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Abstract: An indole-related molecules have been considered as the potential fluorescent probes for
biological and electrochemical sensing. However, most of the indole probes have been usually used
in a single detection mode. Indolium probes that enable accurate detection in complex environments
are rarely reported. Here, four novel indole derivatives including the phenyl group substituted with
different functional moieties were designed on the basis of the donor-π-acceptor (D-π-A) concept.
These derivatives exhibit positive solvatochromism owing to their varied molecular conformations
upon contacting to various solvents and the different HOMO-LUMO gaps caused by the difference
in electronic push-pull capability of the substituents. Their solid-state fluorescence emissions and
multiple chromisms are observed due to the inherent twisted geometries and aggregation modes. In
addition, these derivatives show dramatic color and fluorescence responses due to the protonation
of the nitrogen and oxygen containing groups, and thus novel colorimetric pH sensors, fluorescent
papers and logic gates have been designed.

Keywords: indole; fluorescent; photophysical; pH-sensor; logic gates

1. Introduction

Fluorescence probe has been considered as a kind of molecular measurement device
based on spectrochemistry, optical waveguide and measurement technology, which could
selectively and continuously convert the chemical information of analytic targets into
fluorescence signals. When the fluorescence probes are stimulated by the surroundings,
their fluorescence emission changes allowing scientists to learn about the characteristics of
the surroundings or the specific information that existed in the surroundings [1]. In recent
years, fluorescent probes have been widely used in such various fields as material, environ-
mental, and life and information science, etc. [2–5] because they have multiple benefits such
as high sensitivity, good selectivity, fast and convenient use, low cost, no pretreatment, no
influence of external electromagnetic field, and long-distance luminescence. [6–9]. As a class
of powerful candidates for excellent optical probes, organic conjugated small molecules
with electron donor-π-acceptor (D-π-A) architectures have been the focus of attention and
research [10–14]. Among them, indole, triphenyl boride [15–17], rhodamine [18,19], and
coumarin [20–22] have been reported frequently.

Indole and its derivatives have strong fluorescence emission in solution, and thus can
be used as good fluorescent probes in the biological or electrochemistry detecting. For
example, a novel indole-based fluorescent probe containing amino group and hemicyanine
moiety has been explored for the recognition and detection of hypochlorite (OCl−) in the
living systems as well as the bioimaging in live cells [23]. A novel chemodosimeter based on
naphthalimide-indole ion conjugate molecule has been synthesized for selectively sensing
cyanide in the presence of other anions in an aqueous medium [24]. Further, a ratiometric
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fluorescent probe with a 3-formyl-BODIPY as fluorophore group and indole salt as a recog-
nition group has been prepared for the specific detection of the cyanide ion [25]. In addition,
indole and its derivatives are also of the special response to protons due to the existed N
atoms in their structures. For this reason, some acidic pH probes with related structures
have stood out. For instance, the styrylcyanine-based pH probes have been developed via
ethylene bridging of the non-N-substituted indole derivatives and 4-(diphenylamino) ben-
zaldehyde. Additionally, their remarkable pH-dependent behavior in vis-NIR fluorescence
emission is especially suitable for in vivo imaging because they could effectively minimize
photodamage and avoid the influence of cell auto-fluorescence [26].

Unfortunately, most of indole probes usually only follow a single detection mecha-
nism for the detected object by now, and few publications concern the multilevel signal
response especially responses in various possible complex detection environments. With
the development of society, the versatility of indole molecules needs to be further enhanced
in order to meet the actual detection requirements. Meanwhile, the functional molecules
based on indole with aggregation-induced emission (AIE) property are rarely studied,
and there is little discussion about how to regulate their AIE features. In order to realize
the transition from molecule design to material application, it is of great theoretical and
practical importance for studying the properties in their aggregated state such as solid
powders and crystals for these functional molecules.

In this work, we designed four novel fluorescent molecules, 5-(4-ethoxyphenyl)-
2,3,3-trimethyl-3H-indole (PI), N,N-dimethyl-4-(2,3,3-trimethyl-3H-indol-5-yl)aniline
(NI), N,N-diphenyl-4-(2,3,3-trimethyl-3H-indol-5-yl)aniline (TI), and 2,3,3-trimethyl-5-
(4-(trifluoromethyl)phenyl)-3H-indole (FI), by attaching different phenyl-based derived
structural units to the indole moiety. The effects of difference in electropositivity for the four
functional groups (p-ethoxyphenyl, 4- (N,N- dimethylamine) phenyl, 4- triphenylamine and
trifluoromethylphenyl) in PI, NI, TI and FI, respectively. Additionally, the solvatochromic
behaviors, aggregation-induced emission features, luminescence performance and multiple
chromisms in solid and crystalline state were discussed. The theoretical calculation result
of these molecules with a similar framework of D-π-A structure in crystalline state was
analyzed, and the relationship between electronic structures and molecular energy levels
was studied. In addition, for these as-prepared new functional molecules, their potential
application for pH-sensor in solution and acidic atmosphere, fluorescent paper, and logic
gates were investigated.

2. Results and Discussion
2.1. Synthesis

In this work, four kinds of new fluorescent compounds consisting of phenyl-based
derivatives and indole (PI, NI, TI and FI) were designed and synthesized by a simple
synthetic route with a high yield (Scheme 1). All the intermediates and final products were
purified carefully and characterized fully by 1H NMR, 13C NMR, HRMS and IR, which
confirm their expected molecular structures (see the Supplementary Materials Figures
S1–S8, Tables S1–S4). These compounds are soluble in common organic solvents such as
THF and DMF, but insoluble in water.
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also emerge, which indicated two or three close-lying excited vibration states with small 
energy gap. The variation of the fluorescence spectra for the change of solvent polarity 
probably related to the potential energy surfaces of the molecule in diverse settings, these 
results are similar to the previous reported references [27]. In comparison with PI mole-
cule, NI, TI, and FI molecules all show a blue shift in fluorescent emission. For FI, this 
was because the electron-withdrawing effect of trifluoromethyl phenyl group reduces the 
conjugation degree of electron cloud of whole FI molecule [28]. As for NI and TI, although 
N,N-dimethylamine phenyl group in NI and triphenylamine group in TI could also pro-
vide the lone pair electrons and aromatic rings to enlarge conjugate surface, their large 
steric hindrance makes whole molecular structure distorted, resulting in a decrease of 
conjugation degree of electron cloud and thus a blue shift of fluorescence emission [29–
32]. With increasing solvent polarity, red-shifted emissions with varying degrees are ob-
served in mid-polar solvents (EA, THF and DCM) and polar solvents (DMF and acetoni-
trile). For instance, the fluorescence peaks of PI, NI, TI, and FI are red shifted by 50 nm, 
29 nm, 55 nm, and 57 nm, respectively, suggesting the presence of positive solvatochrom-
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the molecular conformation changes gradually from planar to tortile, and their electrons 
are also gradually separated from donors and acceptors, leading to twisted intramolecular 
charge transfer (TICT) [33]. 

Scheme 1. Synthetic routes for PI, NI, TI and FI.

2.2. Solvatochromism

Fluorescence emission spectra of PI, NI, TI, and FI in different solvents are shown
in Figure 1, which shows that the four compounds possess different degrees of solvation
effect. In non-polar hexane, the main emission peaks of PI, NI, TI, and FI appear at
499 nm, 438 nm, 390 nm, and 399 nm, respectively. Beyond that, one or two shoulder
peaks also emerge, which indicated two or three close-lying excited vibration states with
small energy gap. The variation of the fluorescence spectra for the change of solvent
polarity probably related to the potential energy surfaces of the molecule in diverse settings,
these results are similar to the previous reported references [27]. In comparison with PI
molecule, NI, TI, and FI molecules all show a blue shift in fluorescent emission. For FI,
this was because the electron-withdrawing effect of trifluoromethyl phenyl group reduces
the conjugation degree of electron cloud of whole FI molecule [28]. As for NI and TI,
although N,N-dimethylamine phenyl group in NI and triphenylamine group in TI could
also provide the lone pair electrons and aromatic rings to enlarge conjugate surface, their
large steric hindrance makes whole molecular structure distorted, resulting in a decrease of
conjugation degree of electron cloud and thus a blue shift of fluorescence emission [29–32].
With increasing solvent polarity, red-shifted emissions with varying degrees are observed
in mid-polar solvents (EA, THF and DCM) and polar solvents (DMF and acetonitrile). For
instance, the fluorescence peaks of PI, NI, TI, and FI are red shifted by 50 nm, 29 nm, 55
nm, and 57 nm, respectively, suggesting the presence of positive solvatochromism. In
this regard, the differences in intramolecular electron push-pull capabilities and molecular
polarity should be the main responsibility. As polarity of the solvents increases, the
molecular conformation changes gradually from planar to tortile, and their electrons are
also gradually separated from donors and acceptors, leading to twisted intramolecular
charge transfer (TICT) [33].
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Figure 1. Normalized PL spectra of (a)PI, (b) NI, (c) TI, (d) FI in various solvents (5 × 10−5 M). λex = 
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The fluorescence peaks of PI, NI, TI, and FI in the precipitation solid state could be 

found at 583 nm, 471 nm, 472 nm, and 523 nm, respectively under the ultraviolet lamp 
(shown in Figure 2). Since PI possesses the strongest electrons push-pull ability at solid 
state, its fluorescence emission appears in the longest wavelength region. By comparison, 
the fluorescence peaks of NI, TI, and FI molecules undergo blue shifts in varying degrees 
due to the difference of intramolecular electron push-pull effect. 

 
Figure 2. Solid-state photoluminescence (PL) spectra (λex = 365 nm) for PI-P, NI-P, TI-P and FI-P. 

After dissolving PI, NI, TI, and FI samples in tetrahydrofuran/ethanol (v/v = 1:1) 
mixed solution and then slowly volatilizing the solvent, the obtained crystal samples of 

Figure 1. Normalized PL spectra of (a)PI, (b) NI, (c) TI, (d) FI in various solvents (5 × 10−5 M).
λex = 365 nm.

2.3. Solid State Luminescence Property and Multiple Chromism (MC) Effect

The fluorescence peaks of PI, NI, TI, and FI in the precipitation solid state could be
found at 583 nm, 471 nm, 472 nm, and 523 nm, respectively under the ultraviolet lamp
(shown in Figure 2). Since PI possesses the strongest electrons push-pull ability at solid
state, its fluorescence emission appears in the longest wavelength region. By comparison,
the fluorescence peaks of NI, TI, and FI molecules undergo blue shifts in varying degrees
due to the difference of intramolecular electron push-pull effect.
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Figure 2. Solid-state photoluminescence (PL) spectra (λex = 365 nm) for PI-P, NI-P, TI-P and FI-P.

After dissolving PI, NI, TI, and FI samples in tetrahydrofuran/ethanol (v/v = 1:1)
mixed solution and then slowly volatilizing the solvent, the obtained crystal samples of
PI-C, NI-C, TI-C, and FI-C show a big difference from their respective precipitated samples
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in PL spectra and emission color (Figure 3). The solid fluorescence emission peaks of the
series of synthesized compounds range from 451 nm to 612 nm, covering a wide range of
color (Figure 4), which could meet the requirements of fluorescent materials for different
fluorescence emission wavelengths to a large extent [34].
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Figure 3. Photo images and PL spectra of the crystals and precipitation samples for PI, NI, TI, and
FI, respectively (λex = 365 nm).

The wavelength of fluorescence peaks for crystallization samples of PI, NI, and FI has
a rather clear blue shift in different degrees, respectively compared to their precipitation
samples, while the fluorescence emission peak of TI-C undergoes a great red shift of
140 nm compared to TI-P (Figure 3). In view of that the change of luminescence properties
is mainly due to the differences in morphology and aggregation structure, DSC tests were
conducted on different samples of PI, NI, TI, and FI to understand the differences of their
varied forms. As can be seen from Figure 5, for PI, NI, TI, and FI, the melting temperatures
and the integral area of the melting peak of their crystallized samples are higher/larger
than that of precipitated samples. This confirms experimentally the influence of different
molecular packing tightness on the luminescent properties [35].
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Furthermore, single crystal analysis was carried out to figure out the effect of inter-
molecular interaction on MC effect. As shown in Figure 6, PI-C, NI-C, TI-C, and FI-C
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all adopt the internal twisted cross molecular conformation. For PI-C, the dihedral angle
between the adjacent rings A1 and B1 is 37.73◦, allowing each benzene rings in molecule
to rotate freely only to a certain extent in the solution, so the molecules could display a
certain fluorescence in the appropriate solvent. When the molecules are in the aggregation
state, the rings in the molecules intersect with each other at a certain angle, thus showing
the AIE effect. In addition, except for the aromatic donor-acceptor interactions between
indole ring, there is almost no additional aromatic donor-acceptor interactions between
PI-C molecules (Figure 7a). Such a cross-accumulation mode could be classified as X-
aggregation, which is an important reason for PI-C molecule showing AIE performance.
Similarly, NI-C molecule shows a dihedral angle of 28.84◦ between the ring A2 and ring
B2 (Figure 6), and no intermolecular aromatic donor-acceptor interactions exists due to its
distorted structure at a minimum distance of 4.26 Å (Figure 8b). PI-C and NI-C molecules
all possess both the solution luminescence and AIE properties.

In the case of TI-C, the dihedral angle between ring A3 and ring B3 is 34.70◦ (Figure 6),
and except partial antiparallel aromatic donor-acceptor interactions between indole rings
separated at a distance of 8.99 Å, little aromatic donor-acceptor interactions is observed
due to the twisted arrangement (Figure 7c). Such a staggered parallel accumulation mode
could be classified as a J-aggregate, which is different from that of PI-C and NI-C, and
might be caused by the large space resistance of TI-C molecules and the farther distance
of the intermolecular surfaces. The stacking structures of FI-C, as shown in Figure 7d, is
similar with that of TI-C except its greater distance of 15.0 Å between indole ring surfaces
because of the intermolecular aromatic donor-acceptor interactions [36].
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According to the above analysis, the solid luminescence properties of PI, NI, TI, and
FI are closely related to the J/X aggregation modes caused by the distorted structure.
The precipitated samples, PI-P, NI-P, TI-P and FI-P, were made in a rapid evaporation
of solvents. Thus the formation of unstable conformation with minimal hindrance is
controlled dynamically, and the molecular accumulation is relatively disorderly. In such
case, the solid luminescence properties depend almost entirely on the structure of the
molecule itself. While for the crystalline samples of PI-C, NI-C, TI-C, and FI-C, they all
show a more compact molecular stacking with thermodynamically stable conformation
after the slow volatilization of solvents. Here, their luminescent properties are determined
by both intermolecular interactions and intramolecular structures. In the cases of PI, NI,
and FI, the dihedral angle between the indole units and the substituted benzene ring planes
in the molecule is decreased in order to achieve the minimum distance between molecules,
leading to a reduction in electron push-pull ability (Figure 8a) and thus a blue-shift of the
fluorescence peaks (Figure 3). By comparison, the spatial distortion of triphenylamine
group in TI molecules decreases when the distance between molecules is reduced, resulting
in an increase of electron donation capability of triphenylamine group and electron push-
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pull ability of the molecule (Figure 8b), and thus a red-shift on fluorescence emission
curve (Figure 3).

2.4. Electronic Structure

The density functional theory (DFT) computation technique was used to optimize
the geometries of PI, NI, TI, and FI, and the calculated molecular orbital amplitude plots
and energy levels of the HOMOs/LUMOs of PI, NI, TI, and FI are shown in Figure 9. It
can be observed that, in the case of PI, NI, and TI, their LUMOs are mostly concentrated
upon the indole ring with the electron-withdrawing ability (A), while HOMOs are focused
separately on the three different electron-pushing moieties (D) such as 4-ethoxyphenyl,
4-(N,N-dimethylamine) phenyl, and 4-triphenylamine, verifying their status as typical
D-π-A molecules. For FI, due to the strong electron absorption of trifluoromethyl, the
polarity of the whole molecule reverses. Here, LUMO of the molecule mostly concentrates
on 4-trifluoromethyl phenyl (A) while HOMO on indole mother ring (D), which displays
relatively strong electron-supplying ability. The D-π-A structural feature for these four
compounds corroborates the previous discussion that the positive solvatochromism effect
mainly come from intramolecular charge transfer. The relatively large HOMO-LUMO gaps,
4.26 eV, 6.21 eV, 5.95 eV, and 6.82 eV corresponding respectively to PI, NI, TI, and FI, mean
that these compounds could be modified by functional groups to adjust the molecular
energy gaps, so as to further obtain the novel compounds with better performance.
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2.5. pH-Sensing

Since the nitrogen atoms of the indole units acted as alkaline centers could be proto-
nated, the effect of protonation on the optical properties of PI, NI, TI, and FI is also studied.
With the addition of TFA, different samples display varied UV spectra and solution colors
(Figure 10). For instance, the absorption peak of PI at 428 nm shifts gradually to 488 nm,
and the solution color changes from yellow to purple and finally to blue (a); the absorption
peak of NI appears at 460 nm and then disappears little by little, and the solution color
changes from colorless to yellow and finally to colorless (b). For TI, its absorption peak at
409 nm become stronger and the solution color changes from colorless to yellow (c). While
in the case of FI, there has been no absorption peak in the visible absorption region and the
solution color never changes (d). The above results indicate that the four kinds of molecules
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have different protonation processes due to the different functional group designs, which
can be clearly observed in its ultraviolet absorption spectrum and color, so this type of
functional molecules can be used as a good proton display agent.
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Figure 11 shows the changes of PI, NI, TI, and FI solutions in PL spectra and fluo-
rescent colors with the addition of TFA. For PI (Figure 11a), the intensity of fluorescence
emission peak (538 nm) initially decreases slightly. Next, the emission peak first blue shifts
to 513 nm and then conversely red shifts to 525 nm with TFA concentration increasing from
5 × 10−4 to 5 × 10−3 mol/L, accompanying by a change of fluorescent colors of solution
from yellow to olivine and to pink. Based on Figure 11a and the molecular structure of PI,
it is speculated that the protonation process of PI is a two-stage reaction.

Similar to PI, NI also has dual response to H+ but after a certain degree of protonation
its fluorescence intensity become too weak to show its binding to protons by fluorescence
(Figure 11b). This may relate to the weaker electron supply capacity of (N,N-dimethylamine)
phenyl in NI. TI and FI molecules show more sensitive to H+, and the fluorescence quench-
ing occurs at extremely low H+ concentration (Figure 11c,d). For TI, such phenomenon
may be ascribed to the destroyed conjugate structure of indole and the still rotated benzene
ring in the structure of triphenylamine after binding of TI molecule and H+. While for FI,
as the protonation occurs, the indole ring is broken, and the lower electron cloud density of
the molecule itself is further decreased, thus the fluorescence disappears.
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2.6. Fluorescent Paper

The optical property of PI, NI, TI, and FI in the solid state is also sensitive to the
surrounding TFA vapor. The pieces of filter paper which have been soaked in DCM
solution of PI, NI, TI, and FI (5 × 10−3 mol/L), called PIP, NIP, TIP, and FIP, show great
changes in color and fluorescence when being exposed to TFA vapor for 5 s and 30 min,
respectively (Figure 12). The color of PIP is almost unchanged under daylight while the
fluorescence is changed from light-green to green, further to yellow-green under 365 nm
ultraviolet light. For other samples, under day light, the color turns from yellow to orange
for NIP, from white to yellow for TIP, and from white to pink for FIP. Further, under UV
light, the fluorescence turned from red to golden for NIP, from yellow to golden for TIP,
and from green to yellow-green for FIP.
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The discoloration behaviors of four kinds of fluorescent papers accords with the above
situations of the combination between the four molecules and proton. The result indicates
that the solid samples of PI, NI, TI, and FI can respond quickly to the TFA atmosphere, and
have dual color change effect under daylight and ultraviolet lamp, providing a promising
potential for information encryption.

2.7. Logic Gate Application

Inspiring by the pH-responsive fluorescence of as-prepared indole derivatives, we
further explore their possible application in logic gates. In view of the novel characteristics
of PI solution that its emission peak positions have one-to-one corresponding relations
with adding the alkali, weak acid, and strong acid, respectively, we construct a logic system.
For most reported molecular logic gates, they usually are the single logic operation due to
only a single signal as an output. In this work, on the basis of the pH-mediated multi-signal
response, a three-input/three-output logic system is designed by rationally defining logic
states, which could increase the efficiency of signal transmission.

In these logic operations, the PI aqueous solution serves as a gate, while alkali, weak
acid, and strong acid are used as inputs and fluorescent signals as outputs. The presence and
absence of inputs are defined as 1 and 0, respectively. When alkali, acid and strong acid were
used as chemical inputs, the INH logic gate (fluorescence emission peak 513 nm as output),
INHH logic gate (fluorescence emission peak 525 nm as output), and IMPLICATION (IMP)
logic gate (fluorescence emission peak 538 nm as output) are constructed (Figure 13) and
could display quick and sensitive optical behavior. A logic gate with three output signals
would improve its stability greatly, and so far, three-output logic gates have been barely
reported. Therefore, the logic system based on the pH-responsive PI with high sensitivity
and fast response could also hold potential applications in the field of materials science
and multiple signal transmission.
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3. Materials and Methods
3.1. Materials and Measurements

All chemicals were purchased from Acros or Aldrich and used as received. 1H and 13C
NMR spectra were collected on a Bruker Spectrospin Avance 400 MHz NMR spectrometer
in CDCl3 with tetramethylsilane (TMS; δ = 0 ppm) as internal standard. ESI mass spectra
were measured on an HPLC Q-Exactive HR-MS spectrometer (Thermo, MA, USA) by using
MeOH as mobile phase. HRMS was carried out on a Micromass-GTC spectrometer. UV
absorption spectra were obtained on a Varian CARY 100 Bio spectrophotometer. PL spectra
were recorded on a spectrofluorophotometer (RF-5301PC, SHIMADZU, Kyoto, Japan).
Differential scanning calorimetry (DSC) was conducted by PerkinElmer Pyris 1 DSC with
heating rate of 10 ◦C/min from 20 ◦C to 200 ◦C under nitrogen atmosphere. The pictures
of structure were produced using Diamond 3.1. CCDC 1842007-1842010 contained the
supplementary crystallographic data of this work. The ground-state geometries were
optimized with the BLYP/6-31G (d, p). Theoretical B3LYP/6-31G (d, p) density functional
theory has been employed to examine the electronic properties of donor-bridge-acceptor
molecular system and determine the energies [37–41]. The electronic states of the system
have been calculated depends on Koopman’s theorem under the orbital-vertical theory.

3.2. Synthetic Procedures

5-bromo-2,3,3-trimethyl-3H-indole. The bromphenylhydrazine hydrochloride (15.0 g,
67.1 mmol) and 60 mL ethanol were added into the 250 mL single-neck bottle, to which
the concentrated sulfuric acid (7.0 mL) was then slowly added in the stirring condition.
The mixture was heated at 90 ◦C for 5 h, and allowed to cool to room temperature. After
adjusting the pH of the mixture to 8.0 with Na2CO3 solution (10%), further heating was
conducted to remove the solvent. The obtained residues were purified by silica gel column
chromatography (eluent: PE/EA = 3), gaining red oily liquid (m = 15.50 g, yield= 97%) [42].

1H-NMR (400 M, CDCl3) δ (ppm): 7.44–7.40 (m, 1H), 7.39–7.35 (m, 2H,), 2.25 (s,3H),
1.28 (s, 6H).

13C-NMR (400 MHz, CDCl3) δ (ppm): 188.7, 152.8, 148.0, 130.8, 125.0, 121.4, 119.0, 54.3,
23.1, 15.6.

PI. 5-bromo-2,3,3-trimethyl-3H-indole (1.20 g, 5.04 mmol), Na2CO3 (3.48 g, 25.2 mmol),
4-ethoxyphenylboronic acid (1a, 2.51 g, 15.12 mmol), and Pb(PPh3)4 (0.06 g) were added
into a 250 mL single-mouth bottle under the condition of nitrogen protection, to which
60 mL degassed binary solvent (40 mL THF, 20 mL H2O) was then introduced via syringe.
Afterward, the mixture was heated at 90 ◦C for 12 h, and allowed to cool to room tempera-
ture. Further heating was conducted to remove the solvent, and the residues were purified
by silica gel column chromatography (eluent: PE/EA = 3), gaining orange solid powder
(m = 1.28 g, yield = 91%).

1H NMR (400 MHz, CDCl3) δ (ppm): 7.58 (d, J = 8.0 Hz, 1H), 7.55–7.52 (m, 1H),
7.51 (d, J = 2.1 Hz, 1H), 7.49 (dd, J = 8.0, 1.8 Hz, 1H), 7.45 (d, J = 1.4 Hz, 1H), 7.02–6.92 (m, 2H),
4.08 (q, J = 7.0 Hz, 2H), 2.32 (s, 3H), 1.44 (t, J = 7.0 Hz, 3H), 1.35 (s, 6H).

13C NMR (400 MHz, CDCl3) δ (ppm): 187.95, 158.38, 152.66, 146.27, 138.16, 133.83,
128.20, 126.25, 119.93, 119.86, 114.77, 63.53, 53.72, 23.23, 15.52, 14.90.

HRMS: Calculated = 280.1701, found = 280.1744 (M + H)+.
FT-IR (v/cm−1): 2969, 2922, 2865, 1605, 1569, 1512, 1459, 1397, 1240, 1172, 1047, 832, 801.
NI. Replacing 1a by (4-(dimethylamino)phenyl)boronic acid (2a, 2.49g, 15.11mmol),

compound NI was synthesized using a similar procedure described for compound PI.
Further heating was conducted to remove the solvent, and the residues were purified by
silica gel column chromatography (eluent: PE/EA = 10), gaining orange solid powder
(m = 0.83 g, yield = 60%).

1H NMR (400 MHz, CDCl3) δ (ppm): 7.62 (d, J = 8.0 Hz, 1H), 7.51 (ddd, J = 16.7, 11.0,
3.4 Hz, 4H), 6.91 (s, 2H), 3.03 (s, 6H), 2.40 (s, 3H), 1.38 (s, 6H).

13C NMR (400 MHz, CDCl3) δ (ppm): 187.67, 151.89, 149.76, 146.12, 138.64, 129.69,
127.82, 125.82, 119.83, 119.49, 112.96, 53.66, 40.72, 23.25, 15.45.
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HRMS: Calculated = 279.1861, found = 279.1852 (M + H)+.
FT-IR (v/cm−1): 2964, 2922, 2358, 1590, 1486, 1324, 1276, 817.
TI. Replacing 1a by (4-(diphenylamino)phenyl)boronic acid (3a, 4.35 g, 15.05 mmol),

compound TI was synthesized using similar procedure described for compound PI. Further
heating was conducted to remove the solvent, and the residues were purified by silica gel
column chromatography(eluent: PE/EA = 5), gaining brownish solid powder (m = 1.51 g,
yield = 75%).

1H NMR (400 MHz, CDCl3) δ (ppm): 7.71 (d, J = 7.7 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H),
7.52 (s, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.30–7.26 (m, 4H), 7.19–7.09 (m, 6H), 7.05 (t, J = 7.3 Hz,
2H), 2.51 (s, 3H), 1.42 (s, 6H).

13C NMR (400 MHz, CDCl3) δ (ppm): 188.18, 152.56, 147.70, 147.03, 146.23, 138.05,
135.40, 129.20, 127.87, 126.28, 124.36, 124.04, 122.01, 119.94, 119.84, 53.74, 23.23, 15.50.

HRMS: Calculated = 403.2174, found = 403.2154 (M + H)+.
FT-IR (v/cm−1): 2959, 2917, 2366, 2343, 1591, 1491, 1334, 1272, 807, 754, 693, 608.
FI. Replacing 1a by (4-(trifluoromethyl)phenyl)boronic acid (4a, 2.87 g, 15.10 mmol),

compound FI was synthesized using similar procedure described for compound PI. Further
heating was conducted to remove the solvent, and the residues were purified by silica gel
column chromatography(eluent: PE/EA = 3), gaining pale yellow solid powder (m = 1.06 g,
yield = 70%).

1H NMR (400 MHz, CDCl3) δ (ppm): 7.70 (s, 4H), 7.67 (d, J = 8.0 Hz, 1H), 7.57 (dd,
J = 8.0, 1.8 Hz, 1H), 7.51 (d, J = 1.6 Hz, 1H), 2.39 (s, 3H), 1.39 (s, 6H).

13C NMR (400 MHz, CDCl3) δ 189.31, 153.29, 146.40, 144.87, 137.15, 129.00, 125.73,
125.69, 125.65, 122.97, 120.40, 53.89, 23.15, 15.53.

HRMS: Calculated = 304.1313, found = 304.1322 (M + H)+.
FT-IR (v/cm−1): 2970, 2868, 2362, 2336, 1610, 1569, 1463, 1320, 1156, 1120, 1064, 824.
(The detail data were shown in Supplementary Materials Figures S1–S8).
PI-C: 50 mg PI sample was dissolved in 20 mL tetrahydrofuran/water (1:1) mixed

solution in a 100mL beaker. As the solvent volatilized slowly at room temperature, the
yellowish rod-like crystals were obtained.

PI-P: 0.10 g PI sample was dissolved in 10mL tetrahydrofuran solution in a 25mL
round-bottomed flask, which was dried in vacuum by heating at 40 ◦C for 24 h, and the
pale yellow solid powders was obtained.

Three other samples (NI, TI and FI) were used instead of PI to perform the above
two processes, and the corresponding crystal and solid samples were obtained, respectively.
Among them, NI-C and NI-P were yellow rod-like crystals and light yellow solid powders,
respectively; TI-C and TI-P were red rod-like crystals and saffron yellow solid powders,
respectively; FI-C and FI-P were yellow acicular crystals and beige solid powders, respectively.

4. Conclusions

Four novel indole derivatives, PI, NI, TI, and FI, were designed and characterized
by 1H NMR, 13C NMR, HRMS, and FI-IR. The results showed that the as-prepared indole
functional molecules have more diverse fluorescence properties, and their multi-level
response functions can be achieved by regulating the structure of substituents. As D-π-
A compounds, the solutions of PI, NI, TI, and FI show a variable red-shifted emission
owing to the different push-pull electronic effects of substituents moieties. Owing to the
different phenyl-substituent units as a propeller-like rotor, PI, NI, TI, and FI experience little
aromatic donor-acceptor interactions in their condensed phase and thus exhibit obvious
fluorescence emission in the solid-state. Additionally, their crystallization and precipitation
samples show multiple chromism effects and varied fluorescence. In addition, PI, NI,
TI, and FI could be easily protonated at the site of the nitrogen atom and oxygen atom,
causing dramatic color and fluorescence changes, which opened up the potential avenues of
developing novel colorimetric pH sensors, fluorescence paper, and logic gate applications.
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