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Abstract: Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by
cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic condi-
tions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary
cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light
on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic
context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian
target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D patho-
physiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and
stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant
benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic
sodium–glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and
diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent
studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective
benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we
systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac
dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with
diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective
mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but
the concomitant activation of mTORC2 (mTOR complex 2) signaling.
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1. Diabetic Cardiomyopathy

Diabetes mellitus (DM) is a chronic metabolic disorder with a current prevalence of
573 million individuals worldwide, estimated to reach 643 million by 2030 and 783 million
by 2045 [1]. Globally, around 18 million more men than women have diabetes [2] and the
number of aged patients (>65 years) with DM is projected to reach ~276 million by 2045
as it is more prevalent in middle-aged and older adults [3]. DM ranks among the top 10
global mortality causes and is riddled with several health complications like cardiovascular
dysfunction, leading to progressive heart failure. Cardiovascular diseases are the main
cause of morbidity and account for two out of three overall deaths in diabetic patients [4],
arising from conditions like hypertension, obesity, and dyslipidemia [5]. The concept of
diabetes-related cardiomyopathy was first suggested in 1954 by Lundbæk [6]; later, in 1972,
Rubler et al. reported the post-mortem findings of four diabetic patients who showed
advanced symptoms of heart failure without any direct relation to congenital, valvular,
or atherosclerotic heart conditions [7]. In 2013, to set a standard clinical perspective of
diabetic cardiomyopathy, the American Heart Association [8] and the European Society of
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Cardiology [9] defined it as a pathophysiological condition of ventricular dysfunction in
diabetic patients, without predisposing atherosclerosis and coronary artery disorders, or
hypertensive, congenital, or valvular heart diseases.

DM can be broadly classified into type 1 diabetes mellitus (T1D) and type 2 diabetes
mellitus (T2D). T1D, associated with autoimmune insulin deficiency, accounts for 5–10%,
while T2D, characterized by insulin resistance, accounts for 90–95% of all diabetes cases [10].
Although cardiovascular complications are associated with both types of diabetes mellitus,
the incidence of cardiac dysfunction in T1D and T2D patients has been reported to be
14.5% and 35%, respectively [11], making T2D-related cardiomyopathy the more prevalent
pathophysiology.

The most common metabolic dysregulations in T2D, arising from insulin resistance [12],
involve hyperglycemia and hyperlipidemia, which directly or indirectly provoke cardiac
dysfunction in patients [13,14]. The heart shows reduced mitochondrial glucose oxidation
due to insulin resistance along with excess fatty acid uptake, impaired mitochondrial fatty
acid β-oxidation, and increased reactive oxygen species (ROS), resulting in lipotoxicity
and cellular stress. These insults typically affect ventricular compliances with increased
systemic pressure and manifest as impaired diastolic function with cardiac inflamma-
tion, abnormal calcium transport, and cardiac remodeling, which are linked to a slow
progression into systolic dysfunction and ultimately heart failure [15–18] (Figure 1).
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Figure 1. Schematic representation of diabetic cardiomyopathy pathophysiology. Insulin resis-
tance in type 2 diabetes mellitus mediates systemic hyperglycemia and hyperlipidemia. These
conditions induce metabolic changes in the heart and endothelial system, leading to mitochondrial
dysfunction causing calcium imbalance and oxidative stress. As a result, other insults like inflamma-
tion, hypertrophy, and fibrosis arise as interdependent factors and culminate into cardiac dysfunction
and progressive heart failure.

The systemic hyperglycemia, hyperlipidemia, oxidative stress, and inflammation as-
sociated with diabetes contribute to diabetic cardiomyopathy through several molecular
pathways that provide significant therapeutic targets against diabetes-associated cardiac
dysfunction. Some preclinical studies concerning diabetic cardiomyopathy have reported
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improved endothelial function, reduced cardiac fibrosis/hypertrophy, and reduced in-
flammation with metformin (via 5′ adenosine monophosphate-activated protein kinase,
AMPK-dependent and AMPK-independent mechanisms) [19], tadalafil (phosphodiesterase
5, PDE5 inhibitor) [20], and MCC950 (nucleotide-binding oligomerization domain- leucine
rich repeat- and pyrin domain-containing protein 3, NLRP3 inflammasome inhibitor) [21],
respectively, while other preclinical studies with sulforaphane (nuclear factor erythroid
2-related factor 2, NRF2 activator) [22] and saxagliptin (dipeptidyl peptidase-4, DPP4 in-
hibitor) [23] showed cardioprotective benefits by ameliorating cardiac oxidative stress and
lipotoxicity. Owing to these therapeutic targets, several clinical trials were conducted in
the last decade with a focus on T2D patients (Table 1). However, these studies lacked an
overall benefit curve in terms of both the glycemic and non-glycemic context of diabetic
cardiomyopathy, emphasizing the critical need for identifying new molecular targets for
the development of novel and more effective therapeutics.

Table 1. Therapeutic targets of diabetic cardiomyopathy and associated clinical trials.

Therapeutic
Target Drug Treatment Study Design of Study Study Outcomes

PPARα
Blinded fenofibrate
or placebo plus
simvastatin

ACCORD
(1999–2012)
[24,25]

Randomized,
double-blind,
placebo-controlled
phase III trial in T2D
patients (actual
enrollment—10251)

For the primary outcome, cardiovascular
risk was lower in the intense glycemia and
blood pressure (BP) groups, compared to
combined standard BP and glycemia
treatment. For secondary outcomes,
myocardial infarction and stroke were
significantly reduced by intensive
glycemia and BP treatment. There were
more adverse effects but no statistically
significant benefit or harm in terms of
total mortality and cardiovascular disease
mortality for any intensively treated
groups compared to standard.

PDE5A Sildenafil or
placebo

CECSID
(2008–2009)
[26,27]

Randomized,
double-blind,
placebo-controlled
phase IV trial in male
T2D patients (Actual
Enrollment- 59)

The study showed an improved ratio of
left ventricular mass to end diastolic
volume and LV contraction, besides
reducing TGFβ levels and demonstrating
an anti-remodeling effect. Endothelial
function or cardiac metabolism were not
affected, and no significant differences
were found in glycemia, insulin,
c-peptide, or lipid profile.

GLP1R Liraglutide or
placebo

LEADER
(2010–2015)
[28,29]

Multi-center,
randomized,
double-blind,
placebo-controlled
phase III trial
in T2D patients (Actual
Enrollment- 9341)

Liraglutide significantly reduced
cardiovascular (CV) outcomes in patients
with myocardial infarction (MI)/stroke
history or having atherosclerotic CV
diseases without MI/stroke history, but
no improvement was reported in patients
with only CV risk. In all the three groups,
the percentage of adverse gastrointestinal
events ranged from 55–65%.
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Table 1. Cont.

Therapeutic
Target Drug Treatment Study Design of Study Study Outcomes

IL-1β
Canakinumab or
placebo or standard
of care

CANTOS
(2011–2019)
[30,31]

Randomized,
double-blind,
placebo-controlled,
event-driven phase III
trial in patients with
myocardial infarction
and elevated hsCRP
levels with/without
T2D (actual
enrollment—10066)

Canakinumab reduced hsCRP and IL6
levels in patients with or without diabetes,
thereby reducing recurrent cardiovascular
events and heart failure hospitalizations,
but did not reduce new-onset diabetes.
Furthermore, the treatment had no
long-term benefits on HbA1c or fasting
plasma glucose.

NRF2 Sulforaphane or
placebo

Clinical trial
with broccoli
sprout extract to
patients with
type 2 diabetes
(2015–2020)
[32,33]

Randomized,
double-blind,
placebo-controlled
phase II trial in T2D
patients (actual
enrollment—103)

Sulforaphane improved HbA1c and
fasting glucose levels in
patients with obesity and T2D but the
study was not focused on cardiovascular
health or outcomes. No severe adverse
effects were observed.

2. Differential Role of mTORC1 and mTORC2 in Diabetic Cardiomyopathy

Although the central theme of T2D is highlighted as insulin resistance and hyper-
glycemia, several disorders in diabetes patients tend to be partially insulin responsive and
therefore the glycemic aspect in the case of diabetes is just one part of a deranged metabolic
network [34]. Obesity, hypertension, and cancers in diabetic patients have earlier been
reported to reflect insulin-responsive pathology [35–37], thereby suggesting that insulin
may promote, rather than benefit, non-glycemic disorders, particularly cardiovascular
diseases [38], which account for the majority of mortality in patients with T2D [39]. In this
context, it is crucial to recognize a target that links the glycemic and non-glycemic aspects
of diabetes to effectively treat diabetic cardiomyopathy.

The mammalian target of rapamycin (mTOR), a member of the phosphatidylinositol
3-kinase (PI3K)-related protein kinase superfamily, is crucial for insulin and insulin-like
growth factor 1 (IGF-1) signaling and plays an important role in cell growth, proliferation,
autophagy, apoptosis, inflammation, and metabolism. There are two distinct mTOR com-
plexes, termed mTORC1 and mTORC2, with a common core catalytic subunit that harbors
specific mTOR-interacting units that designate specific cellular functions to these complexes.
mTORC1 has three core components: regulatory subunit Raptor (regulatory-associated
protein of mTOR), catalytic subunit mTOR, and mLST8/GβL (mammalian lethal with
SEC13 protein 8/G protein beta subunit-like). Raptor helps in substrate recruitment to the
complex and ensures proper subcellular localization. mLST8 associates with the catalytic
domain and stabilizes the kinase activation loop. Besides these components, mTORC1
has two inhibitory subunits PRAS40 (proline-rich Akt substrate of 40 kDa) and DEPTOR
(disheveled EGL-10 and pleckstrin (DEP)-domain containing mTOR-interacting protein).
mTORC2 consists of mLST8 and the catalytic mTOR subunit, but Raptor is replaced by
an analogous subunit Rictor (rapamycin-insensitive companion of mTOR). mTORC2 also
contains the inhibitory DEPTOR subunit along with other regulatory subunits mSin1 and
Protor1/2. mTORC1 is extensively involved in protein synthesis, nucleotide synthesis,
lipid synthesis, autophagy, and mitochondrial biogenesis, while mTORC2 is associated
with cell survival, apoptosis, cytoskeletal organization, and glucose metabolism (Figure 2).
The mTOR complexes and their upstream/downstream signaling processes have been
extensively discussed in several reviews with respect to various pathophysiologies [40–43].



Int. J. Mol. Sci. 2023, 24, 15078 5 of 24Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 2. mTORC1 and mTORC2 complexes and downstream cellular functions. mTORC1 is com-
posed of a core complex of mTOR, Raptor, and mLST8, which is inhibited by DEPTOR and PRAS40. 
mTORC2 comprises a core of mTOR, Rictor, and mLST8 that is inhibited by DEPTOR and regulated 
by Protor1/2 and mSin1. mTORC1 versus mTORC2 activation affects diverse cellular functions. 

In the glycemic context, insulin resistance, driven by mTORC1 hyperactivation-me-
diated deregulation of the insulin receptor (IR)-PI3K/Akt substrate (IRS) signaling axis, 
leads to elevated blood glucose levels (hyperglycemia). Hyperactivation of mTORC1 and 
its downstream S6K1 kinase (Ribosomal S6 kinase) phosphorylates IRS-1 at Ser307 and 
Ser636/639 to initiate IRS-1 degradation [44] and PI3K/Akt signaling suppression, thereby 
causing insulin resistance via the mTORC1/S6K1 negative feedback loop. mTORC1 also 
regulates insulin signaling via Grb10 (growth factor receptor-bound protein 10), which 
inhibits threonine phosphorylation of insulin/IGF receptors and blocks PI3K/Akt signal-
ing [45], thereby disrupting the IRS axis leading to insulin resistance and increased hyper-
glycemia [46].  

In the non-glycemic context, closely associated with diabetic cardiomyopathy and 
endothelial disorders, mTORC1 has been prompted as a key player. The mTORC1 path-
way has been linked to cardiac hypertrophy and hypertension. An upregulated 
mTORC1/S6K1 activity contributes to deregulated insulin-stimulated vasodilation by 
suppressing eNOS (endothelial nitric oxide synthase), resulting in vasoconstriction and 
hypertension. Several reports of diabetic cardiomyopathy and heart failure also demon-
strate upregulated mTORC1 activity, whereas studies concerning mTORC1 inhibitors (ra-
pamycin and PRAS40) [47,48] and induced cardiac autophagy (inhibited by mTORC1) 
show beneficial effects in diabetic cardiac dysfunction, implying a pathogenic role of 
mTORC1 hyperactivation [49]. In T2D patients, ischemia and cardiomyopathy go hand-
in-hand, leading to heart failure. The condition results in a fibrotic phenotype of the heart 
which initially faces ejection fraction-preserved diastolic dysfunction and develops sys-
tolic dysfunction in the later stages [50]. mTORC1 regulates ischemic injury conditions by 
preserving energy homeostasis, and, as per literature, Rheb (Ras homolog enriched in 
brain) inhibition, which subsequently inhibits mTORC1 and protects cardiomyocytes by 
activating autophagy during energy deprivation and ischemia [51]. Studies have indicated 
that AMPK inhibition in glucose-deprived and ischemia conditions, resulting in mTORC1 
hyperactivation, lead to worsening of cardiac dysfunction and cardiomyocyte death [52], 
while AMPK activation attenuates pressure overload or diabetes-related cardiac remodel-
ing [53,54]. Moreover, AMPK activators like resveratrol, berberine, and metformin have 
also been associated with cardiovascular benefits in T2D. Resveratrol has been linked to 
upregulated adiponectin levels to prevent myocardial ischemia injury in diabetic mice 
[55], whereas berberine studies in diabetic cardiomyopathic rats have showed attenuated 
hypertrophy via activated AMPK and reduced GSK3β (glycogen synthase kinase 3 beta) 

Figure 2. mTORC1 and mTORC2 complexes and downstream cellular functions. mTORC1 is com-
posed of a core complex of mTOR, Raptor, and mLST8, which is inhibited by DEPTOR and PRAS40.
mTORC2 comprises a core of mTOR, Rictor, and mLST8 that is inhibited by DEPTOR and regulated
by Protor1/2 and mSin1. mTORC1 versus mTORC2 activation affects diverse cellular functions.

In the glycemic context, insulin resistance, driven by mTORC1 hyperactivation-
mediated deregulation of the insulin receptor (IR)-PI3K/Akt substrate (IRS) signaling
axis, leads to elevated blood glucose levels (hyperglycemia). Hyperactivation of mTORC1
and its downstream S6K1 kinase (Ribosomal S6 kinase) phosphorylates IRS-1 at Ser307 and
Ser636/639 to initiate IRS-1 degradation [44] and PI3K/Akt signaling suppression, thereby
causing insulin resistance via the mTORC1/S6K1 negative feedback loop. mTORC1 also
regulates insulin signaling via Grb10 (growth factor receptor-bound protein 10), which
inhibits threonine phosphorylation of insulin/IGF receptors and blocks PI3K/Akt sig-
naling [45], thereby disrupting the IRS axis leading to insulin resistance and increased
hyperglycemia [46].

In the non-glycemic context, closely associated with diabetic cardiomyopathy and
endothelial disorders, mTORC1 has been prompted as a key player. The mTORC1
pathway has been linked to cardiac hypertrophy and hypertension. An upregulated
mTORC1/S6K1 activity contributes to deregulated insulin-stimulated vasodilation by
suppressing eNOS (endothelial nitric oxide synthase), resulting in vasoconstriction and
hypertension. Several reports of diabetic cardiomyopathy and heart failure also demon-
strate upregulated mTORC1 activity, whereas studies concerning mTORC1 inhibitors
(rapamycin and PRAS40) [47,48] and induced cardiac autophagy (inhibited by mTORC1)
show beneficial effects in diabetic cardiac dysfunction, implying a pathogenic role of
mTORC1 hyperactivation [49]. In T2D patients, ischemia and cardiomyopathy go hand-
in-hand, leading to heart failure. The condition results in a fibrotic phenotype of the
heart which initially faces ejection fraction-preserved diastolic dysfunction and develops
systolic dysfunction in the later stages [50]. mTORC1 regulates ischemic injury conditions
by preserving energy homeostasis, and, as per literature, Rheb (Ras homolog enriched in
brain) inhibition, which subsequently inhibits mTORC1 and protects cardiomyocytes by
activating autophagy during energy deprivation and ischemia [51]. Studies have indicated
that AMPK inhibition in glucose-deprived and ischemia conditions, resulting in mTORC1
hyperactivation, lead to worsening of cardiac dysfunction and cardiomyocyte death [52],
while AMPK activation attenuates pressure overload or diabetes-related cardiac remodel-
ing [53,54]. Moreover, AMPK activators like resveratrol, berberine, and metformin have
also been associated with cardiovascular benefits in T2D. Resveratrol has been linked to
upregulated adiponectin levels to prevent myocardial ischemia injury in diabetic mice [55],
whereas berberine studies in diabetic cardiomyopathic rats have showed attenuated hy-
pertrophy via activated AMPK and reduced GSK3β (glycogen synthase kinase 3 beta) [56].
A recent study by Yang F. et al., in 2019, further emphasized the role of AMPK activators
in diabetic cardiomyopathy benefit and reported metformin-mediated NLRP3 inflamma-
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some inhibition via AMPK/mTOR pathway [57]. These reports cumulatively suggest a
critical role of mTORC1 downregulation in diabetic cardiomyopathy benefits. Figure 3
depicts mTOR signaling and its hyperactivation in cardiomyocytes that contributes to
hyperlipidemia, inflammation, and stress.
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Rapamycin, another direct mTORC1 inhibitor, has been closely linked to improved 
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pamycin or rapalogs, like everolimus, have shown beneficial effects and an improvement 
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in T2D patients [78]. These poor outcomes of chronic rapamycin treatment might involve 
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Figure 3. The cardiac mTORC1 signaling network. In normal conditions, IR-mediated PI3K/Akt
activation leads to activated mTORC1, which inhibits autophagy via ULK1 and promotes protein
synthesis of inflammatory and proliferative markers via S6K1 and eIF4E. In diabetic cardiomyopathy,
mTORC1 is hyperactivated due to AMPK inhibition by hyperglycemia-mediated high APT:AMP
ratio and mTORC1 hyperactivation induces a negative feedback loop to inhibit Akt, resulting in
insulin resistance. Besides insulin resistance, mTORC1 hyperactivation also leads to dysregulated
lipid synthesis and mitochondrial biogenesis, resulting in ROS upregulation and cardiac dysfunc-
tion. eIF4E—eukaryotic initiation factor 4E; IR—insulin receptor; IRS1—insulin receptor substrate
1; GLUT—glucose transporter; SLC—solute carrier group of membrane transporters; Rag—Ras-
related GTPase; Rheb—Ras homolog enriched in brain; ULK—Unc-51-like kinase; ATG—autophagy-
related protein.

Ionic imbalance, including a state of calcium overload as well as increased intracellular
sodium, is a key player in the development of cardiac dysfunction and characteristics of
diabetic cardiomyopathy [58–60]. mTOR signaling is involved in diverse biological path-
ways by regulating ionic homeostasis, specifically by regulating the activity and expression
of various Ca2+ channels [61–63]. Intertwined links between sarcoplasmic reticulum cal-
cium homeostasis and mTORC1 signaling are critical for physiological and pathological
cardiac hypertrophy [64,65]. Inhibition of mTORC1 with rapamycin induces Ca2+ release
from lysosomes through the activation of two-pore segment channel 2, TPC2 [66]. The
downregulation of the inward rectifier potassium (IK1) channel with intracellular Ca2+

overload is a hallmark in cardiac hypertrophy, interstitial fibrosis, and electrical remodeling
and failure [67]. Specifically, mTORC1 regulates the lysoNaATP, which determines the
sensitivity of endolysosome’s resting membrane potential to Na+ and cytosolic ATP as
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well as controls lysosomal pH stability and whole-body amino acid homeostasis [68,69].
Selective IK1 agonist attenuates cardiac remodeling by promoting autophagy via nega-
tively regulating calcium-activated CaMKII and mTOR signaling [69]. The activation of
IK1 channel protects the heart against myocardial ischemia-induced cardiac dysfunction
by inhibiting mTOR-p70S6 signaling pathway [68]. mTOR also acutely controls endo-
somal and lysosomal functions through the endolysosomal ATP-sensitive Na+ channel
(lysoNaATP) in response to changes under different nutrition status and metabolic condi-
tions [62]. mTORC1 regulates the endolysosomal ATP-sensitive Na+ channel (lysoNaATP),
which determines the sensitivity of endolysosome’s resting membrane potential to Na+

and cytosolic ATP as well as controls lysosomal pH stability and whole-body amino acid
homeostasis. Under nutrient deprivation, mTORC1 interacts with lysosomal TPC2 and
regulates authophagy [62,70].

From a therapeutic perspective, direct and indirect mTORC1 inhibitors have been
broadly used for treating T2D and co-existing diabetic cardiac conditions. Metformin is a
widely used, FDA-approved anti-diabetes drug that regulates mTORC1 via mitochondrial
complex I-mediated AMPK activation [71] or AMPK-independent Rag GTPase inhibi-
tion [72]. Recent preclinical reports on metformin have shown attenuated myocardial
hypertrophy [73] and reduced inflammation [57] in diabetic animal models but earlier
clinical trials with metformin, as an overall cardioprotective drug in diabetic patients, are
inconspicuous [19]. A 2014 study by Mirko Volkers et al. on PRAS40, a direct mTORC1
inhibitor, reported diabetic cardiomyopathy prevention besides improved hepatic insulin
sensitivity in a diabetic mouse model [74] but further PRAS40 studies in diabetic cardiac
dysfunction are yet to emerge.

Rapamycin, another direct mTORC1 inhibitor, has been closely linked to improved
T2D and diabetic cardiac dysfunction [75–77], but multiple studies have reported con-
troversial effects of chronic treatment with rapamycin [78,79]. Studies with analogs of
rapamycin or rapalogs, like everolimus, have shown beneficial effects and an improvement
in glucose metabolism in diabetes by disrupting the mTORC1/S6K1 feedback loop [80],
but similar to rapamycin, chronic treatment with rapalogs has shown detrimental effects in
T2D patients [78]. These poor outcomes of chronic rapamycin treatment might involve the
inhibition of mTORC2 activity [81]. However, chronic treatment with a sub-clinical dose
(0.25 mg/kg/day) of rapamycin or nano-formulated micelles of rapamycin, rapatar, has
ameliorated the metabolic status of diabetic mice, with an improvement in cardiac function
by preferentially inhibiting mTORC1 [75,82]. Our studies on rapamycin also reported
mTORC2 activation in diabetic mice and rabbits, which might be associated with improved
cardiac function and reduced myocardial infarction following ischemia-reperfusion in-
jury [83,84]. A 2014 study using an ischemia-reperfusion injury mouse model suggested
that miR-144 improves cardioprotection via suppressing mTORC1 and simultaneously
activating mTORC2 [85], while another study implicated the role of mTORC2 in preserving
cardiac function in pressure-overload hypertrophy [86], therefore highlighting mTORC1
inhibition, alongside mTORC2 activation, as crucial mechanisms to consider in diabetic
cardiomyopathy treatment.

3. Sodium and Glucose Co-Transporter Inhibitors (SGLT2is)—Do They Regulate
mTORC1 in Diabetic Cardiomyopathy?

Despite the boom in preclinical and clinical studies on diabetic cardiomyopathy, its
pathogenesis and unified paradigm remain unclear for devising specific therapeutic strate-
gies. As a result, a plethora of research is still based on figuring out the most effective
therapeutic approach to treating diabetes, diabetic cardiomyopathy, and related heart
failure. To fill this critical gap in therapeutics, mTORC1 might be a key target for dia-
betic therapeutics, which also addresses other co-morbidities like cardiomyopathy in a
glycemic and non-glycemic context. In T2D, metformin is usually the first-line standard
treatment [87] and though a few studies have shown metformin to exert cardioprotective
effects via mTORC1 regulation [57], these reports are very limited despite a long history of
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metformin use [88]. Recently, sodium–glucose co-transporter 2 inhibitors (SGLT2i), a new
class of FDA-approved [89] anti-diabetic drugs, have shown a promising risk reduction of
cardiomyopathy and other cardiovascular diseases in patients with T2D [90,91], owing to
the overexpression of SGLTs in diabetes mellitus [92].

Glucose homeostasis, a crucial diabetes parameter associated with mTORC1 [93], is
actively regulated by transporters like GLUTs and SGLTs that mediate D-glucose transport.
While SLC2 genes encode for facilitated glucose diffusion transporters GLUT, sodium
glucose co-transporters SGLT1-5 are encoded by SLC5. SGLT transports glucose into
cells via Na+/K+-ATPase pump gradient and two major SGLT isoforms are SGLT1 and
SGLT2. SGLT1 is expressed in the small intestine, kidneys, brain, and heart, while SGLT2 is
expressed in kidney and pancreatic β cells. SGLT1 primarily acts as rate limiting intestinal
glucose absorption whereas SGLT2 manages bulk glucose reabsorption in the kidneys [94].
In the kidneys, SGLT2 in the S1/S2 segment of the convoluted proximal tubule in kidney
nephrons reabsorbs 90% of the glomerular filtrate glucose, aided by a positive sodium
gradient [95], while SGLT1 reabsorbs the remaining 10% in the S3 segment of the proximal
tubule [96]. The reabsorbed glucose in the tubular epithelial cells is flushed back into
circulation through GLUT2 and this whole unidirectional transport of glucose is coupled
to and regulated by the Na+K+ ATPase pump on the basolateral side of the cells [97].
SGLT2is primarily work as anti-hyperglycemic agents by blocking the SGLT2 channel
and preventing glucose reabsorption, thus preventing hyperglycemia in diabetes mellitus.
Preclinical studies with phlorizin, the first SGLT2 inhibitor, in the 19th century, improved
insulin sensitivity in diabetic rat models but did not have any scope for oral bioavailability
and showed adverse gastrointestinal concerns [98]. In 1990, T-1095, a phlorizin derivative,
was developed as the first orally available SGLT2 inhibitor but was discontinued after
phase II clinical trials owing to its non-selective nature and safety concerns [98]. In current
therapeutic use, the common FDA-approved SGLT2is are empagliflozin, dapagliflozin, and
canagliflozin, which have demonstrated cardiorenal benefits in diabetic patients [99,100].

Over the years, besides significant glucose-lowering efficacy, SGLT2is have also shown
remarkable cardiovascular benefits in renal-impaired patients with lower glomerular filtra-
tion rates, indicating a major role of SGLT2is in promoting diabetic cardiac dysfunction
benefits [101]. Table 2 provides a summary of SGLT2i clinical trials (phase III) in assessing
cardiac dysfunction and heart failure with diabetes, while current trials are also focusing
on SGLT2is in heart failure mediated by other metabolic insults like obesity [95,102]. A
large multinational observational cohort study on T2D patients, CVD-REAL, associated
the early initiation of SGLT2is with a lower risk of heart failure, myocardial infarction,
and stroke, compared to other glucose-lowering drugs [100,103,104]. The EMPA-REG
trial [100,105] in T2D patients with established cardiovascular risks showed a reduction
in cardiovascular-related deaths with empagliflozin, while the DAPA-HF trial [106] in
diabetic/non-diabetic patients with heart failure reported that dapagliflozin reduces the
worsening of cardiovascular risk and heart failure by 26%, regardless of T2D status. These
clinical trials suggested a moderate/no risk of genital infections with SGLT2i treatment but,
interestingly, amputation risks were closely associated with SGLT2is like canagliflozin and
ertugliflozin, which have a higher degree of non-selectivity towards SGLT2. Compared to
other anti-diabetic drugs like DPP4i, safety analyses of SGLT2i treatment indicate a higher
risk of genital infections, urinary tract infections, hypertension, and diabetic ketoacidosis,
and a lower risk of acute kidney injury and decreased bone mineral density [107]. Other
clinical trials concerning diabetic cardiomyopathy like the EMPEROR-Reduced trial [108]
of SGLT2-selective empagliflozin also show reduced cardiovascular risks and heart fail-
ure in diabetic and non-diabetic patients with uncomplicated adverse genital infections,
thus strongly suggesting that SGLT2is work in both glycemic and non-glycemic contexts.
Therefore, deciphering the mechanism of SGLT2is and whether it concerns mTORC1 reg-
ulation in terms of cardiac dysfunction is crucial to understand its therapeutic role in
diabetic cardiomyopathy.
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Table 2. Phase III clinical trials of SGLT2is for diabetic cardiac dysfunction.

Study and
Duration Treatment Total

Enrollment Key Inclusion Criteria Study Outcomes Adverse/Side Effects Study Limitations

EMPA-REG
OUTCOME
2010–2015
[100,105,109,110]

Empagliflozin
vs. placebo 7064

Patients with T2D and
high-risk/established
cardiovascular disorders.

Reduction in cardiovascular death and
non-fatal myocardial infarction.
For EMPA-REG post hoc analysis,
refer to [111,112].

Moderate benign
mycotic genital
infections.

The study lacked adjustment for
background medications in-trial
and had a controversial post hoc
nature [113,114].

CANVAS
2009–2017 [30,115]

Canagliflozin
vs. placebo 4330

Patients with T2D and
high cardiovascular risk;
enrolled women
population
post-menopausal or on a
birth-control regime.

Reduction in the composite of
cardiovascular deaths, non-fatal
myocardial infarction, and
non-fatal stroke.
For CANVAS post hoc analysis,
refer to [116,117].

Risk of amputation
(metatarsal) and
moderate risk of
genital infections.

The program had a relatively small
participant proportion, indicating
moderate number of events for
health outcomes and increasing the
risk of false positive findings [115].

DECLARE-TIMI 58
2013–2018
[118,119]

Dapagliflozin
vs. placebo 17,190

Patients with diabetes
mellitus and
non-insulin-dependent
cardiovascular risk.

Lower glycated hemoglobin along with
lower rates of cardiovascular diseases
and hospitalization.
For DECLARE-TIMI post hoc analysis,
refer to [120].

Moderate genital
infections.

Low African American and
Hispanic study population
precludes any definite
understanding of ethnicity-based
treatment outcomes. Moreover,
blood pressure subanalysis
categories were not prespecified in
the study [121,122].

VETRIS CV
2013–2019
[123,124]

Ertugliflozin vs.
placebo with
background
glycemic rescue

8246
Patients with T2D and
established
cardiovascular diseases.

Incidence of cardiovascular deaths and
heart failure hospitalizations did not
differ significantly between the
ertugliflozin and placebo groups.
For VETRIS CV post hoc analysis,
refer to [125].

Amputation risk in
~2% patients of the
ertugliflozin groups.

The study population was
predominantly white and male,
limiting ethnicity and sex-based
study interpretation. Moreover,
differences in baseline
characteristics in some subgroups
might affect the influence of
background medications on
observed Ertugliflozin effects [126].
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Table 2. Cont.

Study and
Duration Treatment Total

Enrollment Key Inclusion Criteria Study Outcomes Adverse/Side Effects Study Limitations

DAPA-HF
2017–2019
[106,127]

Dapagliflozin
vs. placebo 4744

Patients with <40%
ejection fraction and
symptomatic heart
failure; 50% of patients
with T2D.

Reduction in cardiovascular deaths and
heart failure hospitalizations for both
diabetic and non-diabetic patients.
For DAPA-HF post hoc analysis,
refer to [128,129].

No significant excess of
genital infection or
amputations observed
between the
dapagliflozin and
placebo groups.

The main limitation of the
DAPA-HF trial included a reduced
population of Black patients (<5%),
elderly patients with co-morbidities
(>66 years), and patients with
sacubitril-valsartan at
baseline [106].

EMPEROR-
Reduced
2017–2020
[108,130]

Empagliflozin
vs. placebo 3730

Patients with <40%
ejection fraction and
chronic heart failure risk;
50% of the patients
with T2D.

Reduction in cardiovascular risk and
heart failure hospitalizations in both
diabetic and non-diabetic patients.
For EMPEROR-Reduced post hoc
analysis, refer to [131,132].

Uncomplicated genital
tract infections observed
in the empagliflozin
group.

The median follow-up duration was
very limited (16 months) and
outpatient events were not
adjudicated or reviewed [133].
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Although SGLT2is have shown interesting benefits in terms of cardiac function with
or without T2D, the expression of SGLT2 channels is negligible in the heart, further high-
lighting SGLT2-independent functions of these inhibitors in diabetic cardiomyopathy and
cardiac dysfunction [134,135]. The presence of SGLT1 in the heart is well established and
is reportedly overexpressed in T2DM patients [136]. Along with glucose transporters
(GLUT), SGLT1 is involved in cardiomyocyte glucose uptake, and in ischemic conditions,
SGLT1 is reported to supplement the ATP reserve by increasing glucose utilization, thus
playing a role in myocardial energy metabolism [137,138]. Several clinical trials with
SGLT2is have emphasized cardiac benefits, but most of these drugs show a variable affinity
for SGLT1. To provide some evidence on specificity, Kondo et al. reported that non-
selective SGLT2is, like canagliflozin, can mediate anti-inflammatory and anti-apoptotic
effects, which are related to SGLT1-binding-mediated improved NOS coupling in cardiomy-
ocytes, thus indicating SGLT1 inhibition by SGLT2is [138,139]. Studies on dapagliflozin
acting as a SGLT1/2 dual inhibitor, also suggest the involvement of myocardial SGLT1
in mediating SGLT2i effects [140]. Some researchers therefore emphasize that SGLT1/2
dual inhibitors provide greater cardiac benefit and heart failure prevention compared to
selective SGLT2is [141], but the role of SGLT1 inhibition in terms of cardiovascular benefits
has a fair share of contradictory reports. While some studies reported reduced heart failure
incidence [142] and enhanced AMPK [139] with SGLT1 inhibition, others showed that
AMPK activation resulted in increased SGLT1 expression, which can lead to hypertrophy
and ischemia [143]. To bypass these contradictions, trials to treat diabetic cardiomyopathy
or cardiac dysfunction (without diabetes) use empagliflozin, which is more SGLT2-selective
as compared to canagliflozin and dapagliflozin, thus limiting the chances of SGLT1 chan-
nel cross-targeting [144–146]. For such selective SGLT2i scenarios, off-target effects on
GLUT receptors might be involved. While some researchers have hypothesized that the
SGLT2i-GLUT binding inhibits glucose uptake in cardiac tissue in an SGLT1/2-independent
manner [147] and empagliflozin has been proposed to dock on GLUT1 and GLUT4 [148],
confirmed research is yet to be documented in terms of cardiac pathophysiology.

Amidst some theories to explain the role of SGLT2is in cardiac function that involves
the renin–angiotensin–aldosterone system (RAAS) and diuretic pathways [149], a promi-
nent hypothesis to support the role of SGLT2is in the heart concerns the involvement
of sodium ion homeostasis [150]. Cardiac Na+ and Ca2+ homeostasis plays a major role
in maintaining heart physiology, rhythm, and contraction [151]. Increased intracellular
sodium (Nai

+) due to hyperactive sodium hydrogen exchanger (NHE) is well known in
cardiac dysfunction pathologies and leads to elevated Ca2+ efflux from the mitochondria,
resulting in oxidative stress and deteriorated cellular function [152,153]. Besides variable
degrees of cross-reactivity with SGLT1 [154], several reports on SGLT2is have demonstrated
non-SGLT2 cardiac-based off-target effects in reducing ventricular myocyte systolic Ca2+

and lowering myocardial cytoplasmic Na+/Ca2+ via NHE regulation [155]. A reduction in
myocardial Nai

+ via the inhibition of Na+/H+ or Na+/Ca2+ exchangers has been reported
to improve cardiac hypertrophy and heart failure [156,157]. Preclinical studies have shown
that SGLT2is can directly bind and reduce NHE activity in cardiomyocytes, leading to
decreased Nai

+ and restored Ca2+ homeostasis, resulting in improved cardiac function
and antioxidative capacity of cardiomyocytes [158,159], but the observations are not con-
sistent [148,160]. Baartscheer et al. showed direct effects of empagliflozin on Na+ and
Ca2+ alteration, independent of SGLT2 binding in isolated ventricular cardiomyocytes,
thus indicating a similar role of empagliflozin to that of NHE inhibitors [158]. SGLT2is
like empagliflozin and dapagliflozin have also been implicated in enhanced sarcoplasmic
endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity, which improves cardiac contrac-
tility via sarcoplasmic reticulum Ca2+ reuptake [161,162]. Under normal physiological
conditions, the Na+/H+ exchanger pumps Na+ inside the cell and H+ outside the cell to
maintain ionic homeostasis but in case of prolonged NHE activation during T2D, excess
Nai

+ increases sodium–calcium exchanger (NCX)-mediated intracellular Ca2i+, leading
to oxidative stress and an acidic intracellular environment [163,164]. Therefore, by re-
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ducing NHE hyperactivity, SGLT2is can promote an alkaline intracellular environment.
A recent bioRxiv preprint study by Kazyken and colleagues reported that alkaline intracel-
lular pH can activate the AMPK/mTORC2 pathway and inhibit mTORC1 activity [165].
This links the role of SGLT2is to AMPK activation and subsequent mTORC2 activity via
NHE-mediated pH homeostasis and Cai

2+ modulation [64].
From another perspective, SGLT2 inhibitors have been shown in some studies to

promote ketogenesis, lipid oxidation, and erythrocytosis, which can reflect a fasting-like
transcriptional paradigm by mimicking nutrient deprivation and hypoxia [166] but can also
be responsible for the moderate adverse effects in SGLT2i clinical trials (Table 2). Although
systemic glucose lowering or ketogenesis by SGLT2is in vivo can modulate a starvation
and nutrient deprivation environment, a possible GLUT inhibition by selective SGLT2is
might be responsible for glucose deprivation in isolated cardiomyocytes. A depletion in
the glucose environment caused by SGLT2is can reduce the ATP/ADP ratio, leading to
increased AMP that stimulates the phosphorylation of AMPK and subsequently, phospho-
rylates GAPDH to activate SIRT1 [167]. AMPK (nutrient sensor) and SIRT1 (redox rheostat)
activation help cardiomyocytes to adapt in response to SGLT2i-mediated nutrient-deprived
conditions. AMPK and SIRT1 activation have been reported to negatively regulate mTORC1
in a Tsc1/2-dependent manner [49,168], thus indicating that SGLT2is indirectly inactivate
mTORC1 by mimicking a nutrition-deprivation setting. Furthermore, a recent study of
SGLT2is in obesity-related diabetic cardiomyopathy reported sestrin2-mediated AMPK
activation/mTORC1 inactivation in cardiomyocytes upon empagliflozin treatment [169].
Some studies have reported energy deprivation as a cause for sestrin2 activation [170],
which can be correlated with AMPK/mTORC2 activation besides inhibiting mTORC1 and
promoting autophagy [171]. This adds another revelation to the role of SGLT2is in attenuat-
ing diabetic cardiomyopathy conditions by promoting an energy-deprived environment.
A recent study by Zhang et al. in 2023 suggested that empagliflozin significantly reduced
diabetic cardiomyopathy by promoting branched-chain amino acid catabolism, inhibiting
mTORC1/p-ULK1, and reactivating autophagy [172], while another study by Feng et al.
reported that dapagliflozin prevented cardiac dysfunction in diabetic rats by restoring
autophagy by repressing mTORC1 and activating AMPK [173]. Figure 4 shows a summary
of SGLT2 inhibitor mechanisms to target renal glucose absorption (canonical) and cardiac
mTORC1 signaling (non-canonical) in diabetic cardiomyopathy.

SGLT2is have been broadly assertive in terms of cardiac benefits via potential mech-
anisms of anti-inflammation, oxidative stress reduction, and apoptosis prevention [174].
Although the cardioprotective effects of SGLT2is were previously regarded as glucose-
lowering systemic effects, current research points out several direct cardiac effects of
SGLT2is and mTORC1 might be the missing link. While Leet et al. reported that da-
pagliflozin reduced inflammatory cytokines IL-6/IL-1β and superoxide levels in a my-
ocardial infarction model [175], Shi X et al. showed attenuation of pro-inflammatory
cyclooxygenase-2 and IL-1β in a heart failure model [176]. Taking a step deeper into the
mechanism, Ye Y et al. showed that dapagliflozin reduced diabetic-induced activation of
cardiac nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome
and the subsequent stimulation of pro-inflammatory cytokine production, which are associ-
ated with T2DM cardiac inflammation [177]. The researchers also found that dapagliflozin
reduced apoptosis speck-like protein containing a caspase recruitment domain (ASC) and
IL-1β in cardiofibroblasts in vitro, indicating that these effects are not SGLT2-related or
glycemic. Besides inflammation, oxidative stress is a major player in diabetic cardiomy-
opathy and cardiac hypertrophy [178]. High doses of empagliflozin have been reported in
some studies to reduce cardiac superoxide levels, advanced glycation end products (AGE),
and AGE receptors (RAGE) in diabetic female rodent models [179], while dapaglifozin in
myocardial infarction models has been implicated as an antioxidant modulator through di-
rect reactive oxygen and nitrogen species (RONS)-dependent STAT3 signaling, independent
of SGLT2-binding or glucose-lowering anti-diabetic effects [175]. Endoplasmic reticulum
stress pathway (ERS)-mediated cardiac apoptosis via ROS is also a prominent patholog-
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ical condition in diabetic cardiomyopathy and studies on empagliflozin have reported
decreased ERS-associated caspase-12 [180]. However, some studies on different SGLT2i
dosages show no anti-apoptotic benefit [162], making the evidence inconclusive. Although
more studies are required to conclude the direct role of SGLT2is in NLRP3, ROS, and ERS-
associated signaling, SGLT2i-mediated mTORC1 regulation can be hypothesized as the
medium. Several reports indicate that mTORC1 activation induces NLRP3 inflammasome,
while rapamycin and AMPK activation can inhibit mTOR/NLRP3 [57,181]. Moreover,
literature reports also establish AMPK-mediated STAT3 inhibition via attenuation of JAK
signaling and activation of redox-regulating NRF2 [182]. Therefore, aside from the systemic
glucose-lowering advantage of SGLT2i cardioprotection, mTORC1 regulation by selective
SGLT2is can also explain the direct mechanism of documented SGLT2i action in cardiac
tissue to prevent cardiac dysfunction in diabetic cardiomyopathy patients.
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4. Future Directions

With the advent of SGLT2is as potential anti-diabetes drugs with independent car-
dioprotective effects, several preclinical comparative studies with existing FDA-approved
drugs, like metformin, sulfonylurea, DPP4i-inhibitors, and GLP-1 agonists, have come
to the forefront. Sulfonylureas are the oldest form of anti-diabetic drug which stimulate
insulin from pancreatic beta cells [183], while metformin is regarded as the first line of
diabetic drugs, which reduces glucose production in the liver and enhances insulin sen-
sitivity [184]. DPP4i and GLP-1 agonists both work by stimulating insulin secretion after
an oral glucose load via incretin effect [185,186]. An observational multidatabase cohort
study reported reduced myocardial infarction, stroke, and heart failure (MACEs—major
adverse cardiovascular events) with SGLT2is as compared to DPP4is [187], whereas another
database study concerning SGLT2is vs. metformin reported a trend of decreased heart fail-
ure hospitalizations and mortality events with SGLT2is in T2D patients [188]. Other cohort
studies in terms of combination therapy showed SGLT2i–metformin to have a reduced
all-cause mortality risk compared to SGLT2i monotherapy or sulfonylurea–metformin [189].
Recently, several observational comparative studies are focusing on SGLT2i and GLP-1 ago-
nists as they are the first anti-diabetic drugs to demonstrate definite direct cardiac benefits
with a reduction in glycated hemoglobin level in T2DM [190]. In a meta-analysis of several
cardiovascular outcome trials regarding SGLT2i and GLP-1 agonists, Zelniker et al. found
that MACE reduction was restricted to SGLT2i-administered patients with established
atherosclerosis [191], while Wright et al. demonstrated that both SGLT2i monotherapy
and SGLT2–GLP-1 agonist combination therapy may have a beneficial primary MACE risk
reduction [192]. Emphasizing mTORC1 inhibition/mTORC2 activation as our proposed
key to cardiovascular improvements in diabetic cardiomyopathy, several reports of GLP-1
agonists show mTORC2 activation [193] besides SGLT2i-mediated mTORC1 inhibition,
making their combination therapy ideal, but there are limitations of increased hypoglycemia
risk [194]. To date, there are no randomized controlled trials that compare SGLT2is with
GLP-1 agonists head-to-head in diabetic cardiomyopathy and hence the current inconsis-
tent meta-analysis-based interpretations have their limitations, thus demanding further
preclinical and clinical studies in the future.

Besides diving into a deeper cardiovascular understanding of SGLT2is, there is a dire
need to focus on the adverse effects of SGLT2i treatment in diabetic patients. The association
of SGLT2i treatment with genital infections has been reported in several trials like EMPA-
REG [109], DECLARE-TIMI [118], and EMPEROR-Reduced [130], which might be due
to higher glucose concentrations in the urine, which promote bacterial growth [195,196],
but the statistical data are inconclusive. Currently, a one-year observational study is re-
cruiting female T2DM patients taking empagliflozin or dapagliflozin to correlate SGLT2is
with urinary tract infections [197], but further studies are required to document statistical
significance and mitigate any severe adverse effects of SGLT2i monotherapy or combina-
tion therapy.

With several completed and ongoing clinical trials, SGLT2 inhibitors are rapidly emerg-
ing as the miracle anti-diabetic drug. Along with beneficial renal outcomes and reduced
kidney insults in T2DM patients, SGLT2is have also galvanized their position as a potential
treatment candidate for diabetic cardiomyopathy and other cardiac disorders owing to
their direct SGLT2-independent cardiac effects, thus encouraging further applications of
SGLT2is in other metabolic co-morbidities like non-alcoholic liver steatohepatitis (NASH),
with or without diabetes/obesity. A placebo-controlled interventional phase II study (LEG-
END) by Inventiva Pharma is currently recruiting participants to compare the effects of
lanifibranor (a pan-peroxisome proliferator-activated receptor agonist) monotherapy and
lanifibronor–empagliflozin combination therapy in patients with NASH and T2DM [198],
whereas another phase IV interventional clinical trial is underway to assess the effect of
empagliflozin on fatty liver in non-diabetic patients [199]. With several other preclinical
and clinical trials [200–202] lined up to assess the potential of SGLT2 inhibitors in vari-
ous metabolic pathophysiologies, our review presents a crucial molecular perspective of
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SGLT2is’ mechanism of action mediated by mTOR complexes. A better understanding
of how off-target SGLT2i effects can regulate mTOR complexes might be the stairway to
repurposing these miracle drugs in the near future.

5. Conclusions

Cardiovascular diseases like diabetic cardiomyopathy are critical co-manifestations in
patients with diabetes mellitus and several medical approaches are currently targeting dia-
betes with a significant consideration for treatments that also improve cardiac dysfunction
and cardiomyopathy. A thorough analysis of T2D and its co-morbidities, in both glycemic
and non-glycemic contexts, translates into mTORC1 being a unified therapeutic target.
Besides the standard metformin treatment for diabetes, SGLT2 inhibitors have come up
recently as potential anti-diabetic drugs that show very promising cardiovascular protec-
tion. Although the mechanisms of the cardiac effects of SGLT2is are still being explored,
the existing hypotheses consistently point to mTORC1 regulation via ionic dyshomeosta-
sis/stress and mimics of nutrient deprivation. While the role of SGLT2is in downregulating
mTORC1 is very critical for cardioprotective effects in diabetic patients, owing to the evi-
dence of improved cardiac function by mTORC1-inhibitor rapamycin, all roads do not lead
to Rome; several studies have indicated that a fine balance between mTORC2 activation and
mTORC1 inhibition is optimal for cardiac benefits in patients with/without diabetes. An
in-depth understanding of off-target SGLT2i effects might open up novel treatment regimes
with SGLT2is in several other cardiac, renal, pancreatic, cerebral, and hepatic pathologies
as a single drug or combination therapy. With further clinical progress in exploring the
mechanisms of how SGLT2is regulate cell signaling, drug modifications might also help
in bypassing the adverse effects of genital infections, thus ameliorating the standard of
patient care. Therefore, further research is pivotal to understand novel mechanisms of
SGLT2is in the non-glycemic SGLT2-independent context besides shedding light on the role
of SGLT2is in regulating the mTORC1/mTORC2 switch for a holistic approach towards
diabetic cardiomyopathy and related metabolic disorders.
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