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Abstract: Steroid hormones are synthesized through enzymatic reactions using cholesterol as the
substrate. In steroidogenic cells, the required cholesterol for steroidogenesis can be obtained from
blood circulation or synthesized de novo from acetate. One of the key enzymes that control cholesterol
synthesis is 24-dehydrocholesterol reductase (encoded by DHCR24). In humans and rats, DHCR24
is highly expressed in the adrenal gland, especially in the zona fasciculata. We recently reported
that DHCR24 was expressed in the mouse adrenal gland’s inner cortex and also found that thyroid
hormone treatment significantly upregulated the expression of Dhcr24 in the mouse adrenal gland.
In the present study, we showed the cellular expression of DHCR24 in mouse adrenal glands in
early postnatal stages. We found that the expression pattern of DHCR24 was similar to the X-zone
marker gene 20αHSD in most developmental stages. This finding indicates that most steroidogenic
adrenocortical cells in the mouse adrenal gland do not synthesize cholesterol locally. Unlike the
20αHSD-positive X-zone regresses during pregnancy, some DHCR24-positive cells remain present
in parous females. Conditional knockout mice showed that the removal of Dhcr24 in steroidogenic
cells did not affect the overall development of the adrenal gland or the secretion of corticosterone
under acute stress. Whether DHCR24 plays a role in conditions where a continuous high amount of
corticosterone production is needed requires further investigation.

Keywords: adrenal gland inner cortex; X-zone; DHCR24; seladin-1

1. Introduction

The mitochondrial cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc,
encoded by CYP11A1) controls the first step of the steroidogenesis pathway, which converts
cholesterol into pregnanolone (Figure 1) [1]. Steroidogenic cells can obtain the required
cholesterol for steroidogenesis by taking up circulating cholesterol via receptors on the cell
membrane, using the cholesterol stored in lipid droplets in the cytoplasm, or synthesizing
cholesterol de novo from acetate (Figure 1) [2]. Similar to many other steroid-producing
cells, adrenocortical cells can synthesize cholesterol locally [3]. In human adrenal glands,
de novo synthesized cholesterol contributes to 20% of cortisol production [4]. One of the
key enzymes that control cholesterol synthesis is DHCR24, which is highly expressed
in the adrenal gland in both humans [5] and rats [6], especially in the zona fasciculata.
DHCR24 is also named Selective Alzheimer disease indicator 1 (seladin-1) because it was
first identified using neuronal cells from Alzheimer’s disease (AD) patients [7]. In humans,
the adrenal gland is the tissue with the highest expression of DHCR24 [7]. The expression of
DHCR24 has been reported to be altered in human adrenal adenomas and carcinomas [8,9].
Patients carrying mutations in DHCR24 show the accumulation of cholesterol precursor,
desmosterol, and cause desmosterolosis, which is a disorder characterized by multiple con-
genital anomalies, neurological complications, and developmental delays [10]. We recently
reported that DHCR24 was expressed in the mouse adrenal gland inner cortex partially
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colocalized with the inner cortex marker gene 20αHSD [11]. In mouse adrenal glands, the
20αHSD-positive zone is also the X-zone [12], a structure that undergoes regression during
postnatal development [13]. A recent study used single-cell approaches and chronic stress
challenges to demonstrate the existence and the recruitment of a subpopulation localized in
the adrenal gland inner cortex [14]. This finding suggests that the inner part of the adrenal
cortex might be critical for optimal stress response. To characterize the significance of the
zonal-restricted marker gene, DHCR24, in the mouse adrenal gland inner cortex, we used
X-gal staining, immunostaining, and quantitative polymerase chain reaction (qPCR) for the
time-course expression of DHCR24. A conditional knockout (cKO) mouse model was used
to define the possible role of DHCR24 in adrenal gland development and function at the
baseline level (without treatments/challenges other than CO2 euthanization).
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Figure 1. Cholesterol synthesis and steroidogenesis in the adrenal gland.

2. Results
2.1. Cellular Expression of DHCR24 in Mouse Adrenal Glands

A previous finding of the expression of DHCR24 in the mouse adrenal gland inner
cortex [11] was confirmed by X-gal staining (Figure 2A). Three commercially available anti-
bodies against DHCR24 were able to detect DHCR24 on formalin-fixed, paraffin-embedded
adrenal gland sections (Figure 2B) from mice that were treated with T3, which is known to
significantly induce DHCR24 expression [11,15,16] through thyroid hormone receptor (TR)
binding sites on the promotor region [17]. Under the euthyroid condition, the DHCR24-
positive cells were mainly in the 3βHSD low-expressing inner cortex (Figure 2C), which is
also the X-zone in mouse adrenal glands [12]. To obtain the spatial and temporal expression
profile of DHCR24 in mouse adrenal glands, both male and female mice were analyzed
by immunostaining (Figure 2D) and qPCR (Figure 2E). Both results showed that DHCR24
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was expressed in postnatal adrenal glands with a sexually dimorphic pattern. The sexually
dimorphic cellular expression and the expression timeline were similar to those of the
X-zone marker gene 20αHSD [11,18]. At P14, immunostaining results showed that a few
DHCR24-positive cells were found at the cortical–medullary boundary in both sexes. A
clear DHCR24-positive zone existed in the inner-cortical region at P21. At P28 and P35,
the DHCR24-positive zone remained in adrenal glands in female mice. However, in male
mice, only a few DHCR24-positive cells were found at P28; immunostaining did not detect
any DHCR24-positive cells in males at P35 (Figure 2D). Despite the strong increase seen
by immunostaining from P14 to P21 in both sexes, it is interesting that the qPCR result
only showed an increase of the Dhcr24 expression in female mice when the expression is
normalized with Actb. It is possible that a housekeeping gene is differentially expressed
across different postnatal stages [19], thus masking the differential expression of Dhcr24.
Unlike the 20αHSD-positive zone that regresses soon during the first pregnancy [13], im-
munostaining showed that the DHCR24-positive zone remained present in parous females
(Figure 3), suggesting that pregnancy does not lead to loss of the DHCR24-positive zone in
the adrenal glands of female mice.

2.2. Deletion of Dhcr24 in Steroidogenic Cells Did Not Affect the Zonal Structure of the
Adrenal Gland

To understand the role of DHCR24 in the adrenal gland, we used Sf1-Cre to remove
Dhcr24 in steroidogenic cells. The expression of Dhcr24 in the whole adrenal gland shown
by qPCR was dramatically reduced in cKO mice (Dhcr24flox/flox; Sf1Cre) in both sexes
(Figure 4A). The expression level of Dhcr24 in P35 cKO males was 24.6% of that in wild-
type males, whereas in female cKO mice at the same age, the expression was only 10.2%
of that in wild-type females. An RNA-seq result in a previous study showed that the
expression levels of Dhcr24 in the whole adrenal gland in P35 mice were 33.62 FPKM
(fragments per kilobase of exon per million mapped fragments) in males and 111.96 FPKM
in females [11]. The reduction rates of the Dhcr24 expression in cKO mice shown by the
qPCR suggested that the expression levels of Dhcr24 in the adrenal glands in cKO mice
could be around 10 FPKM in both sexes. This finding indicates that Dhcr24 is mainly
expressed in SF1-positive cortical cells and that Sf1-Cre could remove most Dhcr24 in the
adrenal gland. Indeed, immunostaining showed that no DHCR24-positive cells were
detected in adrenal glands in cKO mice of both sexes in the euthyroid condition. Even after
thyroid hormone treatment, the adrenal glands in cKO mice remained DHCR24-negative
for immunostaining signals (Figure 4B), confirming the deletion of DHCR24 in cKO mice
adrenal glands. To determine if the structure of the concentric cortical layers was affected
in cKO adrenal glands, we performed immunostaining to label different cortical layers,
including the X-zone and the CYP2F2-positive zone, which is a newly identified inner
subzone in mouse adrenal zona fasciculata [11]. The lack of DHCR24 did not lead to
any significant change in adrenal cortex zonation at P35 (Figure 4C,D). The qPCR results
showed that expressions of three major marker genes of the inner cortex, Akr1c18 (encodes
20αHSD), Pik3c2g, and Thrb1 were not significantly altered in cKO adrenal glands (Figure 5).
Interestingly, the Cyp2f2 expression was slightly reduced in female cKO adrenal glands
(WT vs. cKO: 1 ± 0.30 vs. 0.53 ± 0.20, p = 0.020). Expressions of Cyp11a1 and Star, the
two key factors that control the rate-limiting step of steroidogenesis, were not affected by
the deletion of Dhcr24. The mRNA level of the steroidogenic enzyme 11β-hydroxylase
(encoded by Cyp11b1) was also unchanged. The enzyme that controls the rate-limiting step
of cholesterol synthesis (HMG-CoA reductase, encoded by Hmgcr), was slightly reduced in
cKO females (WT vs. cKO: 1 ± 0.26 vs. 0.45 ± 0.43, p = 0.038).
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Figure 2. DHCR24 expression. (A) X-gal staining of tissues from 3-week-old female mice that were
either heterozygous for Dhcr24lacz or the wild-type from the Dhcr24lacz strain. (B) Immunostaining of
DHCR24 using three different commercially available antibodies. Mice were treated with T3 water for
10 days to increase the expression level of DHCR24. The negative control sample was stained using
the same method except for incubating with the primary antibody. (C) Double immunostaining using
DHCR24 antibody #sc-398938 and 3βHSD on euthyroid wild-type B6 mice. (D) Immunostaining
using DHCR24 antibody #sc-398938 on euthyroid wild-type B6 mice. (E) Quantitative polymerase
chain reaction was performed to detect the relative expression levels of Dhcr24, normalized with
either B2m or Actb to P15 males (set as 1), in whole adrenal glands. p-values are shown for the
comparison of the same sex between adjacent time points (font color red: female, font color blue:
male), and the comparison of male vs. female within each time point (font color black). The trends
are shown with the mean. Each data point contains pooled samples from at least three mice. The cell
nuclei were counterstained with DAPI (blue). Scale bars, 130 µm. ns, no significant difference.
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Figure 4. Phenotypic analyses of Dhcr24 cKO mice. (A) Quantitative polymerase chain reaction
was performed to detect the relative expression levels of Dhcr24 in whole adrenal glands from cKO
and WT littermates at P35. The relative expression levels of Dhcr24 in cKO mice were normalized
to those of the male WT mice. Each dot (WT) and circle (cKO) represents data from one mouse.
Data are shown with the mean. (B) Immunostaining using DHCR24 antibodies #sc-398938 and
#ab137845. The mice were treated with T3 drinking water for 10 days to increase the expression level
of DHCR24. The cell nuclei were counterstained with DAPI (blue). (C,D) Immunostaining showed
areas of zona fasciculata (AKR1B7-positive), medulla (tyrosine hydroxylase (TH)-positive), and inner
cortex (CYP2F2- or 20αHSD-positive) in euthyroid P35 mice. The cell nuclei were counterstained
with DAPI (blue). WT: wild-type mice, cKO: Dhcr24 conditional knockout mice. Scale bars, 130 µm.
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Figure 5. Quantitative polymerase chain reaction showed the relative expressions of key marker
genes in the adrenal cortex. The relative expression levels of each gene in cKO mice were normalized
to those of the male WT mice. Each dot (WT) and circle (cKO) represents data from one mouse. Data
are shown with the mean. WT: wild-type mice, cKO: Dhcr24 conditional knockout mice. ns, no
significant difference.

2.3. Deletion of Dhcr24 in Steroidogenic cells Did Not Affect the Lipid-Droplet Accumulation in
Adrenocortical Cells or the Blood Corticosterone and ACTH Levels

Because DHCR24 is the key enzyme that controls cholesterol synthesis, it is possible
that the de novo synthesis of cholesterol is affected in adrenocortical cells in Dhcr24 cKO
mice and then further alters the subsequent steroidogenesis. Phenotypic analyses using Oil
Red O staining and a hormone assay showed that the oil accumulation was not affected
in adrenal glands at the histological level in cKO mice (Figure 6A); the corticosterone and
ACTH levels in blood circulation and the ACTH/corticosterone ratio were also unchanged
in both sexes of the cKO mice (Figure 6B). It is important to note that these mice were
euthanized by carbon dioxide inhalation, which is considered to be a stressor that leads
to elevated corticosterone secretion [20]. The comparable stimulated corticosterone and
ACTH levels in cKO mice suggest that the lack of de novo synthesized cholesterol does
not significantly affect steroidogenesis under certain stress levels, such as the stress caused
by CO2 euthanasia. This result is consistent with the expression characteristic of DHCR24
in which it is specifically expressed in the inner cortex or X-zone, the area that is not
considered a primary contributor to the steroidogenic function of the adrenal gland cortex.
However, the de novo synthesized cholesterol might still be detrimental to chronic stress
response, especially some genes involved in cholesterol synthesis (e.g., Sqle and Hsd17b7)
has been reported to be upregulated in the mouse adrenal gland after long-term ACTH
administration [21], with the recent identification of an Abcb1b-positive subpopulation in
the adrenal gland inner cortex [14].
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Figure 6. Phenotypic analyses of Dhcr24 cKO mice. (A) Oil Red O staining showing lipid droplets
in the adrenal glands of euthyroid P35 mice. (B) Plasma levels of corticosterone, ACTH, and the
ACTH/corticosterone ratio in euthyroid P35 mice. Each dot (WT) and circle (cKO) represents data
from one mouse. Data are shown with the mean. Scale bars, 210 µm. WT: wild-type mice, cKO:
Dhcr24 conditional knockout mice. ns, no significant difference.

3. Discussion

Although the Dhcr24 cKO mice did not show any strong phenotypes that were exam-
ined in this study, our data demonstrated that in the mouse adrenal gland, DHCR24 was
specifically expressed in the inner cortex, with temporal and spatial expression patterns
that were very similar to those of the X-zone marker gene 20αHSD, which has a sexually
dimorphic expression pattern. The major difference between DHCR24 and 20αHSD is that
there are DHCR24-positive cells in the adrenal glands of parous female mice, but there is
no X-zone in these mice because it regresses during pregnancy [13]. This zonal-restricted
expression of DHCR24 indicates that most adrenocortical cells in the mouse adrenal gland
do not synthesize cholesterol locally because of the lack of DHCR24. We also found that
the deletion of DHCR24 in steroidogenic cells did not lead to major histological and func-
tional changes in the adrenal gland, at least under euthyroid conditions. Although a few
subpopulations in the adrenal gland inner cortex have been reported [11,14] along with
evidence showing the origin [22–24] and the developmental timeline [18] of the X-zone,
more studies are needed to discover the physiological function of cells in the mouse adrenal
gland inner cortex.

Different sources or supply routes of cholesterol ensure the high demand for choles-
terol for steroidogenesis in steroid hormone-producing cells. Other than (1) taking up
high- and low-density lipoproteins from the blood circulation and (2) deriving cholesterol
from cholesterol esters stored as lipid droplets, synthesizing cholesterol de novo in the
endoplasmic reticulum is another way steroidogenic cells obtain cholesterol [2,25]. The
restricted spatial expression of DHCR24 in the mouse adrenal inner cortex with the finding
of normal corticosterone levels in the Dhcr24 cKO mice suggest that the de novo synthesis
of cholesterol is not the major source of cholesterol used for steroid hormone production
in the mouse adrenal gland at least for the stress response caused by CO2 euthanization.
Because the lack of DHCR24 could lead to the accumulation of its substrate desmosterol [26]
and the P450scc enzyme is predicted also to use desmosterol to initiate steroid hormone
synthesis [27], the lack of DHCR24 may not affect steroidogenesis if desmosterol is used for
steroidogenesis as cholesterol. Whether the de novo cholesterol synthesis is important un-
der severe and chronic stress where continuous high amounts of corticosterone production
are needed requires further study. It is possible that the Dhcr24 cKO will start showing phe-
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notypes under certain conditions (e.g., dexamethasone-induced cortex regression, fasting,
long-term ACTH administration, etc.).

In addition to its involvement in the mevalonate pathway that controls cholesterol
synthesis, DHCR24 has also been linked to many cellular functions and diseases. DHCR24 is
also named ‘selective Alzheimer’s disease indicator-1′ or Seladin-1 because of its connection
with AD [7]. Patients with AD suffer from massive neuronal death due to apoptosis in both
neurons and glial cells [28]. In the brain, DHCR24 is less abundant in the areas affected by
AD [7,29]. Over-expression of DHCR24 in neurons prevents β-amyloid accumulation and
oxidative stress. This neuroprotective function that prevents neuronal loss has been seen
both in vitro and in vivo [30–34]. Additionally, it has been demonstrated that DHCR24
has a protective effect against apoptosis by inhibiting caspase-3 activity [35,36]. However,
the molecular mechanism for the DHCR24-mediated cell protective effect is not fully
understood. Our previous study showed that TRβ1 is specifically expressed in the adrenal
gland inner cortex, especially in the X-zone [18]. Because T3 treatment has been shown to
increase the size of inner-cortical cells and delay their regression [18,37,38], the T3-mediated
delayed regression of the X-zone is possibly a direct effect of the T3-induced high expression
of DHCR24 in the inner cortex. We are currently using Dhcr24 cKO mice to determine if
DHCR24 contributes to T3-mediated delayed regression.

Because Dhcr24 is highly expressed in the inner cortex even under euthyroid con-
ditions, it is also possible that DHCR24 confers cell protective effects under euthyroid
conditions [27]. Although no significant difference was noticed in Dhcr24 cKO mice at P35
in both sexes (Figure 6), we are currently examining some earlier developmental stages
to determine if deletion of DHCR24 leads to early regression of the X-zone in euthyroid
mice. For example, compared with wild-type mice at the same age who usually retain
a thin X-zone, male Dhcr24 cKO mice may lose all 20αHSD-positive cells at P28 [18]. A
time-course analysis will show whether or not Dhcr24 has a role in controlling the normal
regression process of the X-zone under euthyroid conditions.

4. Materials and Methods
4.1. Animals

C57BL/6J mice were purchased from the Jackson Lab. The Dhcr24tm1a(EUCOMM)Wtsi

(C57BL/6 background) mutant mice (Dhcr24lacz) were obtained from The European Con-
ditional Mouse Mutagenesis Program (EUCOMM). To generate the conditional knockout
mice, the Dhcr24lacz mice were first crossed with the Flp deleter strain (C57BL/6 background,
#7089 from Taconic Biosciences, Germantown, NY, USA) to generate the ‘conditional ready’
strain (Dhcr24flox). Then, the mice were crossed with C57BL/6J mice to remove the Flp. The
Dhcr24flox/flox mice were then crossed with the SF1-Cre mice (gift from Dr. Keith Parker,
has been back-crossed to C57BL/6 for more than 10 generations) to obtain the cKO mice
(Dhcr24flox/flox; Sf1-Cre). All mice were housed in a 12:12 h light-dark cycle (lights on at
6 am) with free access to regular rodent chow and water until sample collection. Mice
were euthanized between 2 pm and 4 pm using carbon dioxide, followed by decapitation.
Tissues were collected immediately and fixed in ice-cold 4% (v/v%) paraformaldehyde
(PFA) in 1X phosphate-buffered saline (PBS) or frozen by liquid nitrogen. All procedures
followed the protocols approved by the Institutional Animal Care and Use Committees at
Auburn University.

4.2. X-Gal Staining

Tissues were fixed in 2% (v/v) paraformaldehyde in phosphate-buffered saline (PBS)
on ice for 20 min and then rinsed with PBS three times. Samples were immersed in 30%
(m/v) sucrose at 4 ◦C on a shaker until tissues were sunk to the vial’s bottom. Samples
were embedded into Tissue-Tek O.C.T. compound (Sakura Finetek, Torrance, CA, USA),
and 8 µm sections were collected using positive-charged slides. Cryosections were stained
using X-gal staining solution [2 mM MgCl2, 5 mM potassium ferricyanide (Sigma-Aldrich,
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St. Louis, MO, USA), 5 mM potassium ferrocyanide (Sigma-Aldrich), 1 mg/mL X-gal
(Teknova, Hollister, CA, USA) in PBS] with incubation at 37 ◦C overnight.

4.3. Immunohistochemistry

Tissues were fixed at 4 ◦C overnight and processed according to standard immunos-
taining procedures [11]. In short, paraffin-embedded sections were incubated with primary
antibodies (DHCR24, #sc-398938, RRID: AB_2832944, 1:100; DHCR24, #sc-390037, RRID:
AB_2923495, 1:100; DHCR24, #ab137845, RRID: AB_2923496, 1:100; Tyrosine Hydroxylase
(TH), RRID: AB_628422, 1:500; 20αHSD, RRID: AB_2832956, 1:500; CYP2F2, #sc-374540,
RRID: AB_10987684, 1:250) followed by appropriate fluorescein-conjugated secondary
antibodies. DHCR24 was detected by a biotinylated secondary antibody followed by a
fluorescence tyramide [39]. Fluorescent images were obtained using a Revolve 4 microscope
(ECHO). ImageJ (https://imagej.nih.gov/ij/, accessed on 14 December 2022) was used for
adjusting the brightness and contrast.

4.4. Oil Red O Staining

After overnight fixation, tissues were rinsed by ice-cold PBS and then immersed in
30% (w/v%) sucrose in PBS at 4 ◦C on a shaker until tissues were sunk to the vial’s bottom.
Samples were embedded into Tissue-Tek O.C.T. compound (Sakura Finetek, Torrance, CA,
USA), and stored at −80 ◦C until cryosectioning. Sections (8 µm) were collected using
positive-charged slides, rinsed in PBS, and then incubated in Oil Red O solution [0.18%
(w/v%) Oil Red O powder in 60% (v/v%) isopropanol/ddH2O] for 5 min. After washing
with ddH2O twice for 5 min each, the slides were covered with an aqueous mounting
medium. For each group, at least 3 adrenal glands from 3 mice were analyzed.

4.5. Quantitative Real-Time RT-PCR (qPCR)

Total RNA from snape-freezing adrenal glands was isolated using the TRIzol reagent
(Thermo Fisher, Waltham, MA, USA) according to the manufacturer’s instructions. The
reverse transcription was performed with total RNA and SuperScript IV reverse tran-
scriptase (Thermo Fisher, Waltham, MA, USA) with oligo dT primers. The qPCR analy-
sis was performed as described in a previously published study using PowerUP SYBR
Green Master Mix (Thermo Fisher, Waltham, MA, USA) [11]. The relative gene expres-
sions were calculated using relative standard curves with B2m or Actb (Figure 2E, right
panel) as the internal control. Primers used for qPCR are listed below: GCCCTTGGTGTC-
TATGGGTC (forward) and AGCTCGTAGGCAGTGCAAAT (reverse) for Dhcr24; GATAG-
GCCAGGCCATTCTAAGC (forward) and CATTCCCTGGCTTCAGAGACAC (reverse)
for Akr1c18; CCATTTGTGGACCCAGGTGA (forward) and GGGTCAGTGCATTTTG-
GAACA (reverse) for Pik3c2g; AAGTGCAACGCTTTGCTGAC (forward) and TGAACTC-
CTGAGGCGTCTTG for Cyp2f2; CCTGGATCCTGACGATGTGAA (forward) and ACAGGT-
GATGCAGCGATAGT (reverse) for Thrb1; CTGCCTCCAGACTTCTTTCG (forward) and
TTCTTGAAGGGCAGCTTGTT (reverse) for Cyp11a1; TATTGACCTGAAGGGGTGGC (for-
ward) and CAGGTGGTTGGCGAACTCTAT (reverse) for Star; CAGTGTTCCCAAGGCCT-
GAACG (forward) and GGCCATCCGCACATCCTCTTTC (reverse) for Cyp11b1; GGAGGC-
CTTTGATAGCACCA (forward) and TTCAGCAGTGCTTTCTCCGT (reverse) for Hmgcr;
TGCTACGTAACACAGTTCCACCC (forward) and CATGATGCTTGATCACATGTCTCG
(reverse) for B2m; ATGGAGGGGAATACAGCCC (forward) and TTCTTTGCAGCTC-
CTTCGTT (reverse) for Actb.

4.6. Hormone Assays

Mice were exposed to carbon dioxide (~2 min) until they stopped breathing. The blood
was then collected at the decapitation site using EDTA-coated tubes. Plasma was stored
at −80 ◦C until use. Hormones were measured using the corticosterone EIA kit (K014-H1,
Arbor Assays, Ann Arbor, MI, USA) and the mouse ACTH ELISA kit (NBP3-14759, Novus
Biologicals, Centennial, CO, USA) according to manufacturers’ instructions. Five (corticos-

https://imagej.nih.gov/ij/
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terone) and 25 (ACTH) microliters of plasma from each mouse were measured for each
data point.

4.7. Statistical Analysis

The two-tailed unpaired Student’s t-test function in Microsoft Excel was used to
calculate p values. p values less than 0.05 were considered statistically significant.
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