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Abstract: Cadmium (Cd) is a toxic heavy metal that seriously affects metabolism after accumulation
in plants, and it also causes adverse effects on humans through the food chain. The HIPP gene family
has been shown to be highly tolerant to Cd stress due to its special domain and molecular structure.
This study described the Cd-induced gene ApHIPP26 from the hyperaccumulator Arabis paniculata.
Its subcellular localization showed that ApHIPP26 was located in the nucleus. Transgenic Arabidopsis
overexpressing ApHIPP26 exhibited a significant increase in main root length and fresh weight under
Cd stress. Compared with wild-type lines, Cd accumulated much more in transgenic Arabidopsis both
aboveground and underground. Under Cd stress, the expression of genes related to the absorption
and transport of heavy metals underwent different changes in parallel, which were involved in the
accumulation and distribution of Cd in plants, such as AtNRAMP6 and AtNRAMP3. Under Cd stress,
the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate
peroxidase) in the transgenic lines were higher than those in the wild type. The physiological and
biochemical indices showed that the proline and chlorophyll contents in the transgenic lines increased
significantly after Cd treatment, while the malondialdehyde (MDA) content decreased. In addition,
the gene expression profile analysis showed that ApHIPP26 improved the tolerance of Arabidopsis
to Cd by regulating the changes of related genes in plant hormone signal transduction pathway. In
conclusion, ApHIPP26 plays an important role in cadmium tolerance by alleviating oxidative stress
and regulating plant hormones, which provides a basis for understanding the molecular mechanism
of cadmium tolerance in plants and provides new insights for phytoremediation in Cd-contaminated
areas.
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1. Introduction

Drought, extreme temperature, high salinity and heavy metals are the most serious
abiotic stresses affecting plant growth [1]. Heavy metals (HMs) are one of the most critical
abiotic factors affecting soil and water and have become a serious worldwide problem [2].
They are considered to be the most serious pollutant in ecotoxicology. Although HMs exist
in nature, due to the rapid development of industry their content is increasing, resulting
in great adverse effects [3,4]. Cadmium (Cd) is a nonessential element for plants and has
become one of the most toxic pollutants in water and soil worldwide [5]. It not only causes
soil dysfunction and water quality decline but also damages the physiological development
of plants to varying degrees, such as reducing chlorophyll, inhibiting nutrient absorption,
and causing cell death, thus affecting the growth and metabolism of plants [6–9]. Cd is
absorbed by plants, enriched and transferred into the food chain, endangering human life
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and health [10–12]. Considering the threat posed by Cd to crop production and quality
as well as human and animal health, reducing its accumulation is essential. Therefore,
it has been an urgent and high-priority issue to elucidate the molecular mechanism of
Cd tolerance in plants and to breed or engineer crops with higher tolerance but less
accumulation of Cd.

Because Cd has a similar structure to other essential elements (Ca, Zn, and Fe), the
transporter transports these essential elements while transporting Cd into the plant. As a
heavy metal, a large amount of Cd accumulation will have a toxic effect on the plant. [12,13].
Heavy metals enter the roots of plants from the soil through complex pathways and are
then transported to the aboveground parts. This process involves the participation of
some heavy metal-related transporters, including iron-regulated transporter (IRT), zinc-
regulated transporter/IRT-like protein (ZIP), natural resistance-associated macrophage
protein (NRAMP) and heavy metal ATPase (HMA) [14,15].

HIPPs (heavy metal-associated isoprenylated plant proteins) are unique metallochap-
erone proteins in vascular plants and are mainly involved in the reaction of heavy metal
homeostasis, detoxification mechanisms, heavy metal tolerance (especially Cd tolerance),
cold resistance, drought resistance and other mechanisms [16]. These proteins generally
contain 113 to 584 amino acid residues and have one or two heavy metal-associated do-
mains (HMAs), of which the core motif is M/LXCXXC (M for methionine, L for leucine,
X for amino acids, C for cysteine), with the ability to bind to Cu, Ni, and Zn [17]. A typi-
cal structural feature of HIPPs is that the C-terminus has a CaaX structure (C represents
cysteine; a represents aliphatic amino acids; X represents methionine, glutamine, cysteine,
serine, or alanine), which is crucial for biological functions with protein–membrane and
protein-protein interactions [18]. The function of HIPPs is apparent but only character-
ized in a handful of plants. Whole-genome analysis showed 56, 54 and 13 HIPP genes in
Camellia sinensis (L.) Kuntze [19], Oryza sativa L. [20], and Fagopyrum tataricum (L.) Gaertn. [21],
respectively. CsHIPP24 overexpressed in Cd-sensitive yeast (ycf1) displayed higher perfor-
mance than CsHIPP22/36 in Cd resistance. Overexpression of the CdI19 gene enhances the
blocking effect of the endoplasmic reticulum and reduces the damage of cadmium to cells
in Arabidopsis [22]. The overexpression of OsHIPP56 exhibited a remarkable detoxification
effect with an up to 230% reduction in Cd deposition in rice roots compared with WT [23].
The expression level of OsHIPP21 was increased by Cd induction, as was the case for
OsHIPP28 and OsHIPP41 [24]. The transformed yeast mutants expressing OsHIPP16/34/60
accumulated more heavy metals (treated with Mn, Cu, Cd and Zn, respectively) without
growth inhibition, which was validated by rice transformation of OsHIPP42 [18]. AtHIPP44
can interact with the transcription factor AtMYB49 and increase its expression, thereby
reducing Cd accumulation [25]. Although there are many reviews on HIPPs, the functional
verification of HIPP26 is lacking.

It has been reported that Arabis paniculata Franch is a new type of heavy metal hyper-
accumulator that has a strong enrichment effect on Zn, Cd and Pb [26]. In our previous
study, we sequenced the transcriptome of A. paniculata under Cd stress and found that
the HIPP26 gene was significantly upregulated [27]. However, the role of this gene in the
physiological response and molecular mechanism to Cd stress is unclear. Therefore, the
ApHIPP26 gene was cloned and overexpressed in Arabidopsis thaliana (L.) Heynh to verify
the molecular mechanism under Cd stress. Overexpression of ApHIPP26 enhanced Cd
tolerance and accumulation by regulating plant hormone signal transduction in A. thaliana.

2. Results
2.1. ApHIPP26 Conserved Motif and Phylogenetic Analysis

The ApHIPP26 protein was conserved among the 10 species of plant. As shown in
Figure 1a, the ApHIPP26 protein is evolutionarily close to that of C. sativa. Motif analysis
showed that the motif of ApHIPP26 is overwhelmingly identical to that of ApHIPP26
proteins in other plant species (Figure 1b).
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Figure 1. Phylogenetic relationship (a) and multiple sequence alignment (b) between ApHIPP26 and
other plant homologous proteins.

2.2. ApHIPP26 Is Localized in the Nucleus

To determine the subcellular localization of ApHIPP26, we injected ApHIPP26-GFP
and GFP expression vectors into tobacco epidermal cells for transient expression. The
GFP signal and DAPI signal completely overlapped, while the negative control signal was
distributed in the cell membrane, cytoplasm and nucleus (Figure 2). These results indicate
that ApHIPP26 is localized in the nucleus.
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2.3. Cd Induced ApHIPP26 Expression

RT-qPCR results showed that there was no difference in the expression level of
ApHIPP26 in roots and shoots of A. paniculata under normal conditions. After exposure
to Cd, the mRNA levels of roots and shoots increased significantly, especially in the latter
part (Figure 3a). The results show that the ApHIPP26 gene is a key gene of A. paniculata in
response to Cd stress, and its expression is upregulated when Cd stress occurs.
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Figure 3. Expression patterns of the ApHIPP26 gene. (a) Relative expression of ApHIPP26 under
cadmium (Cd) stress in Arabis paniculata. (b) Relative ApHIPP26 expression in transgenic Arabidopsis
overexpressing the ApHIPP26 gene. Different letters indicate a statistically significant difference at
p < 0.01.

2.4. ApHIPP26 Overexpression Enhanced Cd Tolerance and Accumulation in
Transgenic Arabidopsis

We obtained nine transgenic Arabidopsis lines by inflorescence infection, and fluores-
cence quantitative RT-qPCR was performed to detect ApHIPP26 expression in these nine
lines. Three lines (OE2, OE5 and OE9) with high expression levels were options for further
operation (Figure 3b). In a normal medium, there was no significant difference in the
phenotype (root length, fresh weight, germination rate) of wild-type (WT) and transgenic
lines. However, in the medium with 100 µM Cd, the root length of the wild type (WT) was
significantly shorter than that of the three transgenic lines with the same performance in
both fresh weight and germination rate, of which the wild type was significantly lower
(Figure 4a,b and Figure 5a–c). The results of 14-day soil incubation showed no difference
in the phenotypes of WT and transgenic lines under normal conditions, but the leaves of
WT showed much more severe yellowness than those of transgenic plants treated with
2.5 mM Cd (Figure 4c), which indicated that the overexpression of ApHIPP26 enhanced Cd
tolerance in transgenic Arabidopsis.
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Figure 4. The growth state of Arabidopsis overexpressing the ApHIPP26 gene under cadmium (Cd)
stress. (a,b) Root length and Germination rate of transgenic Arabidopsis grown for 14 days on half-
strength Murashige and Skoog (1/2 MS) medium without or containing 100 µM and 150 µM Cd.
Scale bar = 1.5 cm. (c) Phenotypes morphology of wild-type and transgenic Arabidopsis treated with
0 or 2.5 mM Cd for 14 days. Scale bar = 5 cm.
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without 100 µM Cd. Different letters indicate a statistically significant difference at p < 0.01.
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2.5. Overexpression of ApHIPP26 Enhanced the Antioxidant Capacity and Photosynthesis of
Transgenic Arabidopsis

We detected the contents of MDA and proline (Pro), which can reflect the degree of
plant injury under stress. In this study, the MDA content of WT plants was significantly
higher than that of transgenic lines stressed by Cd (Figure 6a), and the content of proline in
WT plants showed a downwards trend compared to transgenic plants (Figure 6b), indicating
that the cell membrane of WT plants had suffered more serious damage. Meanwhile, the
antioxidant system in the plant functioned, eliminating some ROS to mitigate the effects
of stress. The POD, APX, CAT, and SOD enzymes in OE plants exhibited significantly
higher activity than those in WT plants (Figure 6c–f). Moreover, the chlorophyll content
was rescued in transgenic plants and was significantly higher than that in WT plants under
Cd stress (Figure 6g). These results implied that overexpression of ApHIPP26 in Arabidopsis
enhanced Cd tolerance by improving the antioxidant capacity and rescuing photosynthesis.
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Figure 6. Physiological indices of plants expressing ApHIPP26 under control and cadmium (Cd)
stress conditions. (a) Malondialdehyde (MDA). (b) Proline (Pro). (c) Peroxidase (POD) activ-
ity. (d) Ascorbate peroxidase (APX) activity. (e) Catalase (CAT). (f) Superoxide dismutase (SOD).
(g) Chlorophyll content. Different letters indicate a statistically significant difference at p < 0.01.

2.6. ApHIPP26 Increased Cd Uptake by Regulating the Expression of Heavy Metal Transporters

After Cd exposure, the Cd content of shoots and roots in the OE5 and WT lines
indicated that overexpression of ApHIPP26 increased Cd uptake both aboveground and
underground (Figure 7i).

Plants have developed a regulatory system to maintain the balance of metal ion concen-
trations, among which heavy metal transporters are an important component and include
the yellow stripe-like transporter protein family (YSL), ZRT/IRT-like protein family (ZIP),
natural resistance-associated macrophage protein (NRAMP), etc. We selected eight genes
encoding related proteins to verify whether overexpression of ApHIPP26 regulates their
expression. In the absence of cadmium treatment, overexpressed ApHIPP26 elevated the
expression level of AtNRAMP6 and AtNAS3 and decreased that of AtHMA2, with no
difference in others. Under Cd treatment, AtNRAMP6 and AtNAS3 were expressed at
significantly higher levels, and AtNRAMP3, AtYLS2, AtIRT3, AtZIP4, and AtCAX3 were
downregulated.
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Figure 7. (a) Cadmium content in roots and buds of wild-type (WT) and transgenic Arabidopsis after
14 days of 2.5 mM Cd treatment. Relative expression levels of (b–i) heavy metal transporters in
WT and transgenic lines under 0 mM or 2.5 mM Cd stress. Different letters indicate a statistically
significant difference at p < 0.01.

2.7. ApHIPP26 Enhanced the Synthesis of Plant Hormones in the Aerial Parts of Transgenic
A. thaliana

To further understand the regulatory network after the ApHIPP26 gene was introduced
into A. thaliana, WT and OE5 were treated with 0 mM and 2.5 mM, and the DEGs of
their aboveground parts were identified. There were 223 DEGs in transgenic lines in the
comparison with Cd treatment and without (CKOE5/CdOE5), and 4652 EDGs in WT lines
treated with and without Cd (CKWT/CdWT). In addition, a total of 2928 DEGs were
identified in Cd-treated WT and transgenic lines (CdOE5/CdWT), while 1217 DEGs were
identified in the control group without Cd treatment (CKOE5/CKWT). The results showed
that the ApHIPP26 gene altered the transcription profile of the Cd stress response after its
transfer into Arabidopsis (Figure 8a).
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Figure 8. Differentially expressed genes (DEGs) in the shoots of wild-type (WT) plants and the
transgenic line OE5 overexpressing ApHIPP26 under cadmium (Cd) stress identified by transcriptome
analysis. (a) The number of DEGs. (b) DEGs enriched in Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways in the shoots of WT and OE5 plants affected by Cd stress. (c) Gene Ontology (GO)
assignment of DEGs in the shoots of WT and OE5 plants affected by Cd stress. (d) Expression of
DEGs related to Plant hormone signal transduction pathway.

Subsequently, we performed GO analysis to classify the biological functions of the
DEGs identified in CdOE5 vs CdWT. We found that many of these DEGs were enriched in
the lignin biosynthetic process, cell wall macromolecule biosynthetic process, and plant-
type cell wall modification (Figure 8b). These biological processes are closely related to
plant cell wall synthesis, and the DEGs were all downregulated. In the KEGG pathway,
DEGs were mainly enriched in the starch and sucrose metabolism, plant hormone signal
transduction, and cysteine and methionine metabolism pathways (Figure 8c). Noticeably,
we found that the expression levels of DEGs in the plant hormone signal transduction path-
way changed significantly (Supplementary Tables S2–S4), so we analysed them (Figure 8d).
Twenty, ten and three DEGs were detected in auxin, abscisic acid (ABA) and ethylene (ETH)
signal transduction, respectively. AtIAA27 and AtARF11 were upregulated, and AtHAB1,
AtABI2 and AtERF1 were downregulated (Figure 9a–h).
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DEGs related to Plant hormone signal transduction pathway. 
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3. Discussion

Cd can pollute soil, water, air dust and food in various ways, which causes Cd poi-
soning in people and animals, mainly by feeding or inhalation, and cadmium compounds
are the most severe. Cd poisoning mainly manifests as kidney damage, osteoporosis,
anemia, nervous system damage, etc., and severe cases can lead to kidney failure and death.
Human chromosome aberrations caused by chronic poisoning seriously affect offspring
growth and development [28]. To date, many technologies for the remediation of heavy
metal-contaminated soil are mainly based on physical and chemical principles [29–31].
However, some limitations remain, such as high cost and low efficiency when pollutants
are present at low concentrations [31–33]. Therefore, it is necessary to develop more eco-
nomical and efficient technologies. Phytoremediation is plant-based remediation that can
absorb metallic elements from soil and water, accumulate them in plants and purify the
environment [34]. Recently, the study of hyperaccumulators has shed new light on these
issues of heavy metal pollution and has become one of the research highlights.

According to professional evaluation and analysis, many star plants applied in phy-
toremediation have been found, and molecular mechanisms and useful candidate genes
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for the absorption and accumulation of heavy metals have been explored in these plants.
In the Populus×canescens line, the CTP3 gene from Sedum plumbizincicola X. H. Guo
was overexpressed and increased cadmium tolerance and accumulation, altering the
distribution of Cd in leaf tissues [35]. Moreover, RNAi and overexpression techniques
proved that SpHMA3 positively regulated Cd accumulation by compartmentalization in
Sedum plumbizincicola [36]. Overexpression of the root-specific expression gene PCR2
in Sedum alfredii Hance enhanced the Cd exocytosis of roots, which was confirmed in
A. thaliana [37]. Ectopic expression of ZNT1 cloned from Noccaea caerulescens (J.Presl & C.Presl)
F.K.Mey. revealed that NcZNT1 contributed greatly to root-shoot transport of metals such
as nickel, Cd, zinc, iron (Fe), and manganese (Mn) in A. thaliana [38]. The upwards transport
of Fe and Mn rather than Cu or Zn was increased in transgenic A. thaliana overexpressing
SnYSL3 (Solanum nigrum L.), but when stressed by Cd the transport efficiency of Mn no
longer changed [39]. MsYSL1, one upregulated gene in Miscanthus sacchariflorus treated
with Cd, manages the transport of Cd, Fe, and Mn and is involved in the process of Cd
detoxification by inducing the expression of genes related to nicotianamine synthesis and
HM exclusion [40]. Previously, we executed one transcriptome study and found that the
ApHIPP26 gene in the hyperaccumulator A. paniculata is induced by Cd stress [41]. In this
study, we ectopically expressed ApHIPP26 in Arabidopsis to further explore its function in
the response to HM stress.

Reactive oxygen species (ROS), secondary metabolites produced in aerobic metabolism,
are recognized as key signal transduction molecules that are deeply involved in pro-
grammed cell death, growth and development, hormone signaling, and responses to
various environmental stresses [42]. However, excessive ROS mainly attack biological
macromolecules (membrane lipids, proteins and nucleic acids) within cells, producing cyto-
toxic effects and even triggering rapid cell death [43]. The generation and digestion of ROS
in cells must remain in dynamic equilibrium, which is the basis of maintaining a relatively
stable redox state for survival. As the final product of membrane lipid peroxidation, MDA
content increases with increasing lipid membrane oxidation damage, and Pro can regulate
permeability and prevent peroxidation, reflecting the antioxidant capacity of plants [44].
SOD, POD, and CAT are considered important scavengers and components of antioxidant
defense in plants [45]. In this study, transgenic plants overexpressing ApHIPP26 exhibited
stronger antioxidant capacity under Cd stress, with excellent antioxidant oxidase activity
(Figure 6), and the content of MDA significantly decreased, while the WT plants suffered
more seriously from peroxide. Of course, overexpression of ApHIPP26 also increased root
growth and biomass, which is important for plant growth (Figure 5).

The most important feature of hyperaccumulator plants is their ability to absorb heavy
metals and transfer them to aerial parts [46]. In this study, overexpression of ApHIPP26
significantly increased the uptake and translocation of Cd in Arabidopsis (Figure 7b). There-
fore, we detected some genes known to be involved in the above processes and found
that the expression of AtNRAMP6 and AtNAS3 was significantly upregulated, while that
of AtNRAMP3, AtYLS2, AtIRT3, AtZIP4, and AtCAX3 was downregulated. SaNRAMP6
from Sedum alfredii, when transferred to yeast and Arabidopsis, enhances their sensitivity to
Cd by increasing Cd transportation and accumulation [47]. In tobacco, knocking out the
NtNRAMP3 gene makes it easier for Cd to accumulate in vacuoles, altering the distribution
of Cd in subcellular cells of leaves [48]. Due to the overexpression of ApHIPP26, the expres-
sion of genes related to heavy metal absorption and transport undergoes different changes
in parallel, jointly participating in the accumulation and distribution of Cd in plants. This
also confirms that overexpression of ApHIPP26 enhances cadmium accumulation.

In hyperaccumulators, the main transport site of metals is the xylem, in which heavy
metals form complexes with various organic acids or amino acids and are translocated
upwards [49]. In this situation, the metal ions deposited in the cell wall are not easily
transported [50]. After entering leaf tissues, the metal mainly crossed the cell wall and
became compartmentalized in the vacuole [2]. Our GO analysis revealed that DEGs are
mainly classified into cell wall synthesis and are all downregulated, which makes it easier
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for heavy metals to enter rather than bind to the cell wall. Additionally, our KEGG analysis
revealed that DEGs were enriched in cysteine and methionine metabolism pathways
(Figure 8c). As reported, sulfur-containing methionine and cysteine achieve transport and
detoxification of heavy metals through phytochelatins and metallothioneins, and these
chelates and complexes can reduce the toxicity of heavy metals and ROS by the oxidation
reaction of their thiol group (-SH) [51,52]. Exogenous cysteine can improve the tolerance
of plants (maize, Arabidopsis) to heavy metals such as Cd, chromium and mercury by
increasing the activity of antioxidant enzymes and regulating the expression of GS1 and
MT3 genes, which encode glutathione and metallothioneins [53]. Precursors involved in
cysteine and methionine biosynthesis are also closely related to abiotic stress in plants.
The CSase gene, belonging to the cysteine synthase gene family and involved in cysteine
synthesis, was overexpressed in Medicago sativa and significantly increased the content
of cysteine and glutathione, which contributed to Cd resistance in alfalfa [54]. SAMS1,
one gene encoding S-adenosyl-methionine synthetase, enhanced the salt tolerance of both
tobacco and Arabidopsis by polyamine synthesis [55], which was verified by the protein
interaction of CaM4 with SAMS1 governing ion homeostasis and ethylene synthesis [56].

Phytohormones, as endogenous substances, play significant roles in modulating plant
germination, growth, flowering, fruit and other processes, especially at very low concen-
trations, and their functions are complex and sophisticated [57,58]. The phytohormone
strategy used to solve HM poisoning in plants has attracted strong attention [59], includ-
ing foliar application of exogenous phytohormones and endogenous regulation of auxin,
abscisic acid (ABA), ethylene (ETH) and others [60–62]. Auxins help plants respond to
heavy metal toxicity by regulating their biosynthesis, degradation, signal transduction
and transport and play an important role in root development under normal and stress
conditions [63]. Auxin plays an important role in root development under normal and
stress conditions. In tomato, SI-IAA27 was identified as a pivotal gene that passes real-time
information between auxin, ethylene biosynthesis and strigolactone biosynthesis through
transcription regulation modules such as SI-IAA27-SI-ERF. B3 and SI-IAA27-SI-NSP1 [64].
Moreover, overexpressing ApHIPP26 inhibited the activity of the ethylene pathway, in
which three genes and the key gene in ethylene synthesis, ACS2, were all downregulated,
which is consistent with the results showing that inhibiting ethylene synthesis can enhance
cadmium tolerance in plants [65,66]. In our study, AtIAA27 (AT4G29080) in auxin and
AtERF1 (AT3G23240) in the ethylene pathway were differentially expressed. The ABA
signaling pathway consists of several core components (e.g., Snfl-related protein kinase
2, SnRK2s; 2C-type protein phosphatase, PP2Cs; ABA-response element binding factors
and ABF), which play an important role in the response to abiotic stress [67]. The tran-
scription factor MYB49 promotes the accumulation of Cd by binding the promoter of
HIPP22 to HIPP44, while the accumulation of Cd in Arabidopsis leads to an increase in
endogenous ABA content, which induces ABI5 expression and inhibits MYB49 binding to
downstream regulatory genes to achieve negative feedback regulation [25]. ABI5 interacts
with HAB1/ABI2 by dephosphorylation [68]. In this work, DEGs (HAB1/ABI2) related to
the negative regulator PP2C were downregulated, which further activated downstream
ABF-binding factors, thereby enhancing ABA signal transduction, which suggested that
ABA signal transduction was activated by overexpression of ApHIPP26 and enhanced
Cd accumulation. However, this conjecture contradicts some research findings that high
ABA levels enable Cd deposition in apoplastic obstacles and inhibit the transport of Cd
via apoplastic pathways [69,70]. We believe that whether ABA promotes metal accumu-
lation depends on the metal concentration and plant species, and the mechanism is still
complex [71].

4. Materials and Methods
4.1. Plant Culture and Treatments

The materials used in this experiment were A. thaliana, A. paniculata and
Nicotiana tabacum Linn. (Huaxi District, Guiyang, China, E106.67◦, N26.41◦). Tobacco
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seeds were directly sown in a square box filled with nutrient soil and the seedlings were
transplanted after two weeks. Arabidopsis seeds were washed with alcohol and then washed
with sterile water 3 times, then were vernalized at 4 ◦C for 3 days, germinated vertically
on a Murashige and Skoog (MS) medium for 7 days. After three weeks of growth in the
nutrient soil, six pots of wild-type Arabidopsis and three transgenic lines (four plants per
pot) were selected and divided into two groups. The Hoagland medium with or without
2.5 mmol/L CdCl2 was used to irrigate for 14 days. The seeds of Arabidopsis were washed
in the same way and root length and germination rate were measured on media with or
without 100 µm CdCl2 and 150 µm CdCl2 on a 1/2 Murashige and Skoog (1/2MS) medium.
Three biological replicates were set for each group. After three weeks in Hoagland solution,
A. paniculata seedlings were treated with 0.25 mM CdCl2 for seven days. The artificial
climate incubator strictly implements the light and humidity control system with specific
indicators referring to a published article [66].

4.2. Phylogenetic Analysis

Using the protein sequence translated from the coding sequence of ApHIPP26 as a
query condition, the homologous ApHIPP26 protein of A. thaliana, Eutrema salsugineum
(Pall.) Al-Shehbaz, Brassica rapa L., Capsella rubella Reut. ex Boiss., Raphanus sativus L.,
Camelina sativa (L.) Crantz, Brassica oleracea L., Tarenaya hassleriana (Chodat) H.E. Moore,
Salvia splendens Sellow ex Roem., Phtheirospermum japonicum (Thunb.) Kanitz, and
Solanum lycopersicum L. MEGA7.0 was used to analyse the phylogenetic relationships
of HIPP26 proteins among these 11 species. DNAMAN was used to analyse the multiple
sequence alignment of HIPP26 protein among these 11 species.

4.3. Subcellular Localization

Primers were designed according to the CDs sequence of the HIPP26 gene and the
pROKII vector with restriction sites. The pROKII-ApHIPP26-GFP vector was constructed
by homologous recombination and transformed into Agrobacterium GV3101 by the freeze-
thaw method. The prepared bacterial liquid was injected into the tobacco leaves, and
the tobacco seedlings were put into an artificial climate incubator for dark treatment and
cultured for two days. The blade was cut into 1 cm2 pieces to make temporary slides, which
were observed and photographed with a laser confocal microscope (Zeiss, LSM510 Meta,
Carl Zeiss). The pROKII empty vector was used as the control.

4.4. RNA Isolation and qRT–PCR

Total RNA extraction was performed with an RN38-EASYspin Plus Kit (Aidlab,
Hangzhou, China) and RT Master Mix for qPCR II Kit (MedChemExpress, Shanghai, China)
for reverse transcription. The BIOER FQD-48A system (BIOER, Hangzhou, China) was
utilized for RT-qPCR. The gene sequences of primers used are shown in the attached table,
and the reference gene is Actin 1. The 2−∆∆CT method, which was reported previously [72],
was employed to estimate gene expression.

4.5. Construction of the Expression Vector and Genetic Transformation of A. thaliana

The construction of the pB121-HIPP26 vector was based on a published method [28]. A.
thaliana growing to bloom was used for genetic transformation mediated by Agrobacterium
GV3101 [29]. Screening of positive plants was carried out by 1/2 MS medium containing
50 mg/L kanamycin, and T3 seedlings were obtained for subsequent study.

4.6. Phenotypic Analysis and Determination of Physiological Indices

The antioxidant enzymes in aboveground parts were determined, including superox-
ide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and
the levels of malondialdehyde (MDA), proline (Pro), and chlorophyll. All substances were
quantified using a detection kit (Solarbio, Beijing, China) that contained the details of the
experimental procedure.
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4.7. Determination of Cd Content

Cd accumulation in the shoots and roots of the transgenic lines (OE2, OE5 and OE9)
and wild type (WT) was determined. It should be noted that the roots of the plant should
be sufficiently cleaned to ensure that Cd in solution was removed. The plant samples were
dried and ground into powder, with specific operational details referring to published
papers [73], and then concentration measurements were performed using ICP-MS [74].

4.8. RNA-Seq Analysis

We selected aboveground tissues of transgenic plants and WT plants for transcriptome
sequencing. The two groups were treated with different concentrations of Cd (0 mM CdCl2,
2.5 mM CdCl2). A NanoDrop 2000 spectrophotometer, which is a professional platform
to quantify the samples, was initially used to quantify the RNA concentration. Then, an
Agilent 2100/4200 was used to interpret the RNA sample quality and accurately quantify
the concentration. When the construction of the library was finished, Qubit 3.0 software
was available and used for initial quantification. The Illumina NovaSeq 6000 possessed
advanced sequencing technology and was used for transcriptome sequencing in this study
after library inspection was qualified. The raw sequence data are available in NCBI-SRA
(https://www.ncbi.nlm.nih.gov/sra (accessed on 23 August 2023)) under the accession
number PRJNA947359.4.9. Validation was conducted using real-time quantitative PCR
(RT-qPCR).

4.9. Statistical Analysis

Regression analysis was performed using SPSS V25, which is suitable for analysis of
variance between groups. The data shown in the article and every treatment group were
subjected to the experiment 3 times.

4.10. Primers

All the primers used in this study are listed in Table S1.

5. Conclusions

In this work, we identified the Cd-induced gene HIPP26 from A. paniculata and
transformed it into A. thaliana. ApHIPP26 overexpression plants displayed Cd tolerance
and accumulation in physiological and biochemical performances through enhancing the
activity of antioxidant enzymes and modifying the expression of genes involved in the
plant hormone pathways. These findings will help reveal the mechanism of Cd tolerance
in hyperaccumulators, which may contribute to phytoremediation and even provide useful
candidate molecular markers for breeding low-cadmium crops. As we all know, heavy
metals have a strong toxic effect on organisms, seriously threatening our health, so reducing
the pollution and accumulation of heavy metals is extremely important. In future studies,
we may be able to find more hyperaccumulators to achieve the remediation of soil and
water. It is also possible to transfer the key genes in the hyperaccumulators or wild relatives
of cultivated species [75,76] into crops through transgenic technology to cultivate crops
that are resistant to heavy metals and can be enriched in non-edible parts.
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