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Abstract: Breast cancers regroup many heterogeneous diseases unevenly responding to currently
available therapies. Approximately 70–80% of breast cancers express hormone (estrogen or proges-
terone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies
targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite
available treatments, and relapses frequently ensue. By improving patient survival and quality of life,
cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have
led to only limited success in breast cancers. In addition, only patients with hormone-independent
breast cancers seem to benefit from these immune-based approaches. The present review examines
and discusses the current literature related to the role of hormone receptor signaling (specifically,
an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to
the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to
escape from protective anti-cancer immunity. Future research prospects related to the possibility of
promoting the efficacy of immune-based interventions using hormone therapy agents are considered.

Keywords: hormone receptors; estrogen receptors; hormone signaling; breast cancers; cancer
immunity; immunotherapies

1. Introduction

The advent of immunotherapies over the last decade has constituted a major break-
through in the treatment of cancer patients. However, although some patients with specific
types of cancers, such as lung, bladder, colon, and liver malignancies, have benefited
from such immune-based therapies, breast cancer (BC) patients have yet to experience
comparable advantages. This relative absence of response to efficient immune-based in-
terventions may be related to the multiple mechanisms of escape triggered by developing
cancers. These mechanisms of resistance to immunotherapies can be “tumor-intrinsic” (the
upregulation of ligands binding to inhibitory immune checkpoint receptors on effector
immune cells and the impaired expression and presentation of neo-antigens, for instance) or
“extrinsic”, thereby including non-malignant cells of the tumor microenvironment (TME),
such as immunosuppressive immune cells and stromal cells (Figure 1). These interacting
networks of intrinsic and extrinsic escape mechanisms are particularly efficient in BC to
avoid immune-mediated elimination and sustain primary tumor growth and malignant
cell invasion and metastasis [1–4].
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Figure 1. The impact of ER signaling on the intrinsic and extrinsic mechanisms of the escape of BC 
cells from anti-cancer immunity. An overview of current knowledge related to the impact of estro-
gen signaling on the mechanisms of escape from effector anti-tumoral immune cells and immuno-
therapies. It should be noted that most of the studies to date have focused on estrogen signaling 
through ERα. MHC I, major histocompatibility complex class I; β2M, light chain β-2-microglobulin; 
TAP, transporter associated with antigen processing; TET2, ten-eleven translocation 2; PDL1, pro-
grammed-death ligand 1; PI9, serpinB9/proteinase inhibitor 9, GrB, granzyme B; IDO, indoleamine 
2,3-dioxygenase; FasL, Fas ligand; Cox2, cyclooxygenase 2; NOS2, nitric oxide synthase 2; TGF-β, 
transforming growth factor β; MDSC, myeloid-derived suppressor cell; CMP, common myeloid pro-
genitor; Treg, regulatory T cell; PD1, programmed cell death 1; CTL, cytotoxic T lymphocyte; NK, 
natural killer cell; Th, helper T lymphocyte; E2, 17-β estradiol; TAMs, tumor-associated macro-
phages; STAT3, signal transducer and activator of transcription 3. The question mark represents 
mechanisms that are controversial or need to be addressed. Illustration created using BioRender. 

Breast cancers regroup many heterogeneous diseases with different prognoses and 
sensibilities to treatment and can be categorized by their receptor expression: hormone 
receptors (HRs), namely the estrogen (ER) and progesterone (PR) receptors, and the 
human epidermal growth factor receptor 2 (HER2) [5]. This heterogeneity was further 
unraveled by the molecular classification proposed by Perou et al. and Sørlie et al., who 
classified breast cancers into four groups: luminal breast cancer (characterized by the 
expression of ESR1, coding for ERα), HER2-enriched, basal-like breast cancers, and the 
controversial “normal breast-like” [6,7]. In clinical practice, a simplified classification is 
used based on the St Gallen International Expert Consensus. Luminal breast cancers are 
defined by their positivity for the ER receptor and can be further distinguished into 
“luminal A” and “luminal B” breast cancers. In the molecular classification, “luminal B” 

Figure 1. The impact of ER signaling on the intrinsic and extrinsic mechanisms of the escape of BC
cells from anti-cancer immunity. An overview of current knowledge related to the impact of estrogen
signaling on the mechanisms of escape from effector anti-tumoral immune cells and immunotherapies.
It should be noted that most of the studies to date have focused on estrogen signaling through ERα.
MHC I, major histocompatibility complex class I; β2M, light chain β-2-microglobulin; TAP, transporter
associated with antigen processing; TET2, ten-eleven translocation 2; PDL1, programmed-death
ligand 1; PI9, serpinB9/proteinase inhibitor 9, GrB, granzyme B; IDO, indoleamine 2,3-dioxygenase;
FasL, Fas ligand; Cox2, cyclooxygenase 2; NOS2, nitric oxide synthase 2; TGF-β, transforming growth
factor β; MDSC, myeloid-derived suppressor cell; CMP, common myeloid progenitor; Treg, regulatory
T cell; PD1, programmed cell death 1; CTL, cytotoxic T lymphocyte; NK, natural killer cell; Th, helper
T lymphocyte; E2, 17-β estradiol; TAMs, tumor-associated macrophages; STAT3, signal transducer
and activator of transcription 3. The question mark represents mechanisms that are controversial or
need to be addressed. Illustration created using BioRender.

Breast cancers regroup many heterogeneous diseases with different prognoses and
sensibilities to treatment and can be categorized by their receptor expression: hormone
receptors (HRs), namely the estrogen (ER) and progesterone (PR) receptors, and the human
epidermal growth factor receptor 2 (HER2) [5]. This heterogeneity was further unraveled
by the molecular classification proposed by Perou et al. and Sørlie et al., who classified
breast cancers into four groups: luminal breast cancer (characterized by the expression
of ESR1, coding for ERα), HER2-enriched, basal-like breast cancers, and the controversial
“normal breast-like” [6,7]. In clinical practice, a simplified classification is used based on
the St Gallen International Expert Consensus. Luminal breast cancers are defined by their
positivity for the ER receptor and can be further distinguished into “luminal A” and “lumi-
nal B” breast cancers. In the molecular classification, “luminal B” breast cancers display a
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lower expression of ESR1 and a higher expression of proliferation genes. In the simplified
classification, “luminal A” breast cancers have a high ER and PR expression (PR ≥ 20%),
a low Ki67 index, and no amplification of HER2. Conversely, “luminal B” breast cancers
are generally more aggressive, with a PR ≤ 20% and a higher Ki67 index. This category
also comprises “luminal B- non HER2” or “luminal B- HER2-enriched”. “HER2-enriched”
breast cancers are characterized by an amplification of HER2, and basal-like breast cancers
correspond roughly to triple-negative breast cancers, which are HR−/HER2− [8–11]. Fur-
ther characterization of their tumor microenvironment (TME) reveals that these subtypes
also differ in the composition of non-malignant elements, which may significantly impact
responses to immunotherapies [12]. As such, TNBC patients, whose tumors are considered
to be more immunogenic, are more responsive to an immune checkpoint blockade (ICB),
such as immune inhibitory receptor PD1 inhibition [13,14]. On the other hand, hormone-
dependent BCs, which comprise around 70% of all BCs, are much less sensitive to ICBs,
which is an observation closely related to a more moderate mutational load of tumors, a
reduced tumor-infiltrating lymphocyte (TILs) number, and sporadic PDL1 (programmed-
death ligand 1, a ligand of PD1) expression [15]. Recent studies have revealed that the TME
associated with HR+ tumors is largely composed of immune cells, such as myeloid cells
and T lymphocytes, which may participate in immunotherapy resistance [16–18].

In the current article, we review and discuss the potential role of HR and, more
specifically, ER signaling in the resistance to the effector mechanisms of protective anti-
tumor immunity and immune-based therapies. The state of knowledge related to the impact
of currently available anti-hormonal treatments on breast cancer sensitivity to immune
effector mechanisms is discussed. Points of current controversies and areas lacking scientific
knowledge in the field are identified, and future research prospects related to the role of
HR signaling and its modulation on immune responses and immunotherapies in breast
cancers are considered. There is a specific emphasis placed on the oncogenic driver ER, as
it holds a major role in the development of HR+ breast tumors.

2. The Estrogen-ER Pathway in BC
2.1. Overview of Estrogen-ER Signalings

Estrogens are steroid hormones, and the most common in humans is 17β-estradiol
(E2), which plays a dualistic role in physiological and pathological circumstances. Estrogen
signaling is mediated by two major pathways. The genomic or “classical” signaling
pathway involves estrogen receptors (ERs), acting as nuclear transcription factors, and
“non-classical” alternatives, relying primarily on the activity of the membrane-anchored G
protein-coupled estrogen receptor 1 (GPER1) [5,19]. In the classical pathway, the binding of
estrogens to ER isoforms ERα and/or ERβ allows the translocation of dimerized complexes
of the receptors to the cell nucleus, wherein further binding to estrogen-response elements
(EREs) activates or represses the transcription of target genes controlling the regulation of
the cell cycle, proliferation, and apoptosis [5,19,20] (Figure 2).

In the setting of luminal BC, the dysregulation of ER signaling plays a major role in
carcinogenesis and tumor progression. In this context, ERα has been demonstrated to be
critically involved in these processes [21]. The treatment of patients with luminal BC has
thus largely aimed at blocking the estrogen/ER axis, either by inhibiting the activity of the
aromatase enzyme to limit endogenous production of estrogens or by directly antagonizing
the ER [20,22]. In contrast with these observations, the activation of ERβ in BC cells may
be associated with more favorable outcomes, notably by impairing tumor cell growth
and inducing apoptosis [23]. However, the precise mechanisms associated with this anti-
proliferative effect remain to be determined.
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Figure 2. A simplified overview of estrogen-induced signaling pathways. In the classical genomic 
signaling pathway, estrogens diffuse through the cell membrane and bind to estrogen receptors, 
inducing their dimerization. ER complexes translocate to the nucleus where they directly or indi-
rectly (through the interaction with co-activating factors) interact with EREs to activate the tran-
scription of downstream genes. On the other hand, gene transcription associated with the non-clas-
sical estrogen signaling pathway is characterized by the activity of an estrogen-bound GPER, with-
out the involvement of a cytosolic ER. E2, 17-β estradiol; ER, estrogen receptor; GPER, G protein-
coupled estrogen receptor; ERE, estrogen response element; TF, transcription factor. Illustration cre-
ated using BioRender. 
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Figure 2. A simplified overview of estrogen-induced signaling pathways. In the classical genomic
signaling pathway, estrogens diffuse through the cell membrane and bind to estrogen receptors,
inducing their dimerization. ER complexes translocate to the nucleus where they directly or indirectly
(through the interaction with co-activating factors) interact with EREs to activate the transcription
of downstream genes. On the other hand, gene transcription associated with the non-classical
estrogen signaling pathway is characterized by the activity of an estrogen-bound GPER, without the
involvement of a cytosolic ER. E2, 17-β estradiol; ER, estrogen receptor; GPER, G protein-coupled
estrogen receptor; ERE, estrogen response element; TF, transcription factor. Illustration created
using BioRender.

2.2. Targeting of the Estrogen-ER Pathway

Two main categories of ER-targeting agents have been developed, which differ by their
mode of action: selective estrogen receptor modulators (SERMs) and selective estrogen
receptor degraders (SERDs). The former acts by modifying ER transcriptional complexes
through the recruitment of corepressors, leading to the silencing of ER target genes [20].
Tamoxifen is an example of a widely administered SERM that has proven highly effective
in the treatment of early ER+ BC. This agent may also be administered in advanced settings
under specific conditions [20,24]. Nevertheless, resistance to tamoxifen is frequent, and its
prolonged use could increase the risk of endometrial cancer [25,26]. In this context, SERDs,
such as fulvestrant, have been developed with the unique ability to prevent ER activation
by binding to an ER in its monomeric form and inducing its degradation through the
ubiquitin–proteasome pathway [20]. Contrar to tamoxifen, SERDs are considered “pure”
ER antagonists due to their lack of agonistic effects in tissues other than the breast [20].

It is noteworthy that although the estrogen-ER axis in BC cells remains the most widely
studied mechanism of tumorigenesis promoted by estrogens, these hormones may also
exhibit effects on non-malignant cells of the tumor microenvironment (TME), indirectly
fostering tumor growth, as will be discussed in Section 3.

3. ER Signaling and Resistance/Sensitivity of BC Cells to Effector Immune Cells
and Immunotherapies
3.1. The Role of ER Signaling in Malignant Cell Resistance to Anti-Tumoral Effectors

Effector anti-tumoral CD8+ T lymphocytes (cytotoxic T cells, CTL) recognize tumor-
specific antigens in the form of processed peptides associated with the major histocom-
patibility complex class I (MHC I) molecules expressed at the surface of cancer cells. The
downregulation of MHC I expression or deficiencies in the antigen-presenting machinery
in tumor cells represents a major mechanism of escape from immune recognition and
thus elimination.
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The impact of ER signaling on antigen presentation in MHC Class I
To date, information related to the impact of ER signaling on antigen presentation

on MHC I in BC remains sparse and controversial. Although initial observations by
Rodríguez et al. [27] identified 17-β estradiol as an enhancer of HLA-I (human MHC
class I) expression in ER+ (MCF-7) but not in ER− (MDA-MB-231 and MDA-MB-435s) BC
cell lines, the underlying mechanism has yet to be identified. Furthermore, the nature
of the antigens presented by MHC I complexes was not investigated. A recent analysis
of gene expression data from 59 BC cell lines retrieved from the CCLE (Cancer Cell Line
Encyclopedia) highlighted an inverse relationship between ESR1 gene expression and
HLA genes [28]. A later study conducted by the same group uncovered a higher baseline
expression of HLA-A, B, and C proteins in ER− MDA-MB-231 cells compared to ER+

MCF-7 and T47D [29]. Consistently, treatment with the ER downregulator fulvestrant led
to an increase in HLA-ABC expression in MCF-7 and T47D. However, the expression of
HLA-ABC proteins in this study was not compared between MDA-MB-231 at baseline and
MCF-7 and T47D post-fulvestrant treatment. On the other hand, RNA sequencing and the
subsequent gene set enrichment analysis (GSEA) of MCF-7 grown in prolonged estrogen
deprivation conditions or with fulvestrant showed a marked reduction in HLA-A and -C,
B2M, and TAP2 genes, which are all involved in the antigen-presentation machinery [30].
Although contradictory, these pre-clinical studies highlight the complexity of the potential
regulation of MHC I molecules by an ER at the various levels investigated.

Recent clinical data are more straightforward and argue in favor of a negative regula-
tion of MHC I complexes by an ER. A study of primary breast cancer tissues from patients
who did not receive chemotherapy or radiotherapy clearly demonstrates a negative corre-
lation between ER status, the expression of HLA-I genes in tumor cells, and lymphocyte
infiltration in tumor sites (Figure 1). The analysis of 396 TCGA (The Cancer Genome
Atlas) BC cases examined under PAM50 standards, a prediction test routinely performed
following biopsy or surgery, further supports these clinical observations by confirming
the negative correlation between HLA-A expression, IFN signaling (a master inducer of
MHC I expression), and ER activity. In addition, HR−/HER2+ BC and TNBC were found
to exhibit higher HLA-A, B, and C expression than luminal HR+ tumors. Whether the ERα
isoform specifically impacts the expression of HLA genes in ERα+ luminal A compared to
ERα− luminal B tumors remains to be determined. In line with these results, clinicopatho-
logical data from 126 patients with ER+/HER2− invasive ductal carcinoma treated with
estrogen modulators indicated higher HLA-ABC positivity and TIL infiltration along with
a lower ER Allred score (a histological quantification of ER and PR) compared to the group
receiving chemotherapy alone [29].

The study of invariant light-chain β-2-microglobulin (β2M, required to maintain MHC
I molecules conformation) transcripts in 166 BC samples obtained following resection from
patients without previous chemotherapy and radiotherapy failed at establishing a link
between BC molecular subtype or ER status and the expression of β2M messenger RNA
(mRNA) [31]. However, contrasting these results, an analysis of FFPE samples from 164 BC
patients following surgery indicated that β2M protein expression was significantly reduced
in ER+ compared to ER− patients [31] (Figure 1).

Altogether, these results advocate for a contributing role of ER signaling in the regula-
tion of MHC I expression in estrogen-dependent BC (Figure 1), which may consequently
impact the recognition and subsequent elimination of BC cells by CD8+ cytotoxic T lym-
phocytes. However, further studies are needed to clearly delineate the mechanistic link(s)
between MHC class I expression and ER signaling in the different breast cancer subtypes.
Likewise, how the observed downregulation of MHC class I may impact recognition and
killing by natural killer cells (NKs) remains to be determined.

The impact of ER signaling on the antigen-presenting machinery
TAP1 and TAP2 (transporters associated with antigen processing 1 and 2) are es-

sential elements of the MHC I-presenting machinery. TAP1 and TAP2 actively transfer
peptides from the cytosol to the endoplasmic reticulum, where they are loaded onto MHC I
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molecules before transiting as complexes toward the cell surface for recognition by CD8+ T
lymphocytes [32]. The reduced expression or mutations of TAP1 and/or TAP2 proteins
in tumors result in the absence of MHC I-peptide complexes at the cell surface. This
consequently leads to a lack of recognition by CTL [33–38].

As it relates to BC, only limited information is available on the possible dysregulation
of TAP1 and TAP2. Vitale et al. initially observed that a downregulation of HLA I associ-
ated with both TAP1 and TAP2 reduced expression in the majority of primary high-grade
BC lesions studied (68%) but not primary low-grade lesions, regardless of the molecular
subtype [39] (Figure 1). In metastatic BC, the loss of TAP1 was associated with a complete
loss of HLA I in both primary and metastatic tumors, while HLA I molecules were not sig-
nificantly reduced in ER+ primary tumors [40]. In another study, lower levels of TAP2 were
observed in primary tumors positive for ERs or PRs [41]. However, in contrast with these
studies, a recent analysis of 160 primary BC tumors highlighted increased TAP1 expression
in stage 2 compared to stage 1 tumors [42]. In this report, TAP1 and TAP2 expression was
significantly higher in high-grade BC, corresponding to more aggressive, basal forms of
the disease [42]. These somehow conflicting clinical observations further underscore the
need for additional studies, including pre-clinical investigations, to accurately define the
link between ER signaling, TAP, and MHC class I expression, antigen presentation, and the
efficient elimination of BC cells by CTL.

The impact of ER signaling on tumor cell resistance to cytotoxic immune effectors
Tumor cells can also actively inhibit anti-tumoral immunity, notably through the

blockade of cytotoxic mechanisms. CTL or NK cells can induce cell lysis through the
release of perforin and granzyme-containing granules, which lead to target cell apoptosis.
Tumor cells have evolved many mechanisms to resist CTL- and NK-mediated killing,
including the expression of the serine protease inhibitor serpinB9/proteinase inhibitor
9 (PI-9) [43,44]. Importantly, PI-9 expression can be triggered by primary estrogens [45]
(Figure 1). In the BC MCF-7 cell line, PI-9 is rapidly induced by 17-β estradiol (E2) and
exhibits a protective effect against NK cell cytotoxicity. This result indicates that circulating
amounts of estrogens (around 50 pM) found in post-menopausal women may be sufficient
to counteract the killing activity of NK cells through the induction of PI-9 by BC cells [46]
(Figure 1). Interestingly, it has been shown that 4-hydroxytamoxifen (OHT), the active
metabolite of the SERM tamoxifen, induced a 10-fold increase in PI-9 mRNA in MCF-7
cells and exhibited comparable effects to E2 in inhibiting NK-mediated cytotoxic responses.
Such surprising results are likely the consequence of the function of tamoxifen as an ER
transcriptional complex modulator rather than a pure ER antagonist. On the other hand,
excess raloxifene or fulvestrant blocked the E2-induction of PI-9 mRNA in MCF-7 [46].
Along these lines, MCF-7 cancer stem cells were found to express higher levels of PI-9 than
their adherent/parental counterparts, and E2 supplementation was used to further enhance
PI-9 expression in these MCF-7 CSC. This increase was concomitant to an augmentation of
the Erα36 isoform known to mediate rapid non-genomic actions of estrogens, and a decrease
in the nuclear Erα66 [47]. Therefore, PI-9-regulated expression may not be restricted to
the classical estrogen signaling axis driven by Erα66 as initially postulated. These results,
however, need to be confirmed with additional BC cell lines. In addition, prospective
studies are warranted to confirm the role of PI-9 in tumor-associated immunosuppression,
as well as pre-clinical and clinical investigations, to potentially develop innovative strategies
targeting the activity of PI-9 in BC.

Breast tumor cells have also been shown to express Fas ligand (FasL). FasL induces the
apoptosis of Fas-expressing activated lymphocytes [48,49]. It has been reported that the E2
treatment of ER+ BC cells MCF-7 and T47D increased Fas-L mRNA and protein expression.
This effect can be inhibited by tamoxifen in a dose-dependent manner [49,50]. A closeup
of the FasL gene reveals the presence of two motifs resembling EREs in the promoter
region (including one with perfect homology), as well as the AP-1 enhancer element, which
mediates yet another pathway for ER transcriptional regulation [49] (Figure 3). Altogether,
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this information advocates for the role of ER in the upregulation of FasL in BC cells as a
mechanism of escape from CTL-mediated elimination.
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3.2. The Link between ER and Immune Inhibitory Receptor Ligand PDL1 in BC

The immune inhibitory receptor ligand PDL1 has been reported to be upregulated in
triple-negative and basal-like BC but not in luminal BC [51–54]. The binding of PDL1 to
its receptor PD1, itself expressed by activated T lymphocytes, leads to their inhibition and
thus the prevention of cancer cells killed by CTL [55,56]. Blocking anti-PD1 monoclonal
antibodies (mAbs) have been developed and obtained FDA approval for the treatment of
TNBC patients in the early and late stages of the disease, in combination with chemother-
apy [13,14] (Figure 1). Importantly, because ER+ BC only sparsely expresses PDL1, the
response of this category of patients to immune checkpoint inhibitor-based immunotherapy
has been limited thus far.

Pre-clinical in vitro studies indicated that PDL1 expression was reduced in ERα+

(MCF-7, T47D, CAMA-1, ZR-75-1, and BT-474) compared to ERα− (MDA-MB-231, HCC1937,
and BT-549) BC cell lines, suggesting that ER signaling may lead to the downregulation
of PDL1 (Figure 1). Consistently, the E2-triggering of ER has been found to restrain the
expression of PDL1 proteins in MCF-7 but not in MDA-MB-231 BC cells, an effect that
can be reversed by culturing the former in a steroid-free medium or fulvestrant treat-
ment [30,57,58]. These observations have yet to be confirmed by others and extended to
more BC cell lines. Interestingly, persistent estrogen deprivation also led to the activation
of an immunosuppressive phenotype in MCF-7 cells, notably characterized by the secretion
of IL-6 (an immunosuppressive cytokine negatively affecting immunotherapies) and the
activation of JAK/STAT and NFκB signaling pathways (key regulators of PDL1 expres-
sion) [30,59] (Figure 4). These data highlight the importance of steroid hormones and their
cognate receptors in the regulation of PDL1 expression in BC in vitro [30,57].
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The interaction between PD1 and PDL1 results in T cell inhibition. This interaction can then be
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programmed-death ligand 1; JAK, Janus kinase; STAT, signal transducer and activator of transcription;
PD1, programmed cell death 1. Illustration created using BioRender.

In a pre-clinical in vivo ER+ BC mouse model (MMTV-PyMT), tamoxifen was found
to upregulate tumoral PDL1 [30]. Consistently, in the same study, an analysis of TCGA BC
data highlighted an inverse correlation between ERα and PDL1 expression at the mRNA
level [30]. Furthermore, the expression of PDL1 was evaluated in the primary tumor and
matched metastases occurring during or after adjuvant anti-hormonal therapy in ER+

BC patients. PDL1 expression was low or undetectable in primary tumors but increased
in half of the metastatic biopsies [30]. This observation further indicates that anti-ER
drugs may increase the expression of PDL1 by BC cells, thereby potentially impairing anti-
tumoral T cells (Figure 4). Along these lines, an analysis of transcriptomic data from the
METABRIC cohort indicated an increased expression of genes related to several immune
checkpoints, including CD274 (PDL1), PDCD1LG2 (PDL2), or LGALS9 (galectin-9 was
detected in tumors from patients receiving hormone therapy [30,51,60,61]). These results,
therefore, argue in favor of a negative regulation of PDL1 by ER, which can be reversed
by the ER-antagonizing action of anti-hormone therapies. Importantly, these observations
suggest that anti-hormone therapy regimens, by increasing the BC cell expression of PDL1,
may potentially enhance the efficacy of immunotherapies targeting the PD1/PDL1 axis
(Figure 4), but combination approaches associating hormone therapies and anti-PD1/PDL1-
based immunotherapies remain to be formally evaluated.

Mechanistically, the expression of PDL1 in various types of cancers can be regulated
at the epigenetic level by promoter methylation and histone deacetylation [62]. In this
context, the ten-eleven translocation 2 (TET2) DNA dioxygenase has been identified as an
estrogen-regulated demethylase [63] regulating PDL1 expression in ER+ BC [63]. A low
basal expression of PDL1 mRNA was detected by RNAseq analysis in MCF-7 BC cells
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compared to their TET2 KO counterparts in which PDL1 mRNA was upregulated [64].
This observation suggests that TET2 regulates PDL1 transcription in ER+ BC (Figure 1).
Further supporting these findings, PDL1 is strongly expressed in ER− BC cells, displaying
low levels of TET2, such as the MDA-MB-231 cell line, as discussed earlier in this section.
It is thus not surprising that TET2 overexpression in these BC cells correlates with the
downregulation of PDL1 transcription [64]. Functionally, TET2 binds to the promoter
region of the PDL1 gene and recruits HDAC1/2 histone deacetylases, a function that differs
from its recognized role as a demethylating agent [64–67]. As a whole, the current state
of knowledge in ER+ BC strongly suggests the involvement of the estrogen/ER axis in
the regulation of PDL1, although characterization of the associated mechanisms requires
further work.

3.3. ER Signaling and the Production of Immunosuppressive Factors by BC Cells

Additional mechanisms of cancer immune escape involve the generation of an im-
munosuppressive tumor environment, which reduces the efficacy of immunotherapies.
Some of these mechanisms include enzymes such as indoleamine 2,3-dioxygenase (IDO),
cyclooxygenase 2 (Cox2), adenosine, and immunosuppressive cytokines, such as TGFβ,
IL-6 or IL-10 [2,3].

ER signaling and IDO expression
IDO, expressed by many cancers, including BC [68], is a key enzyme catalyzing the

first, rate-limiting step of tryptophan degradation. Tryptophan deprivation, together with
the production of immunosuppressive intermediary molecules, leads to T lymphocyte
and NK cell inhibition [68]. IDO expression by BC cells remains to be clearly established,
and its functional status in BC cells still needs to be unequivocally defined. Nevertheless,
IHC analyses have indicated that IDO protein expression increased in malignant ductal
cells found in ER+ compared to ER− tumors [69]. These observations, however, contradict
previous results, indicating that IDO mRNA (INDO) levels correlated with basal-like
subtypes along with ER-negativity (Figure 1) [70]. In another study, lower Kyn serum
concentrations (a byproduct of IDO1 activity) in ER+ patients at the time of diagnosis
were correlated with low or absent IDO1 mRNA and protein expression in ER+ BC tissues,
while the opposite was observed in ER− tumors [71]. An RNAseq analysis of invasive
breast cancer specimens from the TCGA highlighted a negative correlation between IDO1
and ESR1 gene expression, along with a significant downregulation of IDO, specifically
in luminal A and B BC subtypes [71]. In an effort to uncover the molecular mechanisms
underlying the BC subtype-dependent differential expression of IDO1, Dewi et al. analyzed
CpG methylation patterns in the IDO1 promoter retrieved from whole genome bisulfite
sequencing (WBGS) data as part of the TCGA [71]. The majority of studied CpG were
found to be methylated in ER+ but not in ER− BC samples, a finding that was further
corroborated in vitro by a MassARRAY analysis of IDO1 promoter methylation patterns
in ER+ BC cell lines (namely MCF-7, ZR-75-1, and BT-474), which contrasted with ER−

MDA-MB-231 BC cells [71].
ER signaling and Cox2 expression
Cox2 is another enzyme involved in the mechanisms underlying the immunosuppres-

sive function of pro-tumoral immune cells and cancer cells themselves. Cox2 is overex-
pressed in a variety of solid cancers, and its activity leads to the inhibition of anti-tumoral
immune cells [72,73]. If elevated, Cox2 mRNA and protein expression in BC have been
reported in many reports, and very little is known about the impact of ER on the regulation
of Cox2 expression/activity (Figure 1) [74–77]. In fact, very conflicting results have been
obtained in anatomopathological studies concerning the potential impact of ER on Cox2
expression in BC tumors. While some reports have indicated that ER does not correlate
with Cox2 expression [78–80], others have observed an inverse correlation between ER and
Cox2 expression, associating this immunosuppressive enzyme with ER− tumors [81–83].
More recent work also demonstrated that a high co-expression of Cox2 and nitric oxide
synthase 2 (NOS2, another important immunosuppressive enzyme) was associated with
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poor survival of ER− but not ER+ patients [84]. In this context, most studies related to Cox2
and NOS2 have been conducted in ER− BC samples and pre-clinical models.

ER signaling and adenosine production
Adenosine plays a major immunosuppressive role within the TME through the inhi-

bition of T lymphocytes and NK cell cytotoxic activity and infiltration in tumor beds [85].
Extracellular adenosine production results from the degradation of AMP (adenosine
monophosphate) nucleotides by ecto-nucleotidases, particularly by 5′-nucleotidase (eN,
commonly referred to as CD73) [85,86]. Extracellular adenosine production from AMP
and ATP was found to be significantly increased in ER− BC lines (MDA-MB-231, BT-549)
compared to ER+ ones (ZR-75-1, MCF-7), which express CD73 at low to undetectable
levels [86]. Low CD73 mRNA and protein levels were detected in MCF-7 cells treated with
estradiol in a steroid-free medium, while tamoxifen or fulvestrant treatment led to the
opposite effect [86]. These results argue for a negative regulation of CD73 by ERs in BC
(Figure 1). The authors further hypothesized that the downregulation of CD73 observed in
ER+ BC cell lines may be indirectly caused by ERs and may involve other actors, such as
AP-1 and Sp1 transcription factors, which were shown to be implicated in CD73 promoter
activity [87].

ER signaling and immunosuppressive factor production
Tumor-derived cytokines, such as IL-10 or TGF-β, represent other major mechanisms

of cancer-induced immunosuppression. Although their role in breast cancers is well-
studied, much less is known about their relationship to specific subtypes of BC, and the
link between ER status and IL-10 expression has yet to be fully investigated. A study by
Chavey et al. reported that IL-10 expression in BC specimens increased compared to healthy
breast tissue and was inversely correlated to ER expression level [88]. In contrast, other
studies reported that IL-10 expression was significantly higher in ER+ tumor specimens [89]
(Figure 1).

Similarly, the specific interactions between ERα and TGF-β in BC are not entirely
understood. Under physiological conditions, the two pathways are known to co-regulate
one another to restrain mammary epithelial cell proliferation to homeostatic levels [90].
ER+ BC cells, such as MCF-7, are known to secrete biologically active forms of TGF-β,
a production that can be positively modulated and enhanced following treatment with
tamoxifen and 4-OHT [91]. These initial observations thus led to the hypothesis that TGF-β
secretion and activation in BC cells could be regulated by estrogen signaling [91] (Figure 1).
The secretion of TGF-β1 and TGF-β2 distinct isoforms by MCF-7 following exposure to
tamoxifen were later evaluated. The antagonizing action of the ER modulator led to an
increase in TGF-β2 mRNA and its secretion and was also associated with the activation
of TGF-β1, most likely through the regulation of a protease involved in the conversion of
TGF-β1 into its biologically active form [92]. It has been shown in one study that tamoxifen-
or fulvestrant-induced TGF-β production by BC cells (primarily MCF-7) resulted in the
inhibition of immune effector cytotoxic mechanisms specific to CD8+ T lymphocytes (the
production of granzyme B, perforin, and FasL), which was associated with an increase
in the tumor-promoting immunosuppressive regulatory T cells (Treg) pool [93]. Estrogen
signaling seems to downregulate TGF-β production by ER+ BC cells (Figure 1). Although
these preliminary observations remain limited, as they focus on one cell line, they open the
door to prospective pre-clinical and clinical studies that aim at decipher the role of ERs on
the production of immunosuppressive cytokines in BC.

4. The Effects of ER Signaling and the Impact of ER Modulation on Immune Cell
Function in the Context of BC

Apart from its direct impact on BC cells, the role of the ER signaling pathway in cells of
the TIME represents an active area of research. Relevant to the current topic, some studies
have suggested that different immune cell subsets can respond to estrogens and, in turn,
participate in BC progression [8,94–100]. In this context, estrogens have been recognized as
important immune modulators [101]. However, to date, data related to the direct impact of
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ER signaling and its modulation on immune cells remain relatively sparse. In this section,
we review and discuss the state of current knowledge related to this problem and highlight
the remaining questions in the field.

4.1. ER Signaling in the Immune Cells of the Myeloid Lineage

Myeloid cells encompass highly heterogeneous subpopulations, play a variety of roles
in BC, and are considered the main drivers of tumor progression [12,102–104]. Recent stud-
ies have reported that estrogen signaling contributes to the dysregulation of myelopoiesis
observed in cancers [100]. Although most reports are not specific to BC, the conclusions
drawn from these studies hint at common mechanisms across cancer types. In a pre-clinical
model of oöphorectomized ID8-Defb29/Vegfa ER− ovarian cancer, myeloid-derived sup-
pressor cells (MDSCs) were found to express ERα (Figure 1). Their recruitment to the
spleen and tumor sites was significantly enhanced following E2 stimulation, resulting in
accelerated tumor progression (Figure 1) [100]. E2 supplementation also enhanced the
immunosuppressive activity of the granulocytic subset of MDSC (G-MDSC), an effect
that was prevented following ER antagonizing by methylpiperidinopyrazole (MPP) [100].
Such effects were found to be mediated by ERα signaling through the upregulation of
STAT3 phosphorylation in MDSCs [100] (Figure 1). In this same mouse model, the tumors
of ERα−/− KO animals reconstituted with ERα-deficient bone marrow failed to exhibit
the progression kinetics of animals reconstituted with WT bone marrow, confirming a
hematopoietic ERα signaling-dependent mechanism of cancer progression [100]. In agree-
ment with these results, the treatment of ex vivo generated MDSCs from the bone marrow
of lung cancer patients with MPP impaired their expansion and increased their matura-
tion [100]. In the context of BC, it has been reported that E2 promoted the expansion of
MDSCs generated ex vivo from patient bone marrow cells, while the ER dowregulators
fulvestrant and JD128 conversely dampened this expansion when MDSCs were cultured
in an E2-containing medium [24]. JD128 negatively impacted the phosphorylation and
activation of STAT3 in ex vivo generated G-MDSCs, which reinforces previous observations
by Svoronos et al. [24,100]. The treatment of the estrogen-insensitive 4T1 syngeneic TNBC
model with fulvestrant or JD128 in the presence of anti-PDL1 antibodies resulted in tumor
growth suppression, a significant reduction in MDSC numbers, and increased numbers
of anti-tumoral CD4+ and CD8+ T lymphocytes [24]. Altogether, these results indicate
that apart from a direct effect on BC cells, the estrogen signaling regulates the expansion
and function of immune cells, specifically tumor-promoting MDSCs, suggesting that anti-
hormone therapies may synergize with and enhance the efficacy of immunotherapies, even
potentially in ER− breast cancers (Figure 1).

Although MDSCs represent an important proportion of myeloid cells within the TME,
other cell types such as tumor-associated macrophages (TAMs), dendritic cells (DCs), and
monocytes can be impacted by estrogen signaling [105,106]. An analysis of macrophage
polarization using CIBERSORT signatures on transcriptomic data sets emanating from
melanoma patients treated with immune checkpoint blockade (anti-PD1 and anti-CTLA4)
demonstrated that TAMs, and more specifically the M1/M2 ratio, are reliable markers to
predict the response to this class of immunotherapies [107,108]. Interestingly, in the fraction
of non-responder patients, the expression of the CYP19A1 enzyme was found to positively
correlate with the presence of TAMs [107,108], hinting at a potential link between estrogen
signaling and the polarization of macrophages toward a pro-tumorigenic, M2-type pheno-
type (Figure 1). A functional assessment of the impact of E2 in ovariectomized syngeneic
melanoma models (B16F10, YuMM5.1, and BPD6) further confirms this in silico data and
demonstrates the E2-dependent recruitment of monocytes to the tumor beds and a skewing
of the M1/M2 ratio in favor of the latter, leading to an enhanced immunosuppressive
TME and the facilitation of melanoma tumor growth (Figure 1) [108]. In these pre-clinical
models, treatment with fulvestrant reversed the effects induced by E2 supplementation
and enhanced the response to ICB (anti-PD1 and anti-CTLA4), indicating the potential of
this ER downregulator as a TME remodeling agent [108]. Future studies are clearly needed
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to evaluate whether similar effects may also be extended to BC, opening new potential
therapeutic applications for ER− BC.

4.2. ER Signaling in Immune Cells of the Lymphoid Lineage

To date, most of the studies exploring the impact of estrogens on lymphoid cell
functions have been conducted in pathologies other than cancers. Nevertheless, they set a
strong basis for such explorations in the near future. Generally, estrogens exert dual roles on
immune cells depending on the context. While low, physiological doses of estrogens have
been associated with pro-inflammatory Th1 responses, and higher estrogen concentrations
seem to promote Th2, anti-inflammatory immunity [109,110]. Pregnancy levels of E2 were
found to enhance IL-10 and IFNγ production and, at the same time, inhibit tumor-necrosis
factor α (TNF-α) secretion by CD4+ T lymphocytes [111–114]. This finding is particularly
relevant, as BCs are associated with increased levels of estrogens [115]. As reported by
Polanczyk et al., high levels of estrogens, consistent with those associated with pregnancy,
play an important role in the expansion and function of immunosuppressive Tregs, notably
by conferring them with the expression of PD1 (Figure 1) [116–118]. In this context, estrogen
levels exceeding physiological concentrations in ovariectomized mice were also found to
decrease the cytotoxic potential of NK cells through a decrease in the production of TNF-α
and granzyme B [119], an observation that was extended to humans [120]. In B cells, high
levels of E2 were also associated with an auto-immune potential, which is characterized
by an increased production of antibodies [121]. Although these studies do not examine
the impact of the estrogen/ER axis in cancer specifically, the above results may hint at
similar regulation mechanisms existing in the context of BC and advocate for the need for
future studies to clearly delineate the role and impact of ER signaling in immune cells in
the setting of BC.

5. Conclusions and Perspectives

To date, and despite the development of innovative treatments, BC remains the lead-
ing cause of cancer-related death in women [122]. Although the majority of BCs are
estrogen-dependent and impacted patients benefit from anti-hormone therapy, resistance to
treatment may develop over time, and relapse frequently occurs [123]. If other subtypes of
BC, such as triple-negative or basal-like, may benefit from the advent of immunotherapies
in certain contexts, ER+ BC has yet to experience such breakthroughs [124]. The main reason
behind the limited efficacy of immunotherapies in ER+ BC lies in its low immunogenic-
ity and the triggering of multiple mechanisms of immune escape, including suppressive
immune cell subsets, such as MDSCs and Tregs. As outlined above, many studies have
attempted to address the impact of ER signaling on the resistance/sensitivity of BC cells to
the mechanisms of protective anti-tumor immunity and have highlighted that interfering
with ER signaling may enhance tumor elimination by immune effectors (Table 1). These
observations are, however, for the most part, correlative, and warrant future studies to
accurately decipher the mechanistic bases underlying the effects of ER signaling on BC
cell resistance to immune elimination and BC cell-induced immunosuppression pathways.
More specifically, important interrogations remain as to which ER isoforms may mediate the
observed effects and, likewise, the distinction between genomic and non-genomic signaling
pathways is not always established. This is especially relevant since HR− BCs, such as
triple-negative or basal-like ones, may exhibit sensitivity to estrogens through non-genomic
circuits involving the G-protein coupled estrogen receptor (GPER) [125,126]. Similarly, a
better understanding of the putative direct immunomodulatory effects of ER signaling
and its impact on myeloid and lymphoid cells involved in tumor immunity and tumor
immune escape is required. These prospective studies may further highlight the potential
of using hormone-based therapeutic approaches to improve responses to immunotherapies
and may open the door for the design and development of hormono-immunotherapeutic
combination modalities extended to ER− BC subtypes.



Int. J. Mol. Sci. 2023, 24, 15048 13 of 19

Table 1. Summary of the pre-clinical and clinical observations of cancer-intrinsic resistance mecha-
nisms to anti-tumoral immune mechanisms in the context of breast cancers.

Molecular Actor
Investigated

Pre-Clinical Observations
Clinical Observations References

In Vitro In Vivo

MHC I (HLA-I)
presentation

HLA-I expression is enhanced by E2
in MCF-7 (ER+) but not in
MDA-MB-231/MDA-MB-435s (ER−)
Inverse correlation between ER
status and HLA-A,B,C gene
expression in BC cell lines
ER antagonizing increases
HLA-A,B,C proteins in ER+ MCF-7
and T47D BC cell lines

No studies
performed to date

HLA-A,B,C genes negatively
correlate with ER in
treatment-naïve patients
with primary BC
HLA-A,B,C increased
following treatment with
estrogen modulators
(tamoxifen, goserelin)

[23–25]

β-2-
microglobulin

No studies
performed to date

Reduced protein expression
in ER+ patients; no

difference of expression at
the mRNA level

[27]

TAP1/2 No studies
performed to date

No clear association with
ER status [36–38]

PI-9

E2 and tamoxifen are inducers of the
protease, while raloxifene and
fulvestrant block its production in
MCF-7 cells
MCF-7 CSC expresses a higher level
of PI-9

No studies
performed to date

No studies performed
to date [42,43]

FasL
E2 increases FasL mRNA in MCF-7
and T47D cells; tamoxifen
decreases it

No studies
performed to date

No studies performed
to date [45,46]

Immune checkpoint
molecules

PDL1 protein is downregulated in
ER+ BC cells lines (MCF-7, T47D,
CAMA-1, ZR-75-1, BT-474) but not
ER− ones (MDA-MB-231, HCC1937,
BT-549)

Tamoxifen treatment of
tumor-bearing
MMTV-PyMT upregulates
tumor PDL1 expression

PDL1 mRNA inversely
correlates with ERα (TCGA)
Patients treated with
anti-hormonal therapy have
an increased mRNA
expression of PDL1, PDL1,
LGALS9, CD86, and CD48

[26,47,53,54,56,57]

IDO

Prominent methylation of the IDO1
promoter in ER+ (MCF-7, ZR-75-1,
BT-474) compared to ER−

(MDA-MB-231) BC cells

No studies
performed to date

One study shows increased
IDO protein in ER+ BC [65]
IDO mRNA is found in
higher quantities in ER− BC
specimens; there is a
negative correlation between
ESR1 and IDO1

[65–67]

Cox2
NOS2

No studies
performed to date

No studies
performed to date

Contradictory observations
have been reported [74–79]

CD73 (eN)

Low to undetectable levels in ER+

BC cells (MCF-7, ZR-75-1), which is
reversed by tamoxifen or fulvestrant
treatment
High activity of the enzyme in ER−

BC cells (MDA-MD-231, BT-549)

No studies
performed to date

No studies performed
to date [82,83]

Immunosuppressive
cytokines

No studies
performed to date

No studies
performed to date

Contradictory observations
have been reported [84,85]

TGF-β secretion by MCF-7 is
enhanced following tamoxifen and
fulvestrant treatment

No studies
performed to date

No studies performed
to date [88,89]
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