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Abstract: A series of C- and B-substituted nido-carborane derivatives with a pendant pyridyl group
was prepared. The synthesized compounds were used as ligands in the complexation reactions
with bis(triphenylphosphine)nickel(II) and palladium(II) chlorides to give six new metallacom-
plexes with unusual η5:κ1(N)-coordination of the metal center. The single crystal structures of 1-
(NC5H4-2′-S)-1,2-C2B10H11, 1-(NC5H4-2′-CH2S)-1,2-C2B10H11, Cs [7-(NC5H4-2′-CH2S)-7,8-C2B9H11]
closo- and nido-carboranes and 3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-3,1,2-NiC2B9H10 and 3-Ph3P-3-(4(7)-
NC5H4-2′-CH2S)-closo-3,1,2-NiC2B9H10 metallacarboranes were determined using single crystal
X-ray diffraction.

Keywords: nido-carborane; pyridine; nickel; palladium; half-sandwich metal complexes; synthesis;
structure

1. Introduction

nido-Carborane [nido-7,8-C2B9H12]− is one of the most important members of the
family of polyhedral boron hydrides, located at the junction of inorganic and organic
chemistry. nido-Carborane (from Latin nidus, meaning “nest”) is formed upon the removal
of the boron atom adjacent to the carbon atoms from the icosahedral ortho-carborane 1,2-
C2B10H12, which has the closo-structure (a corruption of clovo, from Latin clovis, meaning
“cage”), under the action of strong nucleophiles and has an open pentagonal face [1,2]. After
the removal of endo-hydrogen from nido-carborane, the resulting dicarbollide anion [nido-
1,2-C2B9H11]2- can act as a ligand similar to a cyclopentadienyl one [3–8]. It is known that
transition metal complexes with cyclopentadienyl ligands containing pendant donor groups
are good catalysts for various organic reactions [9–16], and some of them are also promising
luminescent materials [17,18]. One such pendant substituent is the pyridyl group [19,20].
In addition to the purely scientific interest associated with various types of coordination
of such ligands [21–24], it was shown that titanium complexes with the cyclopentadienyl
ligand containing the 2-picolyl substituent exhibit high catalytic activity during the ethylene
polymerization reaction [25]. Therefore, the synthesis of nido-carboranes with a pendant
pyridyl group and metallacarboranes based on them is of considerable interest.

To date, the synthesis of many ortho-carborane derivatives with a pyridyl group as
a substituent has been described [26–38], most of which were obtained by the reaction of
lithium derivatives of carboranes with pyridylaldehydes [33–38]. A number of transition
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metal complexes of various structures with pyridyl ortho-carborane ligands were synthe-
sized as well [28,29,31,38–48]. However, only a few examples of nido-carborane derivatives
with a pyridyl group have been described [39,49–51], and a few transition metal complexes
(metallacarboranes) based on them [50]. This is in sharp contrast to nido-carborane deriva-
tives with other pendant substituents, such as the Me2N group, based on which numerous
metallacarboranes have been prepared [52–57], and it motivates our interest in research in
this area.

In this contribution we describe the synthesis of new nido-carborane derivatives with
a pendant pyridine group and nickel(II) and palladium(II) complexes thereof (Figure 1).
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2. Results and Discussion
2.1. Design of Dicarbollide Ligands with Pendant Pyridine Group: General Principles

There are two main points to consider when designing dicarbollide ligands with a
pendant pyridyl group. The first of these is the presence and length of a spacer between
the carborane cage and the pyridyl ring. This determines the size and stability of the
metallocycle formed during coordination. Clearly, in the absence of such a spacer [49], the
formation of only a strained four-membered metallocycle is possible, which is unfavorable
for most d-metals. Indeed, in structurally characterized iridium complexes with pyridyl
substituted nido-carborane [7-(NC5H4-2′)-7,8-C2B9H11]−, the latter is coordinated to the
metal atom by the κ2-type through the nitrogen atom of the pyridyl group and the BH
group of nido-carborane [58], rather than by the η5:κ1-type. At the same time, in the
case of ligands with a monoatomic spacer between the carborane cage and the pyridyl
ring, for example, [7-(NC5H4-2′-CH2)-7,8-C2B9H11]−, metal coordination occurs with the
formation of a stable five-membered metallocycle according to the η5:κ1-type [50]. As for
complexes based on nido-carborane with a diatomic spacer between the carborane cage
and the pyridine heterocycle, to the best of our knowledge, there is only one such complex
[3,3-(κ2(N,O)-NC5H4-2′′-C(O)O)-3-(κ1(N)-1-NC5H4-2′-C(OH)H)-3,1,2-CoC2B9H10], which
was accidentally obtained by leaving the ortho-carborane complex trans-[Co(κ2(N,O)-1-
NC5H4-2′-C(O)H-1,2-C2B10H11)2] in an acetone solution for several days or weeks under
air [40].

The second point is the position of the substitution in the nido-carborane basket. Unlike
the cyclopentadienide ligand, in which all the carbon atoms in the five-membered ring are
identical, the pentagonal face of the dicarbollide ligand is formed by two carbon atoms and
three boron atoms. In this case, by introducing a substituent at the carbon atom or boron
atom, it is possible to vary both the properties of the ligand itself and the properties of
the metal complexes based on it. Firstly, this is due to the different electronic effects of the
nido-carborane cage substituted at the boron and carbon atoms, which in the case of a short
spacer can have a significant effect on the pendant donor group. Another less obvious point
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that can affect the stability and reactivity of metal complexes is the mutual orientation of
the ligands. Due to the non-equivalence of atoms in the pentagonal face of the dicarbollide
ligand, they interact differently with the metal atom, which leads to energetic inequality of
different conformations due to the rotation of the dicarbollide ligand around the M–B(10)
axis. In particular, for complexes of the d8 metal ions, such as Ni(II), Pd(II), and Pt(II),
the preferred orientation is one in which the angle θ between the L–M–L plane and the
B(8}–M–Center(C(1)–C(2)) planes is 90◦ [59–62]. Another feature is the displacement of the
metal atom from the center of the pentagonal face of the ligand towards the boron atoms,
the so-called “slippage” of the dicarbollide ligand, which is especially characteristic of
nickel(II) bis(dicarbollide) complexes [63,64]. The introduction of substituents at the carbon
atoms into the dicarbollide ligand can lead to a significant deviation of the angle θ from
the ideal value due to steric repulsion between the ligands [65,66], and in extreme cases,
this even results in the isomerization of the dicarbollide ligand [67,68]. It is clear that the
position of attachment of the pendant donor group to the dicarbollide ligand will have a
significant effect on the structure, and consequently, the properties of the resulting metal
complexes [52,69,70].

2.2. Synthesis of nido-Carborane Derivatives with Pendant Pyridine Group

To prepare metallacarboranes with a pendant pyridyl group attached to the boron
atom of the dicarbollide ligand, we decided to use the 9-pyridylsulfenyl derivative of
nido-carborane [9-(HNC5H4-2′-S)-7,8-C2B9H11] described in the literature [51]. First, via the
reaction of the tetramethylammonium salt of nido-carborane with 2-pyridylsulfenyl chloride
in a mixture of acetonitrile and acetic acid, the N-protonated derivative [9-(HNC5H4-2′-
S)-7,8-C2B9H11] (H[1]) was obtained, which was then converted to the cesium salt Cs[9-
(NC5H4-2′-S)-7,8-C2B9H11] (Cs[1]) via treatment with CsOH in aqueous acetone (Scheme 1).
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Scheme 1. Synthesis of Cs[9-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[1]). 
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Scheme 1. Synthesis of Cs[9-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[1]).

The obtained carboranes were characterized using methods of 1H, 13C, and 11B NMR
and IR spectroscopy and mass spectrometry (See Supplementary Materials, Figure S1–S70
and Table S1). The 11B NMR spectrum of Cs[1] in acetone-d6 contains a singlet at −3.1 ppm
and seven doublets at −6.8, −15.6, −18.4, −22.5, −24.3, −30.6, and −37.8 ppm with an
integral intensity ratio of 1:1:1:2:1:1:1:1, which is significantly different from the spectrum
of the N-protonated form H[1] [51], indicating a rather strong interaction between the
carborane cage and the pyridine ring. The 1H NMR spectrum of Cs[1], in addition to the
signals of the CH and BH groups of the nido-carborane cage, contains a set of signals of the
pyridyl group, which appears in the form of two doublets at 8.22 and 7.67 ppm and two
triplets at 7.49 and 6.87 ppm.

To obtain a related nido-carborane with a pendant pyridyl group attached to the carbon
atom, as a development of the known approach to the arylation and heteroarylation of
1-mercapto-ortho-carborane [71–74], we used the reaction of the trimethylammonium salt of
1-mercapto-ortho-carborane with 2-bromopyridine. The reaction in refluxing ethanol gave a
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mixture of the expected pyridyl derivative of ortho-carborane 1-(NC5H4-2′-S)-1,2-C2B10H11
(2) and its deboronation product as the N-protonated intramolecular salt [7-(HNC5H4-
2′-S)-7,8-C2B9H11] (H[3]), which were separated using column chromatography on silica
followed by the conversion of the latter to the cesium salt Cs[7-(NC5H4-2′-S)-7,8-C2B9H11]
(Cs[3]) (Scheme 2). The cesium salt Cs[3] was also obtained via the deboronation of the
corresponding ortho-carborane 2 with CsF in refluxing ethanol (Scheme 2).
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Scheme 2. Synthesis of Cs[7-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[3]).

In the 1H NMR spectrum of Cs[3], the signals of the pyridyl group appear as a
doublet at 8.30 ppm, a triplet at 7.70 ppm, a doublet at 7.24 ppm, and a triplet at 7.02 ppm,
demonstrating a significant difference in the electronic effects of the nido-carborane cage
substituted at the boron and carbon atoms.

The solid-state structure of 1-(NC5H4-2′-S)-1,2-C2B10H11·HBr (2·HBr) (see Supplementary
Materials) was determined using single crystal X-ray diffraction (Figure 2).

The reaction of the trimethylammonium salt of 1-mercapto-ortho-carborane with 2-
bromomethyl pyridine followed by the deboronation of the resulting pyridine-containing or-
tho-carborane 1-(NC5H4-2′-CH2S)-1,2-C2B10H11 (4) was used to prepare the nido-carborane
derivative with a longer spacer between the carborane cage and the pendant pyridyl group
Cs[7-(NC5H4-2′-CH2S)-7,8-C2B9H11] (Cs[5]) (Scheme 3). Previously, this approach was
used for the synthesis of various alkylsulfenyl derivatives of ortho- and nido-carboranes
including those containing various functional groups [75–79].
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The obtained carboranes were characterized using methods of 1H, 13C, and 11B NMR
and IR spectroscopy and mass spectrometry (See Supplementary Materials). In the 1H
NMR spectrum of 4 in acetone-d6, the signal of the methylene group appears as a sin-
glet at 4.42 ppm, whereas in the spectrum of Cs[5], the signals of the methylene group
appear as two doublets at 4.13 and 3.89 ppm (2JHH = 12.8 Hz) due to chirality of the C-
monosubstituted nido-carborane cage that causes protons to become diastereotopic and
magnetically inequivalent.

The solid-state structures of 1-(NC5H4-2′-CH2S)-1,2-C2B10H11 (4) and Cs[7-(NC5H4-
2′-CH2S)-7,8-C2B9H11]·0.5Me2CO (Cs[5]·0.5Me2CO) (see Supplementary Materials) were
determined using single crystal X-ray diffraction (Figure 3).
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7,8-C2B9H11]·0.5Me2CO (Cs[5]·0.5Me2CO) (right) showing numbering scheme. Thermal ellipsoids
are given at 50% probability level. The closest contacts formed by the Cs+ cation are shown by
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2.3. Synthesis of Nickela- and Platinacarboranes with Pendant Chelating Pyridine Group

The deprotonation of Cs[1] with t-BuOK in dry THF followed by the addition of triph-
enylphosphine complexes of nickel(II) or palladium(II) [(Ph3P)2MCl2] (M=Ni, Pd) results
in the corresponding metallacarboranes 3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-3,1,2-MC2B9H10
(M=Ni (6), Pd (7)), which were isolated in moderate yields after column chromatography
on silica (Scheme 4).
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3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-3,1,2-NiC2B9H10 (7).

The obtained metallacarboranes were characterized using methods of 1H, 13C, 11B, and
31P NMR spectroscopy, as well as IR and UV spectroscopy and mass spectrometry. The solid-
state structure of 3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-3,1,2-NiC2B9H10 (6) was determined
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using single crystal X-ray diffraction (see Supplementary Materials). A general view of the
nickelacarborane molecule is given in Figure 4.
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scheme. Thermal ellipsoids are given at 50% probability level.

The orientation of the σ-donor ligands (the pendant pyridine and triphenylphosphine)
with respect to the dicarbollide ligand significantly deviates from the ideal orientation with
the θ angle between the N(1)-Ni(1)-P(1) plane and the B(8)-Ni(1)-Center-(C(1)-C(2)) plane
being ~ 60◦, and the pyridyl group is rotated around the B(9)-S(1) bond toward the carbon
atoms of the dicarbollide ligand (Figure 3). No noticeable “slippage” of the dicarbollide
ligand was found.

In a similar way, metallacarboranes 3-Ph3P-3-(1(2)-NC5H4-2′-S)-closo-3,1,2-NiC2B9H10
(8) and 3-Ph3P-3-(1(2)-NC5H4-2′-S)-closo-3,1,2-PdC2B9H10 (9) were prepared starting from
the C-substituted nido-carborane Cs[3] (Scheme 5). The obtained metallacarboranes were
characterized using methods of 1H, 13C, 11B, and 31P NMR spectroscopy, as well as IR and
UV spectroscopy and mass spectrometry. Unfortunately, we were unable to obtain crystals
suitable for X-ray diffraction studies of single crystals.

Metallacarboranes with a more flexible spacer between the dicarbollide ligand and
the pyridyl group 3-Ph3P-3-(1(2)-NC5H4-2′-CH2S)-closo-3,1,2-NiC2B9H10 (10) and 3-Ph3P-
3-(1(2)-NC5H4-2′-CH2S)-closo-3,1,2-PdC2B9H10 (11) were synthesized in a similar way
starting from the C-substituted nido-carborane Cs[5] (Scheme 6).
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Scheme 6. Synthesis of metallacarboranes 3-Ph3P-3-(1(2)-NC5H4-2′-CH2S)-closo-3,1,2-NiC2B9H10

(10) and 3-Ph3P-3-(1(2)-NC5H4-2′-CH2S)-closo-3,1,2-NiC2B9H10 (11).

The obtained metallacarboranes were characterized using methods of 1H, 13C, 11B,
and 31P NMR spectroscopy, as well as IR and UV spectroscopy and mass spectrometry.
The solid-state structure of 3-Ph3P-3-(4(7)-NC5H4-2′-CH2S)-closo-3,1,2-NiC2B9H10 (10) was
determined using single crystal X-ray diffraction (see Supplementary Materials). A general
view of the nickelacarborane molecule is given in Figure 5.

The orientation of the σ-donor ligands (the pendant pyridine and triphenylphosphine)
with respect to the dicarbollide ligand strongly deviates from the ideal orientation with the
θ angle between the N(1)-Ni(1)-P(1) plane and the B(8)-Ni(1)-Center-(C(1)-C(2)) plane being
~16◦. The six-membered ring Ni(1)-C(1)-S(1)-C(3)-C(4)-N(1) adopts a highly distorted boat
conformation with a nickel atom and a methylene group located at the bow and stern
(Figure 4). No noticeable “slippage” of the dicarbollide ligand was found.
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3. Methods and Materials
3.1. Materials and Methods

The trimethylammonium salt of 1-mercapto-ortho-carborane [78], bis(triphenylphosp-
hine)nickel(II) chloride [(Ph3P)2NiCl2] [80] and bis(triphenylphosphine)palladium(II) chlo-
ride [(Ph3P)2PdCl2] [81] were synthesized according to the literature described methods.
2-Bromopyridine and 2-(bromomethyl)-pyridine hydrobromide were purchased from Acros
Organics and used without purification. Tetrahydrofuran was dried using standard proce-
dure [82]. The reaction progress was monitored using thin-layer chromatography (Merck
F254 silica gel on aluminum plates) and visualized using 0.5% PdCl2 in 1% HCl in aq.
MeOH (1:10). Acros Organics silica gel (0.060–0.200 mm) was used for column chromatog-
raphy. The NMR spectra at 400.1 MHz (1H), 128.4 MHz (11B), 100.0 MHz (13C), and 162 MHz
(31P) were recorded with a Varian Inova 400 spectrometer. The residual signal of the NMR
solvent relative to Me4Si was taken as an internal reference for 1H and 13C NMR spectra.
11B NMR spectra were referenced using BF3.Et2O as an external standard. 31P NMR spectra
are given relative to 85% H3PO4 as an external standard. Infrared spectra were recorded on
an FSM-2201 (INFRASPEC, Saint Petersburg, Russia) instrument. UV/Vis spectra were
recorded with SF-2000 spectrophotometer (OKB SPECTR LLC, Saint Petersburg, Russia)
using 1 cm cuvettes. High resolution mass spectra (HRMS) were measured on a Bruker
micrOTOF II instrument using electrospray ionization (ESI).

3.2. Synthesis of Cs[9-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[1])

Compound Cs[1] was prepared from described in the literature N-protonated [9-
(HNC5H4-2′-S)-7,8-C2B9H11] (H[1]) (0.30 g, 1.23 mmol) [51] by dissolving it in acetone
(7 mL) and reprecipitated with aqueous CsOH (0.28 g, 1.85 mmol in 40 mL of water) to give
0.44 g (95% yield) of cesium salt of 5. 1H NMR (acetone-d6, ppm): δ 8.22 (1H, d, J = 4.7 Hz,
Hpy), 7.67 (1H, d, J = 8.1 Hz, Hpy), 7.49 (1H, t, J = 7.5 Hz, Hpy), 6.87 (1H, m, Hpy), 2.29 (1H,
br s, CHcarb), 1.86 (1H, br s, CHcarb), 2.6 ÷ (−0.1) (8H, br m, BH), −2.38 (1H, br m, BHB).
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11B NMR (acetone-d6, ppm): δ −3.1 (1B, s), −6.8 (1B, d, J = 138 Hz), −15.6 (1B, J = 138 Hz),
−18.4 (2B, d, J = 160 Hz), −22.5 (1B, d, J = 151 Hz), −24.3 (1B, d, J = 139 Hz), −30.6 (1B, d,
J = 137 Hz), −37.8 (1B, d, J = 141 Hz).

3.3. Synthesis of 1-(NC5H4-2′-S)-1,2-C2B10H11 (2), [7-(NC5H5-2′-S)-7,8-C2B9H11] (H[3]) and
Cs[7-(NC5H4-2′-S)-7,8-C2B9H11] (Cs[3])

2-Bromopyridine (0.24 mL, 2.55 mmol) was added to a solution of the trimethylam-
monium salt of 1-mercapto-closo-carborane (0.60 g, 2.55 mmol) in ethanol (30 mL) and the
reaction mixture was refluxed for about 5 h, cooled to ambient temperature and evaporated
to dryness in vacuum. The obtained product was isolated using column gradient elution
chromatography on silica with CH2Cl2:acetone mixture (from 19:1 to 1:1) as an eluent
to give 0.17 g (26% yield) of white crystalline product 2 and 0.17 g (27% yield) of white
crystalline H[3]. Compound H[3] was dissolved in acetone (5 mL) and reprecipitated with
aqueous CsOH (0.15 g, 1.00 mmol in 30 mL of water) to give 0.26 g (99% yield) of cesium
salt of Cs[3].

The cesium salt Cs[2] was also obtained by refluxing 2 (0.14 g, 0.55 mmol) in ethanol
(10 mL) with cesium fluoride (0.17 g, 1.11 mmol) for 12 h. The precipitate formed was
filtered off and the filtrate was evaporated under reduced pressure. The residue was
dissolved in acetone (10 mL) and unreacted CsF was filtered off. The filtrate was evaporated
in vacuo to give a white solid of Cs[3] (0.20 g, 97% yield).

Spectral data for 2. 1H NMR (acetone-d6, ppm): δ 8.70 (1H, d, J = 6.3 Hz, H(6)py), 7.95
(1H, t, J = 7.4 Hz, H(4)py), 7.72 (1H, d, J = 7.6 Hz, H(3)py), 7.56 (1H, t, J = 6.2 Hz, H(5)py), 5.12
(1H, br s, CHcarb), 3.0 ÷ 1.2 (10H, br m, BH). 13C NMR (acetone-d6, ppm): δ 152.1 (C(2)py),
151.1 (C(6)py), 138.5 (C(4)py), 130.9 (C(3)py), 125.4 (C(5)py), 74.1 (CcarbS), 65.5 (CcarbH). 11B
NMR (acetone-d6, ppm): δ −1.90 (1B, d, J = 143 Hz), −5.15 (1B, d, J = 147 Hz), −9.7 (4B,
J = 160 Hz), −11.6 (2B, d, J = 158 Hz), −12.4 (2B, d, J = 161 Hz). IR (film, cm−1): 3012 (νC-H),
2976 (νC-H), 2933 (νC-H), 2603 (br, νB-H), 2580 (br, νB-H), 1439, 1423, 1386, 1289. ESI HRMS:
m/z for C7H15B10SN, calcd. 254.2005 [M + H]+, obsd. 254.2008 [M + H]+.

Spectral data for H[3]. 1H NMR (acetone-d6, ppm): δ 8.44 (1H, t, J = 4.5 Hz, Hpy), 8.01
(1H, m, Hpy), 7.45 (1H, m, Hpy), 7.27 (1H, m, Hpy), 2.15 (1H, br s, CHcarb), 2.9 ÷ (−0.2) (8H,
br m, BH), −2.54 (1H, br m, BHB). 11B NMR (acetone-d6, ppm): δ −8.1 (1B, d, J = 144 Hz),
−9.7 (1B, d, J = 137 Hz), −13.6 (1B, J = 162 Hz), −15.9 (1B, d, J = 144 Hz), −17.0 (1B, d,
J = 133 Hz), −18.0 (1B, d, J = 142 Hz), −21.5 (1B, d, J = 153 Hz), −32.0 (1B, dd, J = 131,
J = 31 Hz), −36.1 (1B, d, J = 141 Hz).

Spectral data for Cs[3]. 1H NMR (acetone-d6, ppm): δ 8.30 (1H, d, J = 6.2 Hz, H(6)py),
7.70 (1H, t, J = 7.7 Hz, H(4)py), 7.24 (1H, d, J = 7.8 Hz, H(3)py), 7.02 (1H, t, J = 7.3 Hz, H(5)py),
2.10 (1H, br s, CHcarb), 3.2 ÷ 0.3 (8H, br m, BH), −2.42 (1H, br m, BHB). 13C NMR (acetone-
d6, ppm): δ 166.0 (C(2)py), 148.6 (C(6)py), 136.5 (C(4)py), 121.4 (C(3)py), 118.9 (C(5)py), 52.6
(CcarbS), 50.4 (CcarbH). 11B NMR (acetone-d6, ppm): δ −8.1 (1B, d, J = 145 Hz, B(11)), −9.7
(1B, d, J = 141 Hz, B(9)), −13.6 (1B, J = 158 Hz, B(3)), −16.0 (1B, d, J = 132 Hz, B(5)), −17.0
(1B, d, J = 138 Hz, B(6)), −17.9 (1B, d, J = 130 Hz, B(4)), −21.5 (1B, d, J = 149 Hz, B(2)),
−32.0 (1B, dd, J = 130, J = 40 Hz, B(10)), −36.1 (1B, d, J = 140 Hz, B(1)). IR (film, cm−1):
3010 (νC-H), 2973 (νC-H), 2929 (νC-H), 2350 (br, νB-H), 1441, 1354, 1295. ESI HRMS: m/z for
C7H15B9SN, calcd. 243.1810 [M]−, obsd. 243.1815 [M]−.

3.4. Synthesis of 1-(NC5H4-2′-CH2S)-1,2-C2B10H11 (4)

2-(Bromomethyl)pyridine hydrobromide (0.54 g, 2.12 mmol) was added to a solution
of the trimethylammonium salt of 1-mercapto-closo-carborane (0.50 g, 2.12 mmol) in ethanol
(20 mL) and the reaction mixture was refluxed for about 5 h, cooled to ambient temperature
and evaporated to dryness in vacuum. The obtained product was isolated using column
gradient elution chromatography on silica with CH2Cl2:acetone mixture (from 19:1 to 1:1)
as an eluent to give 0.21 g (37% yield) of white crystalline product 3. 1H NMR (acetone-d6,
ppm): δ 8.52 (1H, d, J = 4.8 Hz, H(6)py), 7.77 (1H, m, H(4)py), 7.47 (1H, d, J = 7.9 Hz, H(3)py),
7.30 (1H, m, H(5)py), 4.93 (1H, br s, CHcarb), 4.42 (2H, s, CH2), 3.3 ÷ 1.4 (10H, br m, BH).
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13C NMR (acetone-d6, ppm): δ 155.1 (C(2)py), 149.7 (C(6)py), 137.5 (C(4)py), 123.8 (C(3)py),
123.2 (C(5)py), 75.4 (CcarbS), 68.7 (CcarbH), 43.3 (CH2). 11B NMR (acetone-d6, ppm): δ −2.1
(1B, d, J = 148 Hz), −5.4 (1B, d, J 148 = Hz), −9.4 (4B, J = 154 Hz), −11.9 (2B, d, J = 181 Hz),
−12.4 (2B, d, J = 159 Hz). IR (film, cm−1): 3071 (νC-H), 3019 (νC-H), 2933 (νC-H), 2600 (br,
νB-H), 1594, 1574, 1475, 1439. ESI HRMS: m/z for C8H17B10SN, calcd. 268.2162 [M + H]+,
obsd. 268.2155 [M + H]+.

3.5. Synthesis of Cs[7-(NC5H4-2′-CH2S)-7,8-C2B9H11] (Cs[5])

Compound 4 (0.19 g, 0.71 mmol) was dissolved in ethanol (20 mL) and cesium fluoride
(0.22 g, 1.42 mmol) was added. The solution was refluxed for about 20 h. The precipitate
formed was filtered off and the filtrate was evaporated under reduced pressure. The
residue was dissolved in acetone (15 mL) and unreacted CsF was filtered off. The filtrate
was evaporated in vacuo to give a white solid of 4 (0.27 g, 98% yield). 1H NMR (acetone-d6,
ppm): δ 8.46 (1H, d, J = 4.2 Hz, H(6)py), 7.68 (1H, t, J = 7.6 Hz, H(4)py), 7.40 (1H, d, J = 7.8 Hz,
H(3)py), 7.17 (1H, m, H(5)py), 4.13 (1H, d, J = 12.8 Hz, CH2), 3.89 (1H, d, J = 12.8 Hz, CH2),
1.63 (1H, br s, CHcarb), 3.2 ÷ 0.2 (8H, br m, BH), −2.57 (1H, br m, BHB). 13C NMR (acetone-
d6, ppm): δ 159.9 (C(2)py), 149.0 (C(6)py), 136.2 (C(4)py), 123.4 (C(3)py), 121.6 (C(5)py), 52.3
(CcarbH), 43.2 (CH2). 11B NMR (acetone-d6, ppm): δ −9.3 (1B, d, J = 137 Hz), −10.4 (1B, d,
J = 135 Hz),−14.9 (1B, J = 159 Hz),−17.2 (3B, d, J = 139 Hz),−22.1 (1B, d, J = 148 Hz),−32.9
(1B, dd, J = 124, J = 32 Hz), −36.8 (1B, d, J = 138 Hz). IR (film, cm−1): 3059 (νC-H), 3011
(νC-H), 2972 (νC-H), 2928 (νC-H), 2528 (br, νB-H), 1597, 1570, 1479, 1439, 1253. ESI HRMS:
m/z for C7H15B9SN, calcd. 257.1962 [M]−, obsd. 257.1967 [M]−.

3.6. General Procedure for Synthesis of Metallacarboranes 6–11

To solution of nido-carborane derivative 2, 4 or 5 in anhydrous THF under argon
atmosphere, the 3-fold excess of potassium tert-butoxide was added. The reaction mixture
was stirred at ambient temperature for about 10 min and the 1.1-fold excess of phosphine
complexes [(Ph3P)2MCl2] (M=Ni, Pd) was added to one portion. Immediately, a dark
brown solution was observed. The resulting mixture was stirred at ambient temperature
for about 30 min and the solvent was evaporated to dryness under vacuum conditions.
The target complex was isolated using column chromatography on silica using CH2Cl2 as
eluent. If necessary, an additional column chromatography on silica using hexane as eluent
was performed to purify the complex from uncoordinated triphenylphosphine.

3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-3,1,2-NiC2B9H10 (6). The synthesis was carried out
using Cs[1] (0.15 g, 0.40 mmol), t-BuOK (0.13 g, 1.20 mmol), and [(PPh3)2NiCl2] (0.29 g,
0.44 mmol) in THF (15 mL) to give brown solid of 6 (0.08 g, 31% yield). 1H NMR (CD2Cl2,
ppm): δ 7.79 (7H, m, PPh3 + Hpy), 7.50 ÷ 7.36 (9H, br m, PPh3), 7.21 (1H, d, J = 8.5 Hz, Hpy),
7.03 (1H, t, J = 7.7 Hz, Hpy), 6.03 (1H, t, J = 6.7 Hz, Hpy), 2.77 (1H, br s, CHcarb), 2.44 (1H,
br s, CHcarb), 2.6 ÷ 0.1 (8H, br m, BH). 13C NMR (CD2Cl2, ppm): δ 152.6 (Cpy), 135.0 (Cpy),
134.23 (d, J = 9.7 Hz, Ph), 130.8 (Ph), 128.62 (d, J = 9.2 Hz, Ph), 125.0 (Cpy), 117.2 (Cpy), 33.0
(CcarbH), 31.3 (CcarbH). 11B NMR (CD2Cl2, ppm): δ −1.0 (1B, d, J = 119 Hz), −8.0 (2B, s + d,
J = 127 Hz), −10.8 (2B, d, J = 124 Hz), −16.4 (1B, d, J = 144 Hz), −19.8 (1B, d, J = 150 Hz),
−23.4 (2B, d, J = 138 Hz). 31P NMR (CD2Cl2, ppm): δ 31.2 (PPh3). IR (film, cm−1): 3039
(νC-H), 2992 (νC-H), 2940 (νC-H), 2877 (νC-H), 2556 (br, νB-H), 1471, 1455, 1438, 1392, 1364,
1226, 1194. ESI HRMS: m/z for C25H29B9NiNPS, calcd. m/z 563.2079 [M + H]+, obsd. m/z
563.2071 [M + H]+. UV (acetone, nm): λ 207, 247, 275, 323.

3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-3,1,2-PdC2B9H10 (7). The synthesis was carried out
using Cs[1] (0.15 g, 0.40 mmol), t-BuOK (0.13 g, 1.20 mmol), and [(PPh3)2PdCl2] (0.31 g,
0.44 mmol) in THF (15 mL) to give dark brown solid of 7 (0.06 g, 25% yield). 1H NMR
(acetone-d6, ppm): δ 7.80 (6H, m, PPh3), 7.60 ÷ 7.47 (10H, br m, PPh3 + Hpy), 7.38 (2H, Hpy),
6.40 (1H, m, Hpy), 4.48 (1H, br s, CHcarb), 3.75 (1H, br s, CHcarb), 3.4 ÷ (−0.5) (8H, br m,
BH). 13C NMR (acetone-d6, ppm): δ 152.5 (Cpy), 136.3 (Cpy), 134.30 (d, J = 12.6 Hz, Ph), 131.1
(Ph), 128.73 (d, J = 10.3 Hz, Ph), 124.6 (Cpy), 117.1 (Cpy), 55.0 (CcarbH). 11B NMR (acetone-d6,
ppm): δ 18.5 (1B, d, J = 136 Hz), −5.9 (2B, d, J = 146 Hz), −9.0 (2B, s + d, J = 142 Hz), −10.8
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(2B, d, J = 144 Hz), −22.0 (1B, d, J = 140 Hz), −25.1 (1B, d, J = 131 Hz). 31P NMR (acetone-d6,
ppm): δ 32.1 (PPh3). IR (film, cm−1): 2964 (νC-H), 2933 (νC-H), 2857 (νC-H), 2560 (br, νB-H),
1594, 1483, 1459, 1435, 1415, 1249. ESI HRMS: m/z for C25H29B9PdNPS, calcd. m/z 610.1782
[M + H]+, obsd. m/z 610.1771 [M + H]+. UV (acetone, nm): λ 206, 247, 269, 327.

3-Ph3P-3-(1(2)-NC5H4-2′-S)-closo-3,1,2-NiC2B9H10 (8). The synthesis was carried out
using Cs[3] (0.20 g, 0.58 mmol), t-BuOK (0.19 g, 1.74 mmol), and [(PPh3)2NiCl2] (0.42 g,
0.64 mmol) in THF (15 mL) to give brown solid of 8 (0.07 g, 22% yield). 1H NMR (acetone-d6,
ppm): δ 8.04 (6H, m, PPh3), 7.73 ÷ 7.43 (10H, br m, PPh3 + Hpy), 7.39 (1H, m, Hpy), 7.29
(1H, m, Hpy), 6.45 (1H, m, Hpy), 3.44 (1H, br s, CHcarb), 2.7 ÷ 0.5 (9H, br m, BH). 13C NMR
(acetone-d6, ppm): δ 151.7 (Cpy), 136.4 (Cpy), 135.05 (d, J = 10.0 Hz, Ph), 134.2, 131.8 (Ph),
131.1 (Ph), 130.3, 128.48 (d, J = 10.0 Hz, Ph), 120.3 (Cpy), 119.0 (Cpy). 11B NMR (acetone-d6,
ppm): δ−2.5 (1B, d, J = 120 Hz),−7.0 (1B, d, J = 138 Hz),−10.8 (1B, d, J = 143 Hz),−11.8 (1B,
d, J = 120 Hz), −14.6 (2B, d, J = 126 Hz), −18.1 (2B, d, J = 135 Hz), −20.7 (1B, d, J = 153 Hz).
31P NMR (acetone-d6, ppm): δ 43.7 (PPh3). IR (film, cm−1): 3084 (νC-H), 3062 (νC-H), 2968
(νC-H), 2931 (νC-H), 2860 (νC-H), 2559 (br, νB-H), 1598, 1440, 1421, 1364. ESI HRMS: m/z for
C25H29B9NiNPS, calcd. m/z 563.2079 [M + H]+, obsd. m/z 563.2064 [M + H]+. UV (acetone,
nm): λ 213, 325, 397.

3-Ph3P-3-(1(2)-NC5H4-2′-S)-closo-3,1,2-PdC2B9H10 (9). The synthesis was carried out
using Cs[3] (0.19 g, 0.51 mmol), t-BuOK (0.17 g, 1.53 mmol), and [(PPh3)2PdCl2] (0.39 g,
0.56 mmol) in THF (15 mL) to give dark brown solid of 9 (0.10 g, 33% yield). 1H NMR
(acetone-d6, ppm): δ 7.88 (6H, m, PPh3), 7.61 ÷ 7.47 (10H, br m, PPh3 + Hpy), 7.40 (1H, m,
Hpy), 7.36 (1H, m, Hpy), 6.67 (1H, t, J = 6.4 Hz, Hpy), 3.85 (1H, br s, CHcarb), 3.6÷ (−0.1) (9H,
br m, BH). 13C NMR (acetone-d6, ppm): δ 150.2 (Cpy), 137.1 (Cpy), 134.87 (d, J = 11.7 Hz,
Ph), 134.0, 131.5 (Ph), 129.8, 128.89 (d, J = 10.9 Hz, Ph), 120.4 (Cpy), 119.6 (Cpy), 39.4 (CcarbH).
11B NMR (acetone-d6, ppm): δ 1.9 (1B, d, J = 138 Hz), −3.4 (1B, d, J = 121 Hz), −6.3 (1B, d,
J = 124 Hz), −12.7 (1B, d, J = 132 Hz), −13.7 (3B, d, J = 157 Hz), −22.4 (1B, d, J = 147 Hz),
−25.3 (1B, d, J = 133 Hz). 31P NMR (acetone-d6, ppm): δ 45.4 (PPh3). IR (film, cm−1): 3091
(νC-H), 2965 (νC-H), 2932 (νC-H), 2861 (νC-H), 2554 (br, νB-H), 1595, 1442, 1250. ESI HRMS:
m/z for C25H29B9PdNPS, calcd. m/z 628.2037 [M + NH4]+, obsd. m/z 628.1990 [M + NH4]+;
calcd. m/z 632.1601 [M + Na]+, obsd. m/z 632.1636 [M + NH4]+. UV (acetone, nm): λ 207,
215, 323.

3-Ph3P-3-(1(2)-NC5H4-2′-CH2S)-closo-3,1,2-NiC2B9H10 (10). The synthesis was carried
out using Cs[5] (0.12 g, 0.31 mmol), t-BuOK (0.10 g, 0.93 mmol), and [(PPh3)2NiCl2] (0.22 g,
0.34 mmol) in THF (15 mL) to give brown solid of 10 (0.06 g, 34% yield). 1H NMR (DMSO-
d6, ppm): δ 8.76 (1H, d, J = 5.3 Hz, Hpy), 7.73 (1H, t, J = 7.7 Hz, Hpy), 7.59 (1H, m, Hpy),
7.54 ÷ 7.40 (8H, br m, PPh3), 7.40 ÷ 7.29 (7H, br m, PPh3), 7.10 (1H, t, J = 6.6 Hz, Hpy),
4.63 (1H, d, J = 13.6 Hz, CH2), 4.23 (1H, d, J = 13.6 Hz, CH2), 2.3 ÷ 0.9 (9H, br m, BH). 13C
NMR (CDCl3, ppm): δ 152.7 (Cpy), 139.3 (Cpy), 133.8 (d, J = 8.9 Hz, Ph), 130.5 (Ph), 128.4
(d, J = 11.6 Hz, Ph + Cpy), 123.4 (Cpy). 11B NMR (CDCl3, ppm): δ −7.7 (1B, d, J = 158 Hz),
−9.8 (3B), −13.3 (2B, d, J = 130 Hz), −17.6 (2B), −22.5 (1B). 31P NMR (CDCl3, ppm): δ 37.4
(PPh3). IR (film, cm−1): 2965 (νC-H), 2928 (νC-H), 2857 (νC-H), 2544 (br, νB-H), 1609, 1483,
1439, 1356, 1186, 1158, 1122. ESI HRMS: m/z for C26H31B9NiNPS, calcd. m/z 594.2501 [M +
NH4]+, obsd. m/z 594.2543 [M + NH4]+. UV (acetone, nm): λ 206, 243, 291, 323.

3-Ph3P-3-(1(2)-NC5H4-2′-CH2S)-closo-3,1,2-PdC2B9H10 (11). The synthesis was carried
out using Cs[5] (0.23 g, 0.59 mmol), t-BuOK (0.20 g, 1.77 mmol), and [(PPh3)2PdCl2] (0.46 g,
0.65 mmol) in THF (15 mL) to give dark brown solid of 9 (0.10 g, 27% yield). 1H NMR
(CD2Cl2, ppm): δ 8.12 (1H, m, Hpy), 7.64 (1H, t, J = 7.9 Hz, Hpy), 7.55 ÷ 7.37 (9H, br m, PPh3
+ Hpy), 7.36 ÷ 7.27 (7H, br m, PPh3), 6.82 (1H, t, J = 6.6 Hz, Hpy), 4.59 (1H, m, CH2), 4.03
(1H, m, CH2), 2.5 ÷ 0.5 (9H, br m, BH). 13C NMR (CD2Cl2, ppm): δ 152.1 (Cpy), 139.2 (Cpy),
134.0 (d, J = 8.6 Hz, Ph), 130.8 (Ph), 128.4 (d, J = 11.6 Hz, Ph), 123.6 (Cpy). 11B NMR (CD2Cl2,
ppm): δ −4.5 (1B, d, J = 149 Hz), −6.6 (1B, d, J = 119 Hz), −9.5 (1B, d, J = 143 Hz), −10.7 (1B,
d, J = 140 Hz), −14.2 (2B), −15.0 (2B), −24.6 (1B). 31P NMR (CD2Cl2, ppm): δ 47.6 (PPh3).
IR (film, cm−1): 2968 (νC-H), 2928 (νC-H), 2861 (νC-H), 2552 (br, νB-H), 1602, 1487, 1435, 1399,
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1312, 1190. ESI HRMS: m/z for C26H31B9PdNPS, calcd. m/z 642.2194 [M + NH4]+, obsd.
m/z 642.2190 [M + NH4]+. UV (acetone, nm): λ 207, 251, 325.

3.7. Single Crystal X-ray Diffraction Study

Single crystal X-ray diffraction experiments for 2·HBr, 4, Cs[5]·0.5Me2CO, 8, and
10 were carried out using SMART APEX2 CCD diffractometer (λ(Mo-Kα) = 0.71073 Å,
graphite monochromator, ω-scans) at 140 K (See Supplementary Materials). Collected data
were processed using the SAINT and SADABS programs incorporated into the APEX2
program package [83]. The structure was solved using the direct methods and refined
using the full-matrix least-squares procedure against F2 in anisotropic approximation. The
refinement was carried out with the SHELXTL program [84]. The CCDC numbers (2294563
for 2·HBr, 2294561 for 4, 2294562 for Cs[5]·0.5Me2CO, 2294564 for 8, and 2294565 for 10)
contain the Supplementary Materials for this paper. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif (accessed on 9 October 2023).

4. Conclusions

A series of C- and B-substituted nido-carborane derivatives with a pyridyl pen-
dant group was prepared. The obtained compounds were used as ligands in the com-
plexation with [(Ph3P)2NiCl2] and [(Ph3P)2PdCl2] to give the corresponding η5:κ1(N)-
coordinated complexes of nickel(II) and palladium(II), 3-Ph3P-3-(4(7)-NC5H4-2′-S)-closo-
3,1,2-MC2B9H10, 3-Ph3P-3-(1(2)-NC5H4-2′-S)-closo-3,1,2-MC2B9H10, and 3-Ph3P-3-(1(2)-
NC5H4-2′-CH2S)-closo-3,1,2-MC2B9H10 (M=Ni, Pd). The study of the catalytic activity
of the obtained complexes is in progress.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms242015069/s1, The NMR spectra of compounds 1–
11 and crystallographic data on compounds 2, 4, 5, 8, and 10.
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