~ International Journal of
Molecular Sciences

Article

Discovering Loci for Breeding Prospective and Phenology in
Wheat Mediterranean Landraces by Environmental
and eigenGWAS

Venkata Rami Reddy Yannam L+{ Rubén Rufo I, Ilaria Marcotuli 209, Agata Gadaleta 2(), Marta S. Lopes 1

and Jose Miguel Soriano *

check for
updates

Citation: Yannam, V.R.R.; Rufo, R.;
Marcotuli, I.; Gadaleta, A.; Lopes,
M.S.; Soriano, ].M. Discovering Loci
for Breeding Prospective and
Phenology in Wheat Mediterranean
Landraces by Environmental and
eigenGWAS. Int. ]. Mol. Sci. 2023, 24,
1700. https://doi.org/10.3390/
ijms24021700

Academic Editor: Daniela Trono

Received: 30 November 2022
Revised: 27 December 2022
Accepted: 12 January 2023
Published: 15 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology),
25198 Lleida, Spain

2 Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari Aldo Moro, 70126 Bari, Italy

*  Correspondence: josemiguel.soriano@irta.cat

t These authors contributed equally to this work.

Abstract: Knowledge of the genetic basis of traits controlling phenology, differentiation patterns, and
environmental adaptation is essential to develop new cultivars under climate change conditions. Lan-
drace collections are an appropriate platform to study the hidden variation caused by crop breeding.
The use of genome-wide association analysis for phenology, climatic data and differentiation among
Mediterranean landraces led to the identification of 651 marker-trait associations that could be grouped
in 46 QTL hotspots. A candidate gene analysis using the annotation of the genome sequence of the
wheat cultivar ‘Chinese Spring’ detected 1097 gene models within 33 selected QTL hotspots. From all the
gene models, 42 were shown to be differentially expressed (upregulated) under abiotic stress conditions,
and 9 were selected based on their levels of expression. Different gene families previously reported
for their involvement in different stress responses were found (protein kinases, ras-like GTP binding
proteins and ethylene-responsive transcription factors). Finally, the synteny analysis in the QTL hotspots
regions among the genomes of wheat and other cereal species identified 23, 21 and 7 ortho-QTLs for
Brachypodium, rice and maize, respectively, confirming the importance of these loci.

Keywords: climate change; association mapping; wheat landraces; synteny; candidate genes

1. Introduction

Climate change may be the single unifying and chronic issue that will affect every-
one and every aspect of the economy. Changes in weather patterns and variability, and
differential combinations of effects in different parts of the world, including the Mediter-
ranean region, are expected. The Mediterranean Basin embraces countries between 27°
and 47° N and between 10° W and 37° E extending over three continents and a coastline of
46,000 km [1]. Recent accelerated climate change has exacerbated existing environmental
problems in the Mediterranean Basin that are caused by the combination of changes in land
use, increasing pollution and declining biodiversity. The expected change in the global
climate will significantly affect wheat production, with an extraordinary impact in the
Mediterranean basin, where prediction models have projected a rise of temperatures by
3-5 °C and a decrease of annual rainfall by 25-30% in the next decades [2].

In the Mediterranean Basin, wheat is mainly cultivated under rainfed conditions with
an irregular precipitation pattern across years and locations, and along the plant growth
cycle resulting in major yield variations [3]. In addition, wheat usually experiences terminal
drought originated by high temperatures during the grain-filling period [4], causing a
reduction in yield potential of about 50% [5]. Therefore, there is a need to improve the
selection of crops to be able to maintain acceptable levels of yield and stability in semi-arid
environments, which have been identified as the regions most sensitive to the effects of
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climate change [6]. To achieve that, strategies to retain and increase genetic diversity are
being explored since climate change is expected to constrain it [7]. The adaptability and
stability of new cultivars that can be successfully grown in dry areas will be the main
concern in breeding programs.

The “green revolution’ based on dwarfing genes, photoperiod insensitivity and high
yield potential had a demonstrable impact in breeding. However, it was soon sensed
that there was a need to accelerate the use of unique genetic diversity. Future yield
gains, especially under stressed conditions, will require the exploitation of the largely
untapped sources of genetic diversity housed in collections of wheat landraces and wild
relatives [8]. Landraces are genetically diverse repositories of unique traits that have
evolved in local environments characterized by a wide range of biotic and abiotic conditions.
Landraces were developed during the evolution of wheat along new territories by human
selection after the advent of agriculture. Mediterranean landraces have a good adaptation
to their environments, forming populations with different genetic constitutions and are the
reservoir of the greatest genetic variability of the species [1]. The pioneer Mediterranean
farmers started selecting the plants with the most favourable characteristics in terms of
vigour, phenological adaptation, spike length, and yield with the aim to produce improved
lines [1]. Wheat landrace collections contain wider genetic diversity than most breeding
programs, including adaptation to different conditions according to the place of origin [9].
Knowledge of the genetic diversity and population structure of landraces is essential for
their conservation and efficient use in breeding programs [10,11], especially concerning the
field of adaptation to climate change [9]. To achieve that, several studies using molecular
markers such as simple sequence repeats (SSRs) or single nucleotide polymorphism (SNP)
are currently conducting since they have been proven to be very useful for evaluating
the genetic diversity and population structure of Mediterranean wheat collections [10,12].
Several efforts were carried out to identify the genetic loci responsible for the changes that
occurred at the genome level in wheat during the breeding process by eigenGWAS [13,14].

Under drought conditions, wheat productivity can vary depending on the pheno-
logical stage at which the water deficit occurs [15], being larger when water is limited at
reproductive stages than if it occurs only at the vegetative stage [16]. Therefore, matching
phenology to growing season length, changing the cultivar day length and temperature
response could be a good prospect of adaptation to climate change [17]. The genetics
of flowering time in wheat is complex due to a strong genotype x environment (GxE)
interaction [18]. The genetics of wheat development are determined mainly by the allelic
diversity within the loci regulating the vernalization requirement (Vrn) and photoperiod
sensitivity (Ppd). The third group of genes controlling earliness when the vernalization and
photoperiod requirements are accounted for are the earliness per se loci (Eps), characterized
by a polygenic inheritance and lower effects than Vrn and Ppd loci [19].

To support breeding for the development of climate-adapted cultivars, different studies
have investigated the impact of the environment in domestication and found evidence
of swift evolution in response to environmental changes [20]. New approaches using
long-term climatic data of the regions of origin of germplasm collections in combination
with genomic analyses are useful for detecting genome regions controlling adaptation to
environmental conditions. It is the so-called environmental (env)GWAS [14,21].

In the present study, we aimed to identify the genomic regions from a collection of
wheat Mediterranean landraces controlling (1) the phenology fitting as a mechanism to es-
cape drought and heat episodes, (2) the response to environmental conditions by envGWAS,
and (3) the differentiation patterns among the landrace subpopulations by eigenGWAS.

2. Results
2.1. Climatic Data and Phenology Assessment
Long-term climatic data of the 23 countries origin of de Mediterranean landraces

(Supplementary Materials Table S1) were collected. A period of 15 years was used to
determine the following variables: average daily values for minimum, maximum, and



Int. J. Mol. Sci. 2023, 24, 1700

30f19

mean temperatures (Tmin, Tmax and Tmean, °C), sunshine (h), solar radiation (Rad,
MJ m 2 day’l), relative air humidity (Rh, %), potential evapotranspiration (ET0, mm) and
rainfall (Rain, mm). Climatic data from each country were averaged for two main periods:
sowing to anthesis (SA) and anthesis to maturity (AM) (Table 1).

Field trials were carried out in a typical Mediterranean climate characterized by an
irregular pattern of rainfall distribution during the year, low temperatures in winter that
rise abruptly in spring, and high temperatures until the end of the crop cycle. Table S2
shows the rainfall and maximum and minimum temperatures during the crop cycle in the
3 years of field trials and the average of the last 15 years (2006-2021). Precipitation and
temperature values were representatives of long-term data from the region for each growing
season. However, 2017 was considered exceptionally dry due to the low rainfall. On the
other hand, 2018 was the wettest year during the crop cycle, with 262 mm of rainfall (higher
than the average of 15 years), whereas the first and second growing seasons, with 207 and
179 mm, respectively, were rather dry. The crop suffered severe water scarcity during the
grain filling period in 2016 (3.5 mm) and 2018 (8.7 mm). The years with the lowest rainfall
before and after booting were 2016 (22.2 mm) and 2017 (25 mm), respectively. The warmest
winter occurred in 2016, especially during January and February, with temperatures above
the average for the period of 15 years.

Results of ANOVA showed that all the traits showed statistical differences for the year,
climatic zone and genetic subpopulation. In contrast, when the interaction between year
and climatic zone, and year and genetic structure were considered, only D87 and GFD were
statistically significantly different at p < 0.05 (Table 2).

Comparisons of the mean values of the phenology traits recorded in landraces during
the three years of field trials (Table S3) revealed significant differences across years for all
traits (Table 2). The shortest growing cycle was found during 2016, whereas this year also
showed the longest DBA and GFD. In addition, 2017 showed the shortest periods from
booting to anthesis and grain filling. Considering the climatic zones defined by [22], a clear
separation between the north and south of the Mediterranean basin is reflected. No signifi-
cant differences were observed between North Balkan and North Coast zones, whereas, for
those in the south, only significant differences were observed for DBA. Landraces from the
south of the Mediterranean showed shorter crop cycle. According to their genetic struc-
ture, although not statistically significant, those landraces from northern Mediterranean
countries showed a longer crop cycle but shorter GFD (statistically significant) due to a
longer period till anthesis. Western and eastern Mediterranean landraces did not show
statistically significant differences in phenology except for DBA with a shorter period for
eastern landraces.

The bidimensional clustering shown in Figure 1 represents the relationships among
accessions and their mean phenotypic performances. The horizontal cluster grouped the
landraces according to their phenotypic similarity according to the traits in the vertical
cluster. The horizontal clustering separated three main groups. Group A was characterised
by longer GFD but lower values for the rest of the traits, whereas group B was characterised
by shorter GFD but longer D45, D55, D65 and D87. The first cluster within this group is
distinguished because of the shorter D87. Group C showed intermediate values, separated
into two main clusters based on higher values of the traits except for GFD. Groups A and
C are composed mainly of south Mediterranean landraces (76% and 61%, respectively),
whereas 95% of the landraces in group B corresponded to north Mediterranean landraces.
From the total of southern landraces in group A, 68% corresponded to the South East
climatic zone defined by Royo et al. [22], whereas 90% of the southern landraces in group
C corresponded to the South West climatic zone. If the genetic subpopulation (SP) is
considered, the main SP for the groups A, B and C were SP3 (East Mediterranean) (47%),
SP2 (North Mediterranean) (68%), and SP1 (West Mediterranean) (51%), respectively.
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Table 1. Mean of the climatic data of a 15-year period (2006-2021) in the countries of origin of the Mediterranean landraces.

Country N Tmax Tmin Tmean Rh Sunshine Rad ET, Rain Tmax Tmin Tmean Rh Sunshine Rad ET), Rain
Sowing—Anthesis (SA) Anthesis—Maturity (AM)
Albania 6 11.8 3.3 7.6 75.7 2.8 7.1 6.0 663.4 23.1 11.6 17.4 63.1 72 19.5 11.2 192.2
Algeria 26 16.1 6.1 11.1 75.4 54 11.0 200.0 193.4 26.1 13.6 19.9 60.7 8.6 22.1 385.2 78.2
Bosnia & Herzegovina 6 8.8 0.6 4.7 76.0 1.8 5.7 49 554.5 21.5 9.7 15.6 64.2 5.4 16.7 10.0 289.8
Bulgaria 6 7.5 0.5 4.0 81.7 3.0 6.9 111.2 180.8 20.6 11.0 15.8 74.0 7.2 19.3 290.3 162.8
Croatia 6 10.1 3.0 6.5 71.6 2.3 6.0 149.0 397.7 21.7 12.0 16.8 63.6 6.1 17.7 292.7 238.3
Cyprus 10 18.2 6.9 12.5 69.7 5.7 11.4 213.5 255.3 27.4 13.0 20.2 55.8 9.5 235 411.6 27.3
Egypt 14 21.9 9.8 15.8 67.5 7.1 14.3 333.7 30.6 31.0 16.5 23.8 499 9.9 244 541.0 2.2
France 24 114 35 7.4 78.3 33 6.9 162.0 255.9 20.8 10.4 15.6 66.8 7.1 189 335.6 161.8
Greece 12 14.4 6.0 10.2 74.2 3.2 8.0 196.1 307.8 24.0 13.4 18.7 64.0 6.1 16.5 313.8 82.5
Israel 10 18.7 8.4 13.5 72.0 6.8 13.2 292.1 4429 27.8 14.1 20.9 56.2 10.9 25.7 542.4 31.2
Ttaly 24 14.0 6.8 10.4 75.7 3.6 79 180.2 282.7 225 13.2 17.9 68.6 7.8 20.3 335.6 104.2
Jordan 8 19.6 7.8 13.7 58.9 6.1 12.7 332.3 165.4 30.3 14.7 225 45.1 9.1 23.1 535.8 13.5
Lebanon 6 17.9 10.1 14.0 67.0 43 10.1 292.0 722.7 239 15.4 19.6 66.1 8.4 21.9 404.1 79.0
Libya 6 19.6 8.8 14.2 65.4 6.1 12.6 324.9 123.2 27.8 15.4 21.6 59.8 8.7 225 456.3 14.3
Macedonia 8 8.2 -0.9 3.6 81.3 2.1 6.4 100.2 228.2 225 9.0 15.7 64.7 6.3 18.3 296.0 142.1
Morocco 40 18.9 7.2 13.0 69.8 5.9 12.1 262.7 227.6 25.1 12.2 18.6 66.1 8.7 224 364.9 84.0
Portugal 8 11.7 3.7 7.7 77.3 4.7 9.1 174.8 630.4 19.6 8.5 14.1 63.6 8.5 214 343.3 227.7
Romania 8 6.4 —-1.0 2.7 88.7 3.1 6.5 3.6 200.0 21.5 10.4 15.9 72.8 7.8 19.8 10.8 170.0
Serbia 8 7.7 -0.1 3.8 79.7 1.8 5.8 96.0 215.2 21.8 10.3 16.1 65.7 5.7 17.2 278.1 216.0
Spain 22 13.0 4.0 8.5 77.5 3.9 8.4 163.3 226.4 23.0 10.5 16.8 58.5 7.8 20.4 357.9 119.0
Syria 22 15.4 44 9.9 71.7 5.1 10.6 212.8 178.8 29.7 14.7 22.2 441 9.2 23.0 580.2 38.8
Tunisia 10 17.9 8.3 13.1 72.7 5.6 11.1 244.6 182.5 26.0 14.7 20.3 67.5 8.5 219 393.9 45.6
Turkey 30 13.0 4.5 8.8 69.4 3.8 8.6 172.7 400.9 24.3 13.2 18.7 61.6 8.0 20.9 356.0 131.6

Tmax, maximum temperature (°C); Tmin, minimum temperature (°C); Tmean, mean temperature (°C); Rh, relative humidity (%); Sunshine (h); Rad, radiation (MJ m~2 day—'); ET,
evapo-transpiration (mm); Rain, rainfall (mm)
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Table 2. Means and ANOVA p-values for the phenology traits analysed in the panel of 153 Mediterranean bread wheat landraces included in the study. Data for
each climatic zone and subpopulation (SP) represent the mean values across the 3 years. Different letters at each growing period indicate significant differences at
p < 0.05 using the Tukey’s test.

Year (Y) Climatic Zone (CZ) Genetic Structure (GS) ANOYA
Interactions
2016 2017 2018 ANOVA NB NC SW SE ANOVA SP1 SP2 SP3 ANOVA YxCZ Y x GS
D45 136.32 145.0P 157.5¢ <0.0001 150.2 @ 14774 144.8P 143.0b <0.0001 144.8b 14842 14623  <0.0001 0.8669 0.8202
D55 14562 153.8b 167.1¢ <0.0001 160.32 157.74 153.8P 150.3 P <0.0001 153.9b 15842 154.3b <0.0001 0.9846 0.9617
D65 151.82 158.7 172.2 ¢ <0.0001 165.2 2 162.7 2 159.4 b 156.6 P <0.0001 159.5 P 163.42 159.9 P <0.0001 0.3626 0.5910
D87 186.02 187.8 P 204.3°¢ <0.0001 195.02 194.02 192.1 @b 190.7 P <0.0001 192.24 194.32 192,14 <0.0001  <0.0001 0.0034
DBA 1552 134P 145¢ <0.0001 15.12 14.82 14.62 13.6P 0.0001 14.62 1492 13.8P 0.0001 0.1049 0.2895
GFD 3402 29.1b 32.1¢ <0.0001 3402 3242 30.7b 29.8b <0.0001 3232 305P 3202 <0.0001 <0.0001 <0.0001

D45, days from sowing to boots swollen; D55, days from sowing to heading; D65, days from sowing to anthesis; D87, days from sowing to physiological maturity; DBA, days from
booting to anthesis; GFD grain filling duration; NB, North Balkan; NC, North Coast; SW, South West; SE, South East. SP1, Western Mediterranean landraces; SP2, Northern Mediterranean
landraces; SP3, Eastern Mediterranean landraces.
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Figure 1. Bidimensional clustering showing the phenotypic relationships between the 153 bread
wheat landraces based on the traits specified in the vertical cluster at the bottom. Red and green
colours in the columns indicate high and low values, respectively. Dark, higher values; light,
lower values; white, intermediate values. D45 (boots swollen), D55 (heading), D65 (anthesis),
D87 (physiological maturity), DBA (days from booting to anthesis) and GFD (grain filling duration).

2.2. Detection of Loci for Phenology Adjustment

A total of 306 MTAs were detected for phenology traits, with D55 showing the highest
number of associations (75) and DBA the lowest (32). Seventeen chromosomes reported
MTAs (Table S4). Chromosome 7A reported 48 associations, most of them (60%) at 208 cM,
followed by chromosome 1B with 42. Chromosomes 1D and 7D harboured only one MTA,
and chromosome 3A, only 2.

2.3. Detection of Loci for Climatic Variables by envGWAS

Climatic variables were separated into two groups: (1) sowing to anthesis (SA), and
(2) anthesis to maturity (AM). Sixty-three MTAs corresponded to the first period and 195 to
the second one. The number of MTAs from SA ranged from 11 for Rh and solar radiation
to 5 for Tmin and Tmean, whereas AM ranged from 93 for Tmin to 5 for rainfall (Table S4).
The MTAs for climatic variables were detected throughout the genome except for 2D and
4D chromosomes. Chromosome 1D reported the maximum number of MTAs (75), and all
of them were related to Tmin during the AM period and were in a region of approximately
19 cM (160.85-179.54). On the other hand, chromosomes 3D and 7D reported the lowest
number of MTAs (2).
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2.4. Detection of Loci for Genetic Differentiation by eigenGWAS

After data filtering (duplicated patterns, markers with more than 25% of missing
values, genotypes and markers with minor allele frequency lower than 5%), a total of
10,458 SNPs were used for molecular analyses of the bread wheat Mediterranean landraces,
as reported by Rufo et al. [12].

EigenGWAS was conducted using the top five eigenvectors resulting from the PCoA
obtained for the whole collection of genotypes (Figure 2). Genotypes were clearly separated
by their genetic SP [12] into three clusters based on their origin: West Mediterranean (SP1),
North Mediterranean (SP2), and East Mediterranean (SP3). Genotypes with a high level of
admixture remained in a central position between the three SPs (Figure 1A). A high level of
admixture was observed when genotypes are identified by their climatic zone (Figure 1B).
South East genotypes were mostly clustered on the negative axes, opposite to the north
Balkan genotypes. In comparison, those from the North Coast and South West (the regions
with intermediate values) were widely distributed in the PCoA.

A PCoA coloured by genetic structure B PCoA coloured by climatic zone
B o
10 Admixed O‘b s O North Balkan
O5P1 o North Coast
5 5 8L
A sp2 s G 303 © South East
Ba D0 05P3 U% South West
-15 1, C-‘té'?; ? o g'a %% 15 1, AH5Y, ol o ot 10
OBf O o000 o Cpe o
W - o o Q@
10

Figure 2. PCoA with a collection of 153 bread wheat Mediterranean landraces based on 10,458 SNPs.
The genotypes are coloured based on: (A) the genetic structure [12] and (B) the climatic zone of the
country of origin as defined by Royo et al. [22].

The largest eigenvalue was 4075.3, explaining 7% of the genetic variation, whereas the
5th eigenvalue was 1601.6, explaining 3% of the genetic variation. The top five eigenvalues
accounted for 22% of the genetic variation, which indicates the complexity of the population
structure of the collection.

A total of 87 MTAs were identified for the top five eigenvectors using a moderate
threshold of -log10 p = 3.0 (Table S4) in 16 out of the 21 wheat chromosomes. Number of
MTAs ranged from 15 in chromosome 7A to 1 in chromosome 4A. The mean percentage of
variance explained (r2) per MTA ranged from 0.001 to 0.102, with an average of 0.020.

2.5. Identification of QTL Hotspots

To simplify all this information and to identify consensus genomic regions controlling
different traits, QTL hotspots were identified using the QTL overview index defined by
Chardon et al. [23] for each cM of the genetic map reported by Wang et al. [24]. Confidence
intervals (ClIs) were calculated based on the extent of the linkage disequilibrium (LD)
for each chromosome following Rufo et al. [12]. A total of 567 positions were detected
using as a threshold the mean of the overview index across the 21 chromosomes (0.19),
corresponding to 153 peaks. In contrast, using a high threshold (0.93), a total of 173 positions
were identified over the threshold, corresponding to 69 peaks (Figure 3).



Int. J. Mol. Sci. 2023, 24, 1700

8 of 19

= & g =3 £ e 3_;
? B
Figure 3. QTL overview index. The index values are represented along chromosomes as a grey
line. Bars below the QTL overview index represent the significant MTAs (—logyo p > 3). Orange,
phenology MTAs; green, climatic MTAs; blue, eigen MTAs.

These 69 peaks were reduced to 46 QTL hotspots (Table S5), 16 in genome A, 26 in
genome B and 4 in genome D. To simplify the search for candidate genes (CGs), QTL
hotspots were excluded when the CI was higher than 20 Mb (Table 3).

Thirty-three QTL hotspots remained for subsequent analyses, with 12, 18 and 3 hotspots
for genomes A, B and D, respectively. When the physical position of the SNPs was consid-
ered, QTL hotspots 1B.1 and 1B.2, and 1D.1 and 1D.2 showed overlapping positions, thus,
they were considered single hotspots (1B.1-2 and 1D.1-2). According to the physical posi-
tions for functional genes reported by Liu et al. [25], some of the QTL hotspots co-localize
with them. Sec-1, linked to the 1B/1R translocation, was found to be within the hotspot
1B.3, the flowering genes TaELF3-B1 and TaELF3-D1 corresponded to the hotspots 1B.8
and 1D.2, respectively, the photoperiod sensitivity gene Ppd-A1l was in hotspot 2A.1 and
the vernalization gene Vrn-Al in 5A.3. Finally, the position of the phytoene synthase gene
Psy-A1l matched with the position of QTL hotspot 7A.5.

To identify the genomic regions most involved in subpopulation differentiation, QTL
hotspots detected by eigenGWAS were analysed for allelic frequencies within them. Eight
out of the thirteen QTL hotspots showed differences in the allele frequency of the markers
associated with differentiation patterns (Table 4). A threshold of allele frequency within
a group was set at 80% to identify robust differences among groups, whereas moderate
differences were determined at 60%. The most considerable difference among SPs was for
QTL hotspot 7B.2, where SP1 showed a clear different pattern from the other SPs. QTL
hotspot 2B.1 helped to distinguish SP2 from SP3 with a moderate and robust threshold,
respectively. A moderate threshold was observed in QTL hotspot 5B.1 to differentiate
SP3 from the other SPs. The marker RAC875_c19099_434 (T/C) in QTL hotspot 5B.3
discriminates SP1 (T allele) from SP3 (C allele), whereas GENE-1074_108 (T/C) in QTL
hotspot 6B.2, SP1 (T allele) from SP2 (C allele).
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Table 3. Selected QTL hotspots. Chr, chromosome; C, climatic trait; E, eigen vectors; P, phenology trait.

Hotspot Chr CI (cM) Trait Left Marker Position (bp) Right Marker Position (bp) CI (Mb) N Gene Models
hotspot 1A.1 1A 21-27 CEP BS00023201_51 7643102 Excalibur_c71158_54 8296998 0.65 19
hotspot 1A.2 1A 51-53 P Excalibur_c10689_254 27363007 Kukri_c22508_119 28757949 1.39 9
hotspot 1A.4 1A 95-96 C BS00062876_51 529788778 BobWhite_c96_170 531682571 1.89 34
hotspot 1B.1 1B 43-45 C BS00065053_51 38833829 wsnp_Ex_c5780_10153638 26186242 12.65 89
hotspot 1B.2 1B 51-53 P Excalibur_c95656_129 44933589 Tdurum_contig56188_569 28563880 16.37 114
hotspot 1B.3 1B 62—-64 C wsnp_BE399980B_Ta_2_1 142523393 BS00003575_51 148898343 6.37 27
hotspot 1B.5 1B 86-91 CEP Kukri_c25961_166 575863858 BobWhite_c39656_106 589919646 14.06 147
hotspot 1B.6 1B 111-116 C BS00094237_51 638015155 BS00084895_51 643101677 5.09 78
hotspot 1B.7 1B 1345-136 P GENE-0063_68 661515587 Excalibur_rep_c71107_517 664599715 3.08 35
hotspot 1B.8 1B 159-161 P GENE-0543_201 681690469 Excalibur_rep_c69522_83 685865389 417 41
hotspot 1B.9 1B 172-174 P wsnp_Ex_c1597_3045682 688283056 wsnp_Ku_c13952_22097856 687413792 0.87 9
hotspot 1D.1 1D 161-172 C RAC875_c14613_68 485557589 RFL_Contig3395_1575 487168787 1.61 34
hotspot 1D.2 1D 179-180 C BS00093275_51 486241852 Tdurum_contig29915_167 491043383 4.80 75
hotspot 2A.1 2A 74-75 P Tdurum_contig11803_306 36041083 Ku_c269_2643 36632073 0.59 15
hotspot 2A.2 2A 122-123 C BS00107804_51 707040172 wsnp_Ex_rep_c66358_64543401 709701422 2.66 30
hotspot 2A.3 2A 143-144 C BS00062732_51 747090405 Excalibur_c18514_238 750595232 3.50 90
hotspot 2B.3 2B 147-148 C BobWhite_c12911_788 780590397 BS00100118_51 788524935 7.93 108
hotspot 2D.1 2D 8-9 P BS00067698_51 14860348 BS00047901_51 15967448 1.11 30
hotspot 3B.1 3B 37-38 C Tdurum_contig43252_1762 23782080 TA001028-0737 24007966 0.23 8
hotspot 3B.3 3B 67-69 Cc,p Ku_c27771_508 495471559 BS00030430_51 503989868 8.52 52
hotspot 4B.1 4B 55-57 C Ra_c26080_461 36642697 BS00095416_51 40233919 3.59 30
hotspot 5A.2 5A 84-86 C BS00073670_51 570716220 Excalibur_c472_914 568272220 2.44 40
hotspot 5A.3 5A 90-92 P Kukri_c10033_724 584677742 Excalibur_c26671_57 591319197 6.64 87
hotspot 5A.4 5A 115-116 C BS00076948_51 664273096 Tdurum_contig11521_102 665779594 1.51 20
hotspot 5B.2 5B 60-61 C RAC875_¢38511_91 476805518 RAC875_c2437_1569 479025121 222 39
hotspot 6B.1 6B 39-40 C RAC875_¢2291_123 41705928 RAC875_c13920_836 42778537 1.07 23
hotspot 6B.2 6B 73-74 E BobWhite_c28409_462 635175311 wsnp_Ex_c1276_2445537 642348416 717 39
hotspot 6B.3 6B 84-86 P Kukri_c58961_76 669019620 Tdurum_contig68217_361 674946651 5.93 50
hotspot 6B.4 6B 120-121 P Kukri_c60966_261 719509426 Tdurum_contig10729_989 720983865 147 25
hotspot 7A.3 7A 207-211 E BobWhite_c32347_219 708145137 Ku_c19745_1093 712058458 3.91 74
hotspot 7A.4 7A 215-218 E BS00027226_51 717965474 Kukri_c9728_ 1171 719567332 1.60 14
hotspot 7A.5 7A 227-229 CE BS00020236_51 730426125 Tdurum_contig46717_2021 731267973 0.84 18
hotspot 7B.1 7B 57-59 C,p GENE-4826_641 61557711 BS00091302_51 64726430 3.17 31
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Table 4. QTL hotspots involved in the differentiation patterns showing allelic differences among

subpopulations.
Position Position Allele (Frecuency)
QTL Hotspot Marker (€M) (bp) sp1 SP2 sp3

hotspot 2B.1 Kukri_c35153_956 102.2 539,965,301 A (54%) A (25%) A (91%)
G (46%) G (75%) G (9%)

Kukri_c35153_145 104.4 539,964,058 A (46%) A (75%) A (9%)

G (54%) G (25%) G (91%)

hotspot 5B.1 wsnp_BE443187B_Ta_2_1 51.2 410,531,891 A (4%) A (25%) A (77%)
C (96%) C (75%) C (23%)

hotspot 5B.3 RAC875_c19099_434 68.9 519,153,286 T (92%) T (67%) T (18%)
C (8%) C (29%) C (82%)

Ra_c73292_443 69.2 513,607,799 A (8%) A (46%) A (55%)

G (92%) G (46%) G (45%)

hotspot 6B.2 GENE-1074_108 734 633,906,287 T (92%) T (4%) T (32%)
C (8%) C (96%) C (68%)

GENE-4086_659 734 - A (4%) A (50%) A (36%)

C (96%) C (50%) C (64%)

GENE-4086_876 73.4 641,286,640 A (4%) A (46%) A (36%)

G (96%) G (50%) G (64%)

Kukri_c59960_211 734 641,291,882 T (4%) T (46%) T (36%)

C (96%) C (50%) C (64%)

hotspot 7A .4 Excalibur_c46453_144 217.0 719,568,282 A (19%) A (50%) A (59%)
G (81%) G (46%) G (41%)

Kukri_c9728_1171 217.0 719,567,232 A (81%) A (46%) A (41%)

G (19%) G (50%) G (59%)
hotspot 7B.2 wsnp_Ex_c106_217340 76.0 538,868,953 A (96%) A (58%) A (100%)
G (4%) G (33%) G (0%)

Kukri_c51296_438 77.1 565,911,626 A (15%) A (96%) A (91%)

G (85%) G (4%) G (9%)

hotspot 7B.2 wsnp_Ex_c5270_9324025 77.1 - T (15%) T (96%) T (91%)
C (85%) C (4%) C (9%)

hotspot 7B.2 wsnp_RFL_Contig4753_5709032 77.1 566,481,254 A (85%) A (4%) A (9%)
G (15%) G (96%) G (91%)

2.6. In Silico Analysis of Candidate Genes

A total of 1097 candidate genes (CG) were found within the selected 33 QTL hotspots
(Table S6). A total of 371 gene families were observed among the CGs, 10% of the genes
corresponded to receptor-like kinases, 6% to F-box proteins and 4% to disease resistance
proteins.

To classify these genes according to their molecular function (MF), biological pro-
cess (BP) and cellular component (CC) gene ontology (GO) terms were downloaded from
https:/ /wheaturgi.versailles.inra.fr/Seq-Repository / Annotations (accessed on 1 Septem-
ber 2022). Eight hundred and seven CGs were classified according to their MF, 148 according
to their BP and 78 according to their CC. The main gene families within MF ontology were
protein binding (26% of the genes), nucleic acid binding (16%) and protein kinase activity
(13%). For their BP, genes involved in oxidation-reduction processes were 23%, followed by
metabolic process (21%) and proteolysis (9%). Finally, according to their cellular location,
45%, 17% and 13% of the genes corresponded to membrane, ribosome, and nucleosome,
respectively.

Subsequently, a search for differentially expressed genes (DEGs) upregulated under
three abiotic stress conditions reported in http:/ /www.wheat-expression.com (accessed on
1 September 2022) was conducted to identify the best CGs. These conditions comprised
(1) drought and heat stress time-course in seedlings, (2) spikes with water stress, and
(3) seedlings treated with polyethylene glycol (PEG) to simulate drought. Forty-two CGs
were filtered by performing DEG in different tissues: roots, shoots/leaves, spikes, and grain.
To reduce the complexity of the analysis, only those DEGs with a difference larger than
2 tpm from no stress to abiotic stress conditions were considered, leaving 9 CGs that were
upregulated under abiotic stress in 8 QTL hotspots from 4 chromosomes (Figure 4). From
them, 3 DEG corresponded to receptor-like kinases expressed in roots under drought stress.
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Two transcripts were ATP-dependent chaperone ClpB upregulated in shoots/leaves. The
other gene families corresponded to an ethylene-responsive transcription factor, also upreg-
ulated in shoots/leaves; a cytochrome c oxidase subunit 3 upregulated in shoots/leaves and
spikes, and, finally, a Ras-like GTP binding protein and NADH-ubiquinone oxidoreductase
chain 6 upregulated in the spikes. Any of the genes were found to be upregulated in the
grain. Four DEGs were located on chromosome 1B 3 on 5B, and one on chromosomes

1A and 7A.
No stress Abiotic
Chr Hotspot Type Gene model Description Roots Leaves Spikes Roots Leaves Spikes
1A 1A.4 C TraesC51A01G340100 ATP-dependent chaperone ClpB
1B 1B.5 C,E,P TraesC51B01G347000 Rac-like GTP binding protein
TraesCS1B01G352400 ATP-dependent chaperone ClpB

1B.6 C TraesCS1B01G413200 Cytochrome c oxidase subunit 3

1B.7 P TraesC51B01G441300 ethylene-responsive transcription factor
5B 5B.2 C TraesCS5B01G293900 Kinase family protein

5B.2 TraesCS5B01G294000 Kinase family protein

5B.2 TraesCS5B01G294100 Kinase family protein
7A 7A.3 E TraesCS7A01G526200 NADH-ubiquinone oxidoreductase chain 6

Figure 4. Upregulated CGs under abiotic stress conditions in three tissues Values are based on
log2 tpm (dark green). CGs, candidate genes; tpm, transcripts per million. The length of the cells
corresponds to 7.2 tpm.

2.7. Synteny Analysis within Cereal Species

Markers from the selected QTL hotspots were launched against the mapping pipeline of
the Brachypodium, rice and maize genomes, as reported in Marcotuli et al. [26]. Twenty-four
out of the 33 selected QTL hotspots reported collinearity with the other genomes. The number
of collinear QTL hotspots was 23, 21 and 7 for Brachypodium, rice and maize, respectively.
From those hotspots, a total of 97 markers were identified in 79 syntenic regions of the three
genomes, designated as ortho-QTL (Table 5). From them, 84, 57, and 9 markers were common
with Brachypodium, rice and maize genomes. Among those genomes, 40 markers were
in common between Brachypodium and rice, 3 between Brachypodium and maize, and
7 markers were in common in the three genomes (Figure 5).

Table 5. Summary of QTL hotspots in syntenic chromosomes.

Chromosome Hotspot Syntenic Chromosomes
1A hotspot 1A.1 bd2 0s5
1A hotspot 1A.2 bd2 0s5 zm6
1A hotspot 1A.4 bd2 bd3 0s5
1B hotspot 1B.1-2 bd1 bd3 osl 0s2 0s5 0s7 0s12
1B hotspot 1B.3 bd2
1B hotspot 1B.5 bd2 bd3 osl 0s5 0s6 0s7 zmé6
1B hotspot 1B.6 bd1 bd2 0s5 0s6
1B hotspot 1B.7 bd2 0s5 zm8
1B hotspot 1B.8 bd2 os4 0s5
1B hotspot 1B.9 bd4 os4 0s9
1D hotspot 1D.1-2 bd1 bd2 0s5
2A hotspot 2A.1 0s7
2A hotspot 2A.3 bd3 osl os4
2B hotspot 2B.3 bd2 bd4 bd5 os4 0s9 zm2 zm8
2D hotspot 2D.1 bd4 osl1
3B hotspot 3B.3 bd2 osl 0s5
5A hotspot 5A.3 bd1l bd2 osl 0s3
5A hotspot 5A.4 bd1 0s3 zml
5B hotspot 5B.2 bd2 bd4 osl 0s9
6B hotspot 6B.1 bd3
6B hotspot 6B.3 bd4 bd5
6B hotspot 6B.4 bd3 0s2 zmb5
7A hotspot 7A.3 bd1l 0s2 0s6

7A hotspot 7A.5 bd1 0s2 0s6 zm6
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Figure 5. Synteny among genomes for the selected QTL hotspots. For better visualization of the
chromosome links, the size of the Brachypodium and rice chromosomes is multiplied by 10. Colour
code: red, Brachypodium; blue, maize; green, rice; grey, wheat.

Examining collinear regions within the four genomes outcomes in identifying 20 ortho-
QTL containing 41 orthologous genes with similar functions that can be considered promising
candidate genes controlling traits of interest across species. From them, 27 genes were
orthologous between wheat and Brachypodium, 4 between wheat and rice, 2 between wheat
and maize, 5 between wheat, Brachypodium and rice, 2 between wheat, Brachypodium and
maize, and, finally, 1 gene was orthologous in the four species (Table S7).

3. Discussion

Genetic diversity is crucial in plant breeding as it broadens the source of new alleles
for essential genes. The use of wild relatives or landraces that are well adapted to their
regions of origin is of special interest when breeding in suboptimal environments such
as the Mediterranean basin to improve the modern cultivars to face the challenges of
climate change [19]. In a previous study using the same collection of landraces, Royo
et al. [22] found differences in the agronomic performance of the landraces from the
northern and southern areas of the Mediterranean Sea. The authors found a clear association
between these traits and the climatic conditions of the countries of origin of the landraces.
According to these results in this study, we aimed to identify the genomic regions from the
Mediterranean wheat landraces controlling (1) the phenology fitting as a mechanism to
escape drought episodes, (2) the response to environmental conditions by envGWAS, and
(3) the differentiation patterns among the landrace subpopulations by eigenGWAS.
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3.1. Phenology Fitting

Phenology was differentiated by climatic zone, increasing from the warmest and
driest regions to the coldest and wettest ones, showing statistically significant differences
between the north and south coast but not within them. This agrees with Gooding et al. [27],
who reported a reduction in flowering time in wheat in high temperature and drought
environments during the crop cycle. When the phenology is compared by the population
structure, SP2 showed a longer cycle till booting, heading and anthesis, but shorter GFD;
although this is contradictory according to the geographical distribution of SP2 landraces,
mainly north Mediterranean countries, it may be explained by the higher level of admix-
ture among Mediterranean landraces SP as reported by Rufo et al. [12]. However, other
studies [28] reported a decrease in GFD due to late anthesis. The bidimensional clustering
was helpful to visualize the variability within the collection and identifying phenological
connections among landraces. The classification followed mainly the separation among
climatic zones into three groups, South West (group A), north Mediterranean (group B,
including north coast and north Balkan) and South East (group C). However, identifying a
trend to distinguish genetic subpopulations according to phenology data was not as good
as with climatic zones.

The dissection of genetic architecture for phenology in Mediterranean wheat landraces
revealed the presence of 26 QTL hotspots (57%) with significant associations. Accord-
ing to the position of functional genes described by Liu et al. [29], major genes affecting
photoperiod sensitivity and vernalization were in QTL hotspots 2A.1 (Ppd-Al) and 5A.3
(Vrn-Al), respectively. However, no MTAs were found in the homologous regions corre-
sponding to the Ppd and Vrn genes on chromosomes 2B and 2D, and 5B and 5D, respectively.
These contrast regions that were detected might be due to selection pressure during the
domestication by selecting the alleles/genes targeted to environmental factors, growing
type, phenological traits, yield and local adaptation. Continuity of the research in these
regions can lead to underpinning the genes controlling these loci. Dissecting the complex
genetic architecture to identify the favorable regions and haplotypes could be beneficial
for the development of new varieties able to skip the drought periods by regulating their
phenological stages.

3.2. Genetic Control of Environmental Conditions

EnvGWAS has been reported as a valuable and complementary approach to identify
genomic regions related to adaptation to abiotic stress [21]. The hierarchical clustering
reported by Royo et al. [22] using the long-term climatic data of the main growing areas
of wheat in the Mediterranean basin showed a clear geographic pattern separating the
north coast countries from the southern ones. Climatic data are highly correlated with the
adaptation of the crop. As it is shown by different authors [22,29], PCoA using molecular
data followed the climatic classification reported by these authors when genotypes were
grouped by their country of origin. However, the high level of admixture and genetic
exchange in the Mediterranean landraces according to Rufo et al. [12] revealed an unclear
pattern when comparing PCoA using structure or climatic data.

In the present work, envGWAS, using the climatic variables from the region of origin
of the Mediterranean wheat landraces, successfully detected genome regions involved in
the control of traits related to environmental variation. QTL hotspots showed that most of
the significant associations related to temperature were reported during the grain filling
period, which, according to Royo et al. [22], is one of the variables that most contribute
to differentiate the landraces from the north and south coast of the Mediterranean basin.
Taking advantage of the benefits of envGWAS can lead to improving the knowledge of the
adaptation of the Mediterranean landraces to their specific environments.

3.3. Genetic Loci for Differentiation Patterns among Mediterranean Landraces

Eigenvectors are commonly used to deduce the population’s genetic structure because
they are estimated for each genotype. In this way, different studies have indicated the
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suitability of primary eigenvectors to infer population differentiation [30-32], and pos-
teriorly Chen et al. [33] developed the approach called eigenGWAS to identify genomic
regions causing genetic differentiation. This approach has been used mainly to identify
selective sweeps produced by breeding among old cultivars or landraces and modern
varieties [13,25,34,35]. These authors found that most of the selective sweeps corresponded
to regions involved in yield potential, phenology, plant height, and biotic and abiotic
resistance.

In this study, we used eigenvectors to understand the genetic differences among wheat
Mediterranean landraces. Out of the eleven QTL hotspots reporting significant associations
by eigenGWAS, six hotspots on chromosomes 2B, 5B, 6B, 7A and 7B showed allelic or
haplotype differences among genetic subpopulations, thus considering them as the main
drivers of genetic differentiation among Mediterranean landraces. Four of these regions
also showed associations with climate traits and three with phenology fitting, indicating not
only genetic differentiation but also adaptive differentiation among different environments.
These loci can be beneficial for breeding purposes by spotlighting the breeders to know the
contribution of the genomic footprints in the wheat adaptation and response to the climatic
change by selecting the high frequency of favorable alleles landraces and integrating them
in the breeding programs.

3.4. Candidate Genes

To reduce genomic complexity and the number of CGs, the search was performed only
in the selected QTL hotspots, such as those hotspots with a confidence interval lower than
20 Mb. The gene annotation from the “Chinese spring” reference genome sequence [36]
allowed us to identify 1097 gene models within the 33 QTL hotspots. Mining of CGs was
achieved by looking for differentially expressed genes (DEGs) upregulated under abiotic
stress in different tissues through in silico analysis at http://www.wheat-expression.com
(accessed on 1 September 2022). Only those genes with higher differences between non-
stressed conditions and abiotic stress were selected. Among them, different gene families
previously reported for their involvement in various stress responses were found: Kinases,
Ras-like GTP binding proteins and ethylene responsive transcription factors.

Protein kinases play crucial roles in plant responses to different stress conditions
(reviewed in [37]). Among them, the MAPKs are involved in ABA signalling and drought
stress regulating root growth and stomatal closure; CPKs play roles in signalling modules
in different abiotic stresses such as drought, heat, cold and salt; RLKs are a large group of
kinases anchored to the cellular membrane, thus acting in the transmission of extracellular
signals into the cells. They regulate fertilization, plant growth and development, and plant
response to biotic and abiotic stresses. Differentially expressed kinases were also found in
a previous study of QTL meta-analysis for abiotic stress (among others) in durum wheat by
Soriano et al. [38].

A Ras-related GTP binding protein was found in hotspot 1B.5. These proteins have
been involved in drought stress tolerance by modulating stomatal movements mediated by
ABA [39].

Finally, an ethylene-responsive transcription factors (ERF) was upregulated in leaves.
These genes have been reported to be involved in different processes. Djmal and Khoudi [40]
studied the tolerance to heavy metals (HM) regulated by the durum wheat TASHN1 in
yeast and transgenic tobacco, concluding that the gene could improve HM tolerance in
plants and phytoremediation of HM-contaminated soils. Gao et al. [41] studied the expres-
sion of the wheat ERF TaERFLI1a. This gene is a member of the AP2/ERF family and was
remarkably induced in wheat seedlings suffering freezing stress. In their study, the authors
showed that its expression was rapidly upregulated in response to salt, cold, and water
deficiency, suggesting roles in the responses to abiotic stresses.

Interestingly, in QTL hotspot 1B.6, a Cytochrome c oxidase gene was upregulated in
leaves and spikes (TraesCS1B01G413200). This gene was previously found to be upregu-
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lated in spikes by Rufo et al. [42] in a GWAS for yield and vegetation indices-related traits
using the same panel of landraces but also including a panel of modern wheat cultivars.

3.5. Synteny among Cereal Species

The study of synteny among different species and the identification of orthologous
genes suggest that they may be associated with regulatory elements affecting many
genes [43] and leading to the identification of key genes controlling important traits across
species. In this study, we used the selected QTL hotspots to investigate the collinearity with
other cereal species: Brachypodium, maize and rice (ortho-QTL).

The analysis revealed a higher synteny among the wheat, Brachypodium and rice,
whereas a lower one among wheat and maize. The candidate gene investigation allowed
the correlation between some ortho-QTL with genes. Only one gene, a 4-Coumarate: CoA
ligase, was common among the four genomes. These proteins were observed to play
a pivotal role in cell wall synthesis and abiotic stress in Fraxinus mandshurica [44]. The
authors found that Fm4CL is involved in secondary cell wall development and lignin
synthesis. Fm4CL plays an important role in osmotic stress by affecting cell wall and
stomatal development. In rice, these proteins were involved in fungal resistance induced
by reactive oxygen species [45]. The collinearity among cereal genomes could suggest a
common mechanism of action to respond at stress conditions, which may facilitate the
study of such complex traits.

4. Materials and Methods
4.1. Plant Material

A panel of 153 bread wheat (Triticum aestivum L.) landraces from 23 Mediterranean
countries, including Balkan peninsula and Portugal, were used in the current study (Table
51). Landrace populations were provided by public gene banks from Germany (IPK,
Gatersleben), Italy (ISC, S. Angelo Lodigiano), Romania (Suceava GenBank, Suceava),
Russia (VIR, St. Petersburg), Spain (CRF-INIA, Madrid), the Netherlands (CGN-WUR,
Wageningen) and the USA (NSGC-USDA, Aberdeen, ID). Accessions were bulk purified
during two cropping cycles to select the dominant type, and the seeds were increased on
plots in the same field during 2015 to ensure a common origin for all lines.

4.2. Phenology Assessment

Field experiments were conducted under rainfed conditions in Gimenells, Lleida,
northeast Spain, during 2016, 2017 and 2018 harvesting seasons, as reported in Rufo
et al. [42]. The experiments consisted of a non-replicated augmented design with two
replicated checks, the cultivars “Anza’ and ‘Soissons’, at a ratio of 1:5 between checks and
tested genotypes. The sowing density was adjusted to 250 germinable seeds/m?, and the
sowing dates were 2 December 2015; 21 November 2016; and 15 November 2017, whereas
harvesting dates were 7 July 2016; 5 July 2017; and 5 July 2018. Weeds and diseases were
controlled following standard practices at the site.

The development of plants at each plot was monitored twice a week for the following
growth stages: D45 (boots swollen), D55 (heading), D65 (anthesis) and D87 (physiological
maturity) [46]. A plot was considered to reach a given developmental stage when approx-
imately 50% of the plants presented the specific characteristics of the stage. Days from
booting to anthesis (DBA) were calculated as the number of days from booting to anthesis,
and grain filling duration (GFD) was calculated as the number of days from anthesis to
physiological maturity.

Phenotypic data were fitted to a linear mixed model considering the check cultivars as
the fixed effect, and the row and column number and accessions as random in the model
for each environment following the MIXED procedure of the SAS-STAT statistical package
(SAS Institute Inc., Cary, NC, USA)

y=XB+Zy+e D
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where $3 is an unknown vector of fixed-effects parameters with known design matrix X, vy is
an unknown vector of random-effects parameters with known design matrix Z, and ¢ is an
unknown random error vector whose elements are no longer required to be independent
and homogeneous. Restricted maximum likelihood (REML) was used to produce the best
linear unbiased predictors (BLUPs).

Analyses of variance (ANOVA) were conducted to assess differences among years
and climatic zone or genetic subpopulations. Genotype within a climatic zone or genetic
subpopulation was used as an error term. Mean comparisons between years, climatic zone
and genetic subpopulation, were performed using the Tukey’s HSD test at p < 0.05. Mean
phenotypic values across the 3 years were used to perform a hierarchical cluster analysis by
the Ward method [47]. Both analyses were carried out using JMP v14.2.0 statistical package
(SAS Institute, Inc., Cary, NC, USA).

4.3. Environmental Variables

Long-term climatic data of the 23 countries origin of landraces were collected using the
CROPWAT software (http:/ /www.fao.org/land-water/databases-and-software /cropwat
(accessed on 1 September 2022)) from the CLIMWAT 2.0 FAO database. A period of 15 years
of data (2006-2021) from 3 to 7 climatic stations located in the main wheat-growing areas of
each country was used to determine the following variables: average daily values for mini-
mum, maximum, and mean temperatures (Tmin, Tmax and Tmean, °C), sunshine (h), solar
radiation (Rad, MJ m—2 day’l), relative air humidity (Rh, %), potential evapotranspiration
(ETp, mm) and rainfall (Rain, mm). Climatic data from each country were averaged for the
periods 20 November—31 March and 1 April-30 June (Table 1), assuming they represent the
two main growing periods of wheat in the region; this is from sowing to anthesis (SA) and
from anthesis to physiological maturity (AM) as described in Royo et al. [48].

4.4. Genome-Wide Association Analyses

Accessions were genotyped with 13177 SNPs from the Illumina Infinium 15K Wheat
SNP Chip at Trait Genetics GmbH (Gatersleben, Germany). After marker filtering, 10,458
SNPs were used for subsequent analyses as reported in Rufo et al. [12].

Genome-wide association (GWAS) was performed using Tassel 5.0 software [49] for
phenology, environmental variables and the first five eigenvectors. A mixed linear model
(MLM) was fitted using a principal component analysis (PCA) matrix with 6 principal
components as the fixed effect and a kinship (k) matrix as the random effect (PCA + K
model) at the optimum compression level based on the groups defined by the kinship
matrix. Compression levels range from “no compression” (compression = 1) when each
genotype belongs to its own group, to “maximum compression” (compression = 71) when all
genotypes belong to the same group. A common threshold was established at -logjo p > 3, as
previously reported in the literature [42,50-53]. Confidence intervals (CIs) for marker—trait
associations (MTA) were estimated for each chromosome based on the LD decay reported
by Rufo et al. [12] and standardized using the formula reported by Chardon et al. [23]:

CI\?
2 _ [ =
S = (3.92) @
where CI is the LD decay for each chromosome. To simplify the MTA information, the
associations were grouped into QTL hotspots. To define a hotspot, the density of MTAs

along the chromosome was calculated as the QTL overview index [23] for each cM of the
genetic map reported by Wang et al. [24]:

nbQTL

— nbE
U= Fora length of map @)

where nbQTL is the number of QTLs and nbE is the total number of experiments.
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4.5. In Silico Gene Expression Analyses and Synteny against Cereal Genomes

Gene annotation in the QTL hotspots was performed using the gene models for
high-confidence genes reported for the wheat genome sequence [36], available at https://
wheat-urgi.versailles.inra.fr/Seq-Repository / Annotations (accessed on 1 September 2022).
In silico expression analysis and the identification of upregulated gene models were
carried out using the RNA-seq data available at http:/ /www.wheat-expression.com/
(accessed on 1 September 2022) [54] for the following studies: (1) drought and heat stress
time-course in seedlings, (2) spikes with water stress, and (3) seedlings with PEG to simulate
drought. Gene Ontology (GO) data were retrieved from the high-confidence gene anno-
tation at https:/ /wheat-urgi.versailles.inra.fr/Seq-Repository / Annotations (accessed on
1 September 2022).

Search for syntenic regions in Brachypodium distachyon, Oryza sativa and Zea mays was
performed as reported in Marcotuli et al. [26]. The following reference genomes were
used: Brachypodium distachyon version 1 (http:/ /www.plantgdb.org/BdGDB, accessed on
1 September 2022); Oryza sativa Japonica Group version IRGSP-1.0 (http://rice.uga.edu,
accessed on 1 September 2022), Zea mays version AGPv3 (https://www.maizegdb.org,
accessed on 1 September 2022).

Circular figures of the QTL hotspots and chromosome synteny were created using
the online software Clico FS’ [55], available at http://clicofs.codoncloud.com (accessed on
20 September 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms24021700/s1.
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