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Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and
the number of cases is constantly increasing. Early and accurate HCC diagnosis is crucial to im-
proving the effectiveness of treatment. The aim of the study is to develop a supervised learning
framework based on hierarchical community detection and artificial intelligence in order to classify
patients and controls using publicly available microarray data. With our methodology, we identified
20 gene communities that discriminated between healthy and cancerous samples, with an accuracy
exceeding 90%. We validated the performance of these communities on an independent dataset, and
with two of them, we reached an accuracy exceeding 80%. Then, we focused on two communities,
selected because they were enriched with relevant biological functions, and on these we applied
an explainable artificial intelligence (XAI) approach to analyze the contribution of each gene to the
classification task. In conclusion, the proposed framework provides an effective methodological
and quantitative tool helping to find gene communities, which may uncover pivotal mechanisms
responsible for HCC and thus discover new biomarkers.

Keywords: HCC diagnosis; complex networks; machine learning; Leiden algorithm; XAI methods

1. Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths
worldwide, and the number of cases is constantly increasing [1]. Although there have
been significant improvements in diagnosis and in therapeutic interventions, HCC remains
associated with poor prognosis in patients with advanced disease [2,3]. An early and
accurate diagnosis is crucial to improving the therapeutic effectiveness of HCC. Serum
α-fetoprotein (AFP) is currently widely used as a diagnostic and prognostic biomarker for
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HCC; however, when used alone, the results are unsatisfactory [4,5]. The sensitivity of
AFP in detecting HCC at an early stage is limited [6–8]. Several studies have demonstrated
poor AFP specificity in diagnosing HCC, since AFP levels increase also in other disorders
or benign liver conditions [9]. The suggested guidelines for HCC surveillance reported
that serum AFP could be used as a marker along with abdominal ultrasonography only in
high-risk populations to detect HCC at an early stage [10,11]. The multifactorial nature of
HCC [12] makes it difficult to predict the diagnosis using a single biomarker. Therefore,
the combination of multiple biomarkers is key to increasing the diagnostic accuracy of
HCC. Other tumor markers, such as the des-gamma-carboxyprothrombin (DCP) and the
Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3), have been used to increase
the diagnostic accuracy of AFP [13,14]. In addition to tumor markers, biomarkers of liver
inflammation (aspartate amino transferase and alanine amino transferase), fibrosis (platelet
count), liver function (total bilirubin and albumin), and the hepatitis virus status are widely
used in clinical practice [15,16]. However, due to the aforementioned limitations of these
biomarkers for early diagnosis of HCC, there is an urgent need for the development of
more sensitive diagnostic methods, the use of novel biomarkers, and the construction of
prognostic models in order to increase the survival time of patients.

Microarray technology has enabled simultaneous measurement of the expression level
of thousands of genes in a sample in a single experiment [17]. These gene expression
profiles can be used to identify biomarkers or networks of genes that are dysregulated
in cancerous versus normal samples [18]. However, microarray datasets typically have a
small sample size (number of individuals or samples) but high dimensions (number of
genes). If microarray data are employed to train machine learning classification algorithms
to discriminate patients and controls, this imbalance typically causes overfitting issues.
Designing efficient algorithms that can reduce the initial gene pool, consisting of thousands
of genes, to a smaller set containing hundreds or tens of them; it is therefore critical to
improve the prediction accuracy.

The aim of our study is to develop a supervised learning framework to classify HCC
patients vs. controls using gene expression data from microarray samples. More specifi-
cally, we used two microarray experiments comparing tumor tissues of HCC patients with
adjacent normal tissues. We constructed a complex network in which genes correspond to
nodes and their connections are weighted according to the strength of their co-expression
relations [19,20]. Then, we performed a feature selection step, which is essential to devel-
oping a robust classification algorithm, using artificial intelligence methods coupled with
complex network algorithms. In short, we applied hierarchical community detection using
the Leiden algorithm [21], a community detection method that is especially useful when a
network has both positive and negative links, as in our case. We identified 46 communities
of genes, which we further filtered using the Boruta feature selection method [22]. Twenty
of these communities could discriminate between healthy and cancerous samples with an
accuracy exceeding 90%. We validated these communities on an independent dataset; eight
of them still provided satisfactory classification performances, and two of them reached an
accuracy of more than 80%. Finally, we focused on two communities, selected because they
were enriched with relevant biological functions, and on these we applied an explainable
artificial intelligence approach [23,24] to analyze the contribution of each of their genes to
the classification task.

The paper is organized as follows. In the Section 2, we present an overview of the
methodology adopted and report the outcome with associated figures and tables. In the
Section 3, we comment on our results and underline some limitations of our work. In
the Section 4, we provide details about the input data and the normalization procedure
(Section 4.1 “Data Sources”), and then we describe the methods used (subsections include
Section 4.2 “Hierarchical community detection”, Section 4.3 “Feature selection”, Section 4.4
“Machine learning scheme”, Section 4.5 “XAI analysis”, and Section 4.6 “Gene Set Enrich-
ment Analysis”).
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2. Results

We downloaded gene expression data on liver tissue from 152 patients who under-
went hepatic resection. The data consisted of 152 tumor samples and 91 adjacent liver
tissues, as well as 14 adjacent liver tissues obtained from patients with colorectal cancer
metastasis who had not received chemotherapy (see Section 4 “Material and methods” for
more details).

Our computational pipeline consisted of three main steps: (i) a hierarchical community
detection phase, in which we applied the Leiden algorithm to find stable gene communities
within the gene co-expression network; (ii) an additional learning phase, in which we
focused on each community, selected a subset of genes with the Boruta method, and fed this
subset to a random forest (RF) algorithm in a 5-fold cross validation framework to obtain
the classification of HCC vs. normal samples; and (iii) an explainable artificial intelligence
(XAI) phase, in which we quantified the impact of each gene at the community scale on the
classifier’s predictions by applying Shapley (SHAP) values. Finally, we validated the model
using an independent gene expression dataset. A schematic overview of our workflow is
displayed in Figure 1.
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Figure 1. Schematic representation of the workflow in our study. After detecting the communities
with highly correlated gene expression profiles through a procedure based on the Leiden algorithm,
we estimated the most informative genes with the Boruta algorithm and used them to feed a random
forest model inside a 5-fold cross-validation scheme.

The original dataset is composed of samples belonging to three different classes: HCC,
Normal and Peritumoral samples. We implemented an unsupervised analysis to see if
there was a statistically significant difference between Normal and Peritumoral samples.

Firstly, we determined the optimal number of clusters using two quantities, the Within
Sum of Square (WSS) and the Silhouette coefficient (SC). From Figure S1 we can see that
the optimal number of clusters is 2 with both WSS (left) and SC (right) (using the elbow
method and the maximum value, respectively). Once we set the number of clusters, we
applied a k-means clustering algorithm with k = 2, displayed in Figure S2. In Table S1,
we presented cluster cardinalities and compared original labels vs k-means labels in a
contingency matrix. These results confirm that 95.24% of Normal + Peritumoral samples
belong to the same cluster, therefore there is no statistically significant difference between
Normal and Peritumoral samples.

From the hierarchical community detection procedure, we derived 46 stable commu-
nities. As shown in Table 1, 20 of these gene communities gave a robust prediction of
the disease (accuracy exceeding 90%). Our choice of the random forest algorithm was
suggested by a previous study on microarrays of cancerous tissues [25], where we found
that RF was one of the best performing methods, as well as being the easiest to tune and
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the lightest in terms of computational burden. Table 1 also reports area under the curve
(AUC), F1 Score, and Log Loss. In Figure 2 we display the boxplot of the accuracy values of
the 20 top communities. The distributions were computed through a 5-fold cross validation
procedure repeated 100 times. In the Supplementary Materials, we list the complete set of
genes in each of these communities.

Table 1. Number of genes, accuracy, AUC, F1 Score, and Log Loss of the classifiers obtained using
the 46 stable communities. Results for each classifier were obtained after 100 5-fold cross-validation
rounds.

Community Cardinality Accuracy (%) AUC (%) F1 Score (%) Log Loss

Comm_1 3 59.61 ± 3.06 57.64 ± 3.15 48.61 ± 4.12 5.64 ± 2.31
Comm_2 16 87.28 ± 1.29 81.47 ± 2.10 77.77 ± 2.70 −4.11 ± 1.26
Comm_3 21 77.89 ± 2.05 78.55 ± 2.01 74.16 ± 2.54 −2.67 ± 1.58
Comm_4 7 73.28 ± 2.45 92.37 ± 1.41 91.32 ± 1.62 −6.31 ± 0.56
Comm_5 24 87.28 ± 1.57 85.22 ± 1.85 82.46 ± 2.20 −1.34 ± 1.06
Comm_6 20 83.37 ± 1.82 93.58 ± 1.38 92.66 ± 1.65 −5.76 ± 0.95
Comm_7 15 86.66 ± 2.03 93.59 ± 1.18 92.63 ± 1.37 −5.58 ± 0.72
Comm_8 33 93.22 ± 1.30 92.79 ± 1.29 91.63 ± 1.46 −5.16 ± 0.52
Comm_9 21 70.59 ± 2.06 90.79 ± 1.33 89.41 ± 1.62 −5.94 ± 0.80

Comm_10 23 83.06 ± 1.92 82.66 ± 1.87 79.35 ± 2.32 −3.14 ± 1.14
Comm_11 20 80.13 ± 1.96 88.85 ± 1.98 87.01 ± 2.42 −5.50 ± 1.13
Comm_12 49 93.23 ± 1.19 86.64 ± 1.29 84.20 ± 1.55 −2.67 ± 1.13
Comm_13 23 85.69 ± 1.71 70.49 ± 2.26 63.97 ± 2.93 −0.18 ± 1.63
Comm_14 34 94.17 ± 1.30 87.12 ± 1.50 84.80 ± 1.80 −3.53 ± 1.06
Comm_15 27 94.13 ± 1.07 87.33 ± 1.64 84.86 ± 1.88 −0.24 ± 1.07
Comm_16 34 93.32 ± 1.11 91.42 ± 0.46 89.69 ± 0.54 −2.55 ± 0.41
Comm_17 30 91.74 ± 1.25 95.54 ± 0.81 94.29 ± 0.97 −2.87 ± 0.74
Comm_18 18 83.88 ± 1.75 84.81 ± 1.28 81.97 ± 1.50 −0.29 ± 1.10
Comm_19 32 89.92 ± 1.79 88.47 ± 0.89 86.29 ± 1.04 −1.96 ± 0.74
Comm_20 8 72.39 ± 2.18 91.96 ± 0.63 90.53 ± 0.78 −4.14 ± 0.59
Comm_21 31 87.91 ± 1.39 95.44 ± 0.88 94.64 ± 1.08 −5.07 ± 0.78
Comm_22 44 87.29 ± 1.57 95.78 ± 0.59 94.57 ± 0.64 −3.03 ± 0.28
Comm_23 40 91.47 ± 0.45 76.07 ± 2.14 70.90 ± 2.83 −2.47 ± 2.14
Comm_24 29 95.19 ± 0.83 93.12 ± 1.12 91.41 ± 1.28 −1.41 ± 0.89
Comm_25 24 85.07 ± 1.19 94.36 ± 0.67 92.89 ± 0.75 −2.25 ± 0.50
Comm_26 36 88.72 ± 0.88 95.18 ± 0.87 94.31 ± 1.02 −4.90 ± 0.56
Comm_27 44 92.34 ± 0.66 96.01 ± 0.94 95.34 ± 1.09 −5.40 ± 0.64
Comm_28 40 95.64 ± 0.89 74.93 ± 1.69 69.67 ± 2.17 −1.18 ± 1.21
Comm_29 51 95.44 ± 0.52 92.00 ± 1.21 90.38 ± 1.34 −2.84 ± 0.47
Comm_30 37 92.69 ± 1.09 80.38 ± 1.63 76.84 ± 1.90 1.57 ± 1.08
Comm_31 31 93.99 ± 0.63 78.55 ± 1.51 74.33 ± 1.88 −1.26 ± 1.10
Comm_32 41 95.37 ± 0.82 82.98 ± 2.21 79.80 ± 2.66 −1.06 ± 1.34
Comm_33 41 96.23 ± 0.87 89.45 ± 0.91 87.49 ± 1.11 −2.81 ± 0.89
Comm_34 23 76.56 ± 1.61 72.10 ± 2.62 66.68 ± 3.31 2.02 ± 1.87
Comm_35 32 92.06 ± 1.05 92.62 ± 1.08 91.23 ± 1.30 −3.79 ± 0.85
Comm_36 26 80.70 ± 1.58 97.79 ± 0.40 97.22 ± 0.56 −5.04 ± 0.51
Comm_37 33 79.78 ± 1.47 92.30 ± 1.41 91.02 ± 1.65 −4.86 ± 0.90
Comm_38 4 83.65 ± 2.05 89.74 ± 1.01 87.91 ± 1.20 −3.71 ± 0.65
Comm_39 36 89.79 ± 0.96 80.23 ± 1.54 76.51 ± 1.83 −0.46 ± 1.24
Comm_40 30 92.84 ± 1.07 76.38 ± 1.66 71.53 ± 2.03 −1.43 ± 1.36
Comm_41 53 97.71 ± 0.48 67.03 ± 2.39 60.24 ± 3.02 2.72 ± 1.86
Comm_42 38 92.81 ± 1.29 86.12 ± 1.74 83.62 ± 2.15 −4.55 ± 0.90
Comm_43 35 90.27 ± 0.95 81.96 ± 1.94 78.44 ± 2.46 −3.61 ± 1.34
Comm_44 22 81.07 ± 1.54 85.34 ± 2.25 82.65 ± 2.80 −4.83 ± 1.00
Comm_45 20 77.91 ± 1.67 93.23 ± 1.29 91.81 ± 1.54 −3.17 ± 1.07
Comm_46 6 68.62 ± 2.33 68.84 ± 2.25 62.14 ± 3.06 1.21 ± 1.44



Int. J. Mol. Sci. 2023, 24, 15286 5 of 13

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 13 
 

 

Comm_42 38 92.81 ± 1.29 86.12 ± 1.74 83.62 ± 2.15 −4.55 ± 0.90 
Comm_43 35 90.27 ± 0.95 81.96 ± 1.94 78.44 ± 2.46 −3.61 ± 1.34 
Comm_44 22 81.07 ± 1.54 85.34 ± 2.25 82.65 ± 2.80 −4.83 ± 1.00 
Comm_45 20 77.91 ± 1.67 93.23 ± 1.29 91.81 ± 1.54 −3.17 ± 1.07 
Comm_46 6 68.62 ± 2.33 68.84 ± 2.25 62.14 ± 3.06 1.21 ± 1.44 

 
Figure 2. Boxplot of the accuracy values of the 20 best communities averaged over 100 5-fold cross-
validation rounds. 

In order to validate our results, we tested the performance of the 20 identified 
communities on an independent dataset. We report our results in Table 2, showing that 
eight of these communities still had satisfactory accuracy values, especially for an 
independent test; in particular, Comm_29 and Comm_32 reached an accuracy, AUC, and 
F1 Score of more than 80%. 

After close biological inspection of the set of 20 communities, we identified two 
communities, namely, Comm_29 and Comm_41, which were particularly interesting as 
they were enriched with relevant biological functions. It is worth noting that the first of 
these two communities (Comm_29) is the second best performing on the test set (as 
already mentioned),while Comm_41 was one of the top performing communities on the 
test set (with 74.5% accuracy). 

Table 2. Accuracy, AUC, F1 Score, and Log Loss of the 20 best classifiers tested on the independent 
dataset. 

Community Cardinality Accuracy (%) AUC (%) F1 Score (%) Log Loss 
Comm_8 33 51.55 51.25 4.88 16.73 

Comm_12 49 59.01 58.80 37.74 14.16 
Comm_14 34 61.49 61.28 41.51 13.30 
Comm_15 27 66.46 66.33 57.81 11.58 
Comm_16 34 70.81 70.73 66.19 10.08 
Comm_17 30 50.93 50.64 7.06 16.95 
Comm_23 40 50.31 50.00 0.00 17.16 
Comm_24 29 50.31 50.00 0.00 17.16 
Comm_27 44 63.98 63.82 51.67 12.44 
Comm_28 40 68.94 68.78 57.63 10.73 

Figure 2. Boxplot of the accuracy values of the 20 best communities averaged over 100 5-fold
cross-validation rounds.

In order to validate our results, we tested the performance of the 20 identified commu-
nities on an independent dataset. We report our results in Table 2, showing that eight of
these communities still had satisfactory accuracy values, especially for an independent test;
in particular, Comm_29 and Comm_32 reached an accuracy, AUC, and F1 Score of more
than 80%.

Table 2. Accuracy, AUC, F1 Score, and Log Loss of the 20 best classifiers tested on the independent
dataset.

Community Cardinality Accuracy (%) AUC (%) F1 Score (%) Log Loss

Comm_8 33 51.55 51.25 4.88 16.73
Comm_12 49 59.01 58.80 37.74 14.16
Comm_14 34 61.49 61.28 41.51 13.30
Comm_15 27 66.46 66.33 57.81 11.58
Comm_16 34 70.81 70.73 66.19 10.08
Comm_17 30 50.93 50.64 7.06 16.95
Comm_23 40 50.31 50.00 0.00 17.16
Comm_24 29 50.31 50.00 0.00 17.16
Comm_27 44 63.98 63.82 51.67 12.44
Comm_28 40 68.94 68.78 57.63 10.73
Comm_29 51 81.37 81.38 81.71 6.44
Comm_30 37 50.93 50.62 2.47 16.95
Comm_31 31 71.43 71.53 75.27 9.87
Comm_32 41 82.61 82.62 82.72 6.01
Comm_33 41 70.81 70.67 62.40 10.08
Comm_35 32 74.53 74.63 77.84 8.80
Comm_40 30 71.43 71.45 72.29 9.87
Comm_41 53 74.53 74.65 78.53 8.80
Comm_42 38 51.55 51.26 7.14 16.73
Comm_43 35 50.31 50.00 0.00 17.16

After close biological inspection of the set of 20 communities, we identified two
communities, namely, Comm_29 and Comm_41, which were particularly interesting as
they were enriched with relevant biological functions. It is worth noting that the first of
these two communities (Comm_29) is the second best performing on the test set (as already
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mentioned),while Comm_41 was one of the top performing communities on the test set
(with 74.5% accuracy).

2.1. XAI Analysis

We conducted a study of explainability by applying the Shapley (SHAP) algorithm [22,23]
on a subset of the 20 communities, namely, Comm_29 and Comm_41, because they were
enriched with relevant biological functions. In Figure 3, we display the resulting SHAP
plots, which show the direction of the relationship between the expression of individual
genes and the classification outcome. Each row corresponds to a gene within the consid-
ered community and includes a distribution of points, each representing a prediction on a
subject. The horizontal axis reports the SHAP-values, quantifying the impact of features,
i.e., gene expression values, on the different predictions provided by the machine learning
classifier. Positive SHAP-values are indicative of the contribution of the specific gene
expression value to a positive diagnosis (HCC), while negative SHAP-values are indicative
of a contribution to a negative diagnosis (no HCC). In each row, instances with higher and
lower values of the gene expression feature are shown in red and blue, respectively. This
reveals that a higher expression of gene TBXA2R, for example, is associated with HCC
samples, while a lower expression is associated with healthy samples.
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2.2. Pathways Analysis

Functional enrichment analysis with GSEA [26] of genes in Comm_29 and Comm_41
revealed that they are involved in hallmarks of the matrisome and immune microen-
vironment, which are two important features of the HCC pathogenesis (FDR < 0.05;
Tables S2 and S3 in the Supplementary Materials).

3. Discussion

HCC management is seriously challenged by the lack of biomarkers that could enable a
reliable diagnosis and prognosis of HCC [27]. The use of serum enzymes, such as AFP, DCP,
and AFP-L3, has been demonstrated to be more effective than other methods in monitoring
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tumor progression [28]. However, the use of serum enzymes lacks the sensitivity and
specificity required for a reliable diagnosis and prognosis of HCC.

Recent advances in multi-omics technologies in HCC studies have led to the discovery
of new candidate biomarkers for diagnosis and prognosis [29]. Technologies such as
microarrays or next-generation sequencing can provide useful tools with which to identify
new genes or mechanisms aiding to making an early discrimination of a pathological state.
In this paper, using microarray gene expression data from GEO, we developed a supervised
learning framework in order to classify HCC patients and controls.

More specifically, we analyzed microarray gene expression data of HCC tumor and
adjacent liver tissues from the dataset GSE20295. Through a hierarchical community
detection phase based on the Leiden algorithm, we found 46 stable communities. With
a machine learning procedure combining RF, Boruta, and 5-fold cross-validation, among
these 46 communities, we were able to identify 20 gene communities that could discriminate
between healthy and HCC patients, with a mean accuracy exceeding 90%, as shown in
Figure 2.

We validated our findings on an independent liver microarray dataset, GSE54236, and
confirmed that two communities, namely, Comm_29 and Comm_32 (see Supplementary
Materials), could distinguish between healthy subjects and HCC patients with an accuracy
of more than 80%.

Functional enrichment analysis of genes revealed that two communities, namely,
Comm_29 and Comm_41, are involved in two main hallmarks of HCC, i.e., the matrisome
and the immune microenvironment, respectively. The matrisome includes extracellular
matrix (ECM) molecules (collagens, glycoproteins, and proteoglycans) and ECM-associated
members (ECM regulators, ECM-affiliated proteins, and secreted factors) [30]. Matri-
some remodeling is one of the main features of liver fibrosis and occurs in carcinogenesis
during cell proliferation, migration, or invasion [31]. Several studies have reported that
the tumor microenvironment (TME) plays a critical role in HCC onset, progression, and
outcome [32–34].

The results obtained in our study can help identify potential new markers for the
diagnosis of HCC. However, our study has several limitations. The sample size of the
experimental data we used is relatively small, so other studies are necessary in order to
validate and improve the identification of genes in a larger multicenter prospective cohort
of patients and controls. Furthermore, we are aware that machine learning algorithms
are less effective when the training datasets contain a small number of observations. An
improvement to our work would be the application of the same models to a larger training
set. Moreover, the results of our study were obtained from tissue samples, which is still an
invasive procedure. Further research is needed in order to determine whether the identified
genes can be detected in blood so as to promote a non-invasive diagnosis and prognosis.

In conclusion, in our study, we identified two sets of genes expressed in liver samples
that can distinguish HCC patients from healthy subjects with high accuracy. The robustness
of our results, which were obtained from a cross-validation procedure and validated on an
independent dataset, suggests they may have a potential clinical significance as a means of
identifying biomarkers and new therapeutic targets.

4. Materials and Methods
4.1. Data Sources

Two microarray datasets, GSE102079 and GSE54236, were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/; accessed on 9 January 2023).

Dataset GSE102079 contains gene expression data of the liver tissue of 152 patients
who underwent hepatic resection from the GPL570 Affymetrix Human Genome U133 Plus
2.0 Array. Specifically, this set contains 152 tumor and 91 adjacent liver tissues from HCC
patients and 14 adjacent liver tissues obtained from patients with metastasis of colorectal
cancer who had not received chemotherapy.

http://www.ncbi.nlm.nih.gov/geo/
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Dataset GSE54236 contains gene expression data of 156 samples of 78 HCC tumor
tissues and 78 adjacent non-tumor tissues from the GPL6480 Agilent-014850 Whole Human
Genome Microarray. This dataset was used for independent testing.

Raw data were normalized using robust multiarray analysis (RMA) [35]; this method
implements a background correction of the original data; then, a log2 transformation and
finally a quantile normalization.

For our analysis, we used the R framework version 4.2.2 [36] with packages oligo
version 1.62.2 [37] to read CEL files; affy version 1.76.0 [38] to perform RMA; factoextra
version 1.0.7 [39] to evaluate silhouette; amap version 0.8-19 [40] to perform K-means
clustering; Boruta version 8.0.0 [22]; random forest version 4.7-1.1 [41]; treeshap version
0.1.1 [42]; and igraph version 1.4.1 [43]. For the Leiden algorithm, we used igraph function
cluster_leiden with parameters resolution_parameter = 1, objective_function = “modularity”,
n_iterations = 200, and beta = 0.05; and for evaluating the mutual information, we used
function compare with method = “nmi”.

4.2. Hierarchical Community Detection

We implemented a hierarchical community detection workflow based on iterative
applications of the Leiden algorithm [21] to find groups (or communities) of genes with
highly-correlated gene expression profiles. The Leiden algorithm identifies an optimal par-
tition of the network, which maximizes positive-weight connections within communities
and negative-weight connections across communities, starting from a random configu-
ration consisting of an arbitrary number of communities to which nodes are arbitrarily
assigned. Due to the inherent randomness of the Leiden community detection algorithm,
it is necessary to check that the partition it provides is stable compared with the initial
conditions. The method we employed to quantify the stability of the community detec-
tion outcome is discussed below. Communities of the optimal partition were indepen-
dently used to implement machine learning algorithms for the classification of HCC vs.
healthy samples.

Because discovering meaningful biological knowledge from communities with more
than 100 genes is challenging [44,45], we iteratively applied the Leiden algorithm on the
whole co-expression network until we obtained communities with less than 100 genes. We
also ignored communities with less than 4 elements. Specifically, the communities found in
the first step were considered to be second-level co-expression subnetworks, to which the
Leiden algorithm was independently applied; this hierarchical process was iterated at the
next levels for each community in a given partition until the size of its further subdivisions
became smaller than 100.

The Leiden algorithm, when applied iteratively, converges on a partition in which all
subsets of the obtained communities are locally optimally assigned. At each step of the
hierarchical community detection process, the most stable partition was found by tuning
two internal parameters of the Leiden algorithm, namely, the resolution γ and the level of
randomness β, while keeping the other parameters fixed to their default values. For each
configuration (γ, β) of the considered internal parameters, the stability of the community
detection outcome was evaluated by performing L = 100 runs of the Leiden algorithm,
each corresponding to a different seed of the pseudorandom number generator and to a
different initial arbitrary assignment of nodes to groups. For the j-th run (j = 1, . . . , L), the
algorithm returned a partition pj, and the most recurring (majority) partition over all L runs
was determined via majority voting. This partition was considered acceptable provided
that it was simultaneously, stable, nontrivial, and not fragmented. Below we describe each
of these conditions in detail.

The stability criterion was based on the similarity between partitions
{

pj
}

j=1,...,L
obtained in the L runs and corresponding to the different random initial conditions. Specifi-
cally, this similarity was evaluated through the average normalized mutual information:

〈NMI〉 = 2
L(L− 1) ∑L−1

a=1 ∑L
b=a+1 NMI(pa, pb), (1)
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where NMI(pa, pb) is the normalized mutual information between a given pair (pa, pb)
of partitions, and L(L− 1)/2 is the number of distinct pairs. The majority partition was
considered stable only if 〈NMI〉 ≥ 0.80, a condition related to the general uniformity of
the partitions returned by the different runs.

Moreover, the most recurring partition returned by the Leiden algorithm must be
nontrivial, i.e., not consist of a single community, coinciding with the whole network or
subnetwork on which the Leiden algorithm was applied.

Finally, to avoid excessive fragmentation, the most recurrent partition over L runs
must not include communities whose number of nodes is less than 5% of the whole network
cardinality.

In cases where multiple configurations (γ, β) of the internal parameters of the Leiden
algorithm provided a majority partition that satisfied the aforementioned requirements, the
one with the highest 〈NMI〉 was chosen and identified as the outcome of the hierarchical
community detection at the considered level.

4.3. Feature Selection

Following the gene community detection procedure explained in the previous section,
as the number of input features (genes) still exceeded the number of samples, we filtered
the genes in each community further using a wrapper method known as Boruta [22]. This
method aims to eliminate noise and redundant data by selecting only those features that
enhance the performance of the learning model.

Boruta, a robust and efficient supervised feature selection algorithm, is based on the
random forest method. It leverages the principles of random forest (RF) (see the following
section), where random perturbations in the system and the randomization of the training
samples mitigate the negative effects caused by the random fluctuations and correlations
inherent to the learning model. Essentially, Boruta improves independent classification and
regression trees (CART) by generating surrogate features, referred to as shadow features,
through shuffling of the original feature values. It then compares the importance of these
shadow features with that of the original features within the model. In simple terms,
Boruta employs these shadow attributes as reference values to quantify the importance of
an attribute.

We applied the Boruta algorithm to each community selected by the gene community
procedure. To avoid data leakage, we used 40% of the dataset for feature selection and the
remaining 60% for classification.

4.4. Machine Learning Scheme

Gene community detection and feature selection allowed us to achieve a significant
reduction in the number of features. The remaining genes were used as input to the random
forest (RF) algorithm. We developed an RF model for each community.

RF [46] is a highly popular machine learning algorithm because its parameters are easy
to tune, particularly the two main parameters: (i) the number of trees, denoted as M; and
(ii) the number of randomly selected features at each split, denoted as s. The RF structure
consists of an ensemble of CART classification trees, which are grown using a bootstrap
procedure. The randomization process during training makes RF robust to overfitting
and generates trees that exhibit low mutual correlation. In this study, we implemented a
standard configuration with M = 300 trees and s = |S|, where S represents the set input
features and |.| represents the cardinality.

To enhance the robustness of our approach, we applied a 5-fold cross-validation
scheme that we repeated 100 times. We carried out this procedure on the subjects.

4.5. XAI Analysis

Explainable artificial intelligence (XAI) procedures aim at improving machine learning
transparency and interpretability, especially when applied to real-world scenarios [47–52].
As opposed to traditional approaches that focus on informativeness, quantified by per-
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formance metrics and uncertainties [53–55], a XAI framework attempts to combine in-
formativeness with generalization, namely, the reliability of predictions on previously
unseen data and transparency, aimed at making model decisions as easy to understand as
possible [56,57].

In this study, we used a SHAP local explanation algorithm to determine the impor-
tance of features for the classification of HCC vs. normal samples. This algorithm is a
local, model-agnostic post hoc explainer, based on the Shapley values concept borrowed
from cooperative game theory [23,24]. For each sample, the SHAP algorithm learns local
interpretable linear models and quantifies the contribution of each feature to the prediction
given by the model for that sample. The computation of a SHAP value for a given feature
is based on the difference between the model prediction when that feature is considered or
not considered, averaging over all possible subsets of features. The model is thus retrained
on all the possible feature subsets F of the complete feature set S (F ⊆ S). Calling fx(F)
the model prediction for instance x when the subset F does not include the j-th feature,
and fx(F ∪ j) the prediction when the j-th feature is added, the difference fx(F ∪ j)− fx(F)
quantifies the marginal contribution of the j-th feature. The SHAP value of the j-th feature
for the instance x is then evaluated as

SHAPj(x) = ∑F⊆S−{j}
|F|!(|S| − |F| − 1)!

|S|! [ fx(F ∪ j)− fx(F)], (2)

with |F|! is the number of permutations of features in the subset F; (|S| − |F| − 1)! is the
number of permutations of features in the subset S− (F ∪ {j}); and |S|! is the total number
of feature permutations [23].

4.6. Gene Set Enrichment Analysis

Gene set enrichment analysis (GESA) was performed with GSEA software version
MSigDB 2023.1 [26] using the hallmark gene sets of the Molecular Signature Database gene
set, canonical pathways, and gene ontology. An FDR value threshold of 0.05 was used to
select significant hallmarks.
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