+ stores but
also due to DA-induced neuroinflammation and downstream activation of pyroptosis in
response to cytokine release from macrophages. Thus, preventing the effects of proteins
such as Tat from disturbing NT systems is of great interest in mitigating the neuronal loss
and damage underlying the neurobiology of HAND (Figure 2).
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Figure 2. Hypothesized pathway for DA mediated HAND neurobiology. HIV-1 enters the CNS by
infecting macrophages, which subsequently translocate across the blood–brain barrier. Once in the
CNS, viral replication takes place in infected macrophages in the basal ganglia. HIV proteins such
as Tat and gp120 are then released from infected cells into the extracellular space. Extracellular Tat
can directly block DA and NE transporter activity (red “X”), subsequently increasing extracellular
DA levels (dashed arrow). DA may then increase viral replication in macrophages and promote the
release of inflammatory cytokines from macrophages, presenting a pathway by which the NT DA
mediates neurotoxicity in subcortical brain regions containing dopaminergic neurons. Additionally,
extracellular gp120 interacts with CXCR5 and CCR5 receptors in microglia and macrophages, which
also contributes to neurotoxicity through activation of the NLRP3-inflammasome.
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5.4. Mechanisms for Synaptic Injury

During the era of cART, the incidence of HAND has remained steady; however,
fewer persons with HIV-1 are developing HAD and are instead experiencing either ANI
or MND [161]. Neurocognitive impairments that precede HAD correlate with neuronal
damage, and mechanisms by which HIV-1 induces synaptodendritic injury have been
extensively reviewed [162]. Unsurprisingly, the molecular factors associated with neuronal
loss, such as Ca2+ and mitochondrial instability, are also associated with changes in HIV-1
protein-induced changes in synaptic and dendritic morphology. HIV-1 protein Tat was
found to increase cytosolic Ca2+ through NMDARs, which is largely responsible for Tat-
induced dendrite swelling in mouse striatal neurons [163]. Additionally, gp120 induced
cytoskeletal abnormalities, including rod-like complexes composed of cofilin and actin
in hippocampal neurons, which was dependent on ROS formation by NADPH-oxidase 2
(NOX2) [164]. Key molecular factors thought to mediate neuronal loss, such as Ca2+ and
ROS generation, are also shared in the pathways associated with synaptic injury, which are
likely to underlie the neurocognitive impairment observed in the milder forms of HAND.
Thus, targeting the upstream effects of these neurotoxic HIV-1 proteins may mitigate not
only neuronal death but synaptodendritic injury as well.

6. Crosstalk between Inflammation and Mitochondrial Induced Cell Death

In this review, we have primarily covered two major pathways involved in the patho-
physiology of neurodegeneration in NDs: NLRP3 inflammasome-mediated pyroptosis
and Ca2+-mediated mitochondrial-induced apoptosis. These two pathways are not mu-
tually exclusive, and multiple facets of crosstalk are present. For example, Ca2+ influx
can directly or indirectly (via ER stress and ROS) activate NLRP3 inflammasomes. Ad-
ditionally, inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α), an
ER stress sensor, regulates the release of inflammatory cytokines which can activate the
NLRP3 inflammasome while also further producing ROS, which induces mitochondrial
damage [165]. Crosstalk between ER stress and NLRP3 inflammasomes has been impli-
cated in non-neuronal forms of cell death, such as cardiovascular disease [166] and renal
ischemia [167]. In astroglia cells, ethanol-induced NLRP3 inflammasome activation was
mediated by mitochondrial ROS generation. Interestingly, this study showed that ~73%
of cell death was attributed to caspase-1-mediated pyroptosis, and the other ~25% was
attributed to caspase-3-mediated apoptosis [168]. Both pyroptosis and apoptosis have been
implicated as forms of cell death featured in the NDs discussed in this review. Therefore,
therapeutic strategies for NDs should be developed to target upstream of the activation of
these forms of cell death (such as disturbances in NT systems) to ensure that all forms of
neuronal loss (and injury) can be prevented.

7. Conclusions

Different types of cell death, including (but not limited to) pyroptosis and apoptosis,
are a featured hallmark in NDs. The machinery necessary for these forms of cell death is
ubiquitously present in all cell types, which begs the question—why do some cells die and
not others? More specifically, how is cell-specific loss/injury brought about in various NDs?
We propose that the unique pattern of neurodegeneration evidenced in various NDs such as
AD, PD, and HAD may be partially explained by their disruption of specific NT systems. In
the context of NeuroHIV, extensive studies demonstrate a clear link between perturbation
of monoaminergic transmission by exposure of the CNS to HIV-1 viral proteins and risk for
development of HAND. Importantly, abused substances directly target NT transmission
and exacerbate NT-mediated development of neurodegenerative diseases. Further work
is needed to determine whether the viral protein-induced dysregulation of NT systems
is sufficient to induce neuronal damage through the activation of downstream pathways,
such as mitochondrial-mediated apoptosis or the release of inflammatory cytokines from
macrophages to induce pyroptosis. Currently, there are no promising therapeutic strategies
for neurodegenerative disease. Considering the progressive nature of neurodegenerative
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diseases, it is probably unsurprising that aging is a risk factor for NDs, and as populations
live longer, NDs are becoming more prevalent [169]. It should be considered that the
neuronal damage and/or loss induced by disturbances in NTs may be due to a smaller
magnitude of mitochondrial stress (or inflammation) sustained over a long period of time
rather than a large immediate effect as one might see for instance, with abused substances
such as meth or cocaine [170]. Based on our current understanding of the neuropathology of
NDs, establishing an early intervention strategy would be beneficial to prevent disturbances
in NT transmission. For example, the effectiveness of an early therapeutic intervention for
HAND to preserve neurocognitive functions in HIV-infected individuals may ultimately
depend on a therapeutic strategy that combines compound(s) that specifically attenuate Tat
binding site(s) in DAT with antiretroviral therapy without affecting the normal function
of DAT [20,135]. In summary, this review sheds light on the impact of disturbances of NT
systems on the development of various NDs.
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