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Abstract: This study aimed to establish a surface modification technology for ZK60 magnesium
alloy implants that can degrade uniformly over time and promote bone healing. It proposes a
special micro-arc oxidation (MAO) treatment on ZK60 alloy that enables the composite electrolytes
to create a coating with better corrosion resistance and solve the problems of uneven and excessive
degradation. A magnesium alloy bone screw made in this way was able to promote the bone healing
reaction after implantation in rabbits. Additionally, it was found that the MAO-treated samples
could be sustained in simulated body-fluid solution, exhibiting excellent corrosion resistance and
electrochemical stability. The Ca ions deposited in the MAO coating were not cytotoxic and were
beneficial in enhancing bone healing after implantation.

Keywords: ZK60 magnesium alloy; micro-arc oxidation; EDTA; In-vitro test; biodegradability

1. Introduction

Magnesium (Mg) alloys are used to make several artificial human body parts and
implants, such as substitutes for hard tissue replacement, fracture healing aids, and fixation
devices, because of their light weight, excellent mechanical properties, biocompatibility,
and biodegradability [1–14]. Implanted devices often suffer from corrosion because they
are exposed to the surrounding body fluids, which typically have high ionic strength.
The concentrations of chloride, potassium, and sodium ions are relatively high and may
cause a simultaneous electrochemical reaction between the implanted Mg alloys and the
surrounding fluids. Mg alloy corrosion may sometimes release ions into body fluids and
induce allergies, inflammation, diseases, or cancer [15–17]. Moreover, the difference in the
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electrochemical potential of multiple compositions of Mg alloys may cause more significant
electrochemical corrosion [18,19].

It is of great interest for scientists in the fields of medicine and biomaterials to under-
stand the interactions between bone tissues and implant materials. Improvements in the
biocompatibility, durability, and longevity of orthopedic implants from the perspectives of
patient comfort, mobility, and functionality are of widespread benefit to implant recipients.
An important class of biomaterials is bioceramics, such as glass ceramics, Al2O3, ZrO2, and
Ca-P. The advantage of these materials over metals is their corrosion resistance. Calcium
phosphate (Ca-P) has been used for over 30 years in clinical applications. The first calcium
phosphate material used was a bone substitute. A triple calcium phosphate compound
used in a bony defect has been reported to promote osteogenesis [20]. Hydroxyapatite
(HA) is the most common Ca-P phase relevant for bio-mineralization owing to its close
similarity in composition to the bone mineral as a prospective bone substitute [21–24].
The application of synthetic calcium phosphate coatings is the most effective method for
surface modification, which promotes osseointegration of metallic implants with bone
tissues [25]. Ca-P is the principal mineral component of bone tissue, and the presence of
several calcium phosphate compounds in the coating provides the possibility of controlling
its biochemical activity by changing the phase composition, and the rate of resorption of
the coating material must correspond to the rate of tissue restoration [26].

In our previous study [27], we successfully designed a micro-arc oxidation process
(MAO) coating with good anti-corrosion performance on the AZ31 alloy. MAO is an
effective approach to improve the properties of Mg and its alloys. The process combines
electrochemical oxidation with high-voltage spark treatment in an alkaline electrolyte,
resulting in the formation of a physically protective oxide film on the metal surface to
enhance wear and corrosion resistance as well as prolong the component lifetime [28]. In
practice, a thin oxide film on the implant surface, which forms a moist environment, plays
an important role in the bioactivity and corrosion behavior of metal implants [29]. In a
recent study, thin calcium phosphate layers incorporated into MAO on titanium alloys
were studied using the ion-beam deposition method, which enhanced osseointegration [30].
In recent decades, almost all known deposition techniques have been applied to deposit
Ca-P coatings. Widely used deposition techniques include plasma spraying, electrostatic
spray deposition, sol-gel deposition, and radiofrequency magnetron sputtering [31]. Of
course, all of these techniques have their benefits and limitations. Some recent studies have
been published on MAO treatment with Ca- and P-containing electrolytes to improve the
biocompatibility of Mg alloys [32,33]. Moreover, MAO treatment is an environmentally
friendly technology if non-toxic electrolytes are selected [34]. However, no bioactivity
investigation has tested whether the application of this MAO treatment will enhance bone
regeneration and osseointegration capability in vivo in animal implants.

Previous studies mentioned that some elements used to produce these implants might
have toxicity issues. For example, an in vivo test reported by Laing et al. [35] indicated
that Ni, Co, Cr, Fe, Mo, V, and Mn are toxic elements because of the unfavorable tissue
responses between the metallic implants and rabbit muscle. Elshahawy et al. [36] also
evaluated various commercial biomedical alloys using in vitro testing; Cu2+, Ni2+, and
Be2+ were identified as toxic ions in fibroblast cell culture. Calin et al. [37] summarized
potentially harmful and non-toxic elements for biomedical implants. In our previous
study [27], Mg alloy (AZ31) and aluminum (Al) were dissolved. Al is a bone growth
inhibitor, a possible cause of Alzheimer’s disease, and is cytotoxic [38]. Cytotoxicity often
depends on the ionization tendency of the metals. Highly corrosive materials in the body
may release cytotoxic ions and cause cell apoptosis and necrosis after long-term use [39].
Therefore, ZK60 Mg alloys were used as experimental materials in this study. However, few
studies have attempted to determine whether ZK60 alloy application enhances rabbit bone
regeneration and simultaneously improves mechanical properties, biocompatibility, and
corrosion resistance. In this study, we aimed to establish a surface modification technology
for ZK60 alloy implants that can uniformly degrade over time and promote bone healing,
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as well as break through the current technical barriers of uneven degradation and excessive
degradation of medical magnesium alloys. The biological activity of the ZK60 alloy was
increased by the addition of Ca and P ions in the MAO electrolyte. In addition, as a
chelating agent, EDTA was able to improve the calcium content in MAO coatings. An
electrolyte containing Ca and P and able to promote osseointegration was deposited in
the anodic oxide film during the MAO process. A magnesium alloy bone screw made
in this way was able to promote the bone healing reaction after implantation in rabbits.
Whether the difference in their bone regenerative potential had an impact on their physical
properties and biological activity will be further investigated in our following study.

2. Results and Discussion
2.1. Characteristics of the MAO-Coated ZK60 Plates
2.1.1. Microstructural Observations

The morphology and cross-sectional microstructure of MAO-coated ZK60 and MAOCa-
coated ZK60 are shown in Figure 1. The MAO coating formed without calcium addition
had smaller pores and was distributed relatively regularly (Figure 1a). It was found that the
thickness of the MAOCa coating was thicker than that of the MAO coating (16.3 ± 1.8 µm
vs. 15.7 ± 1.4 µm), as shown in Figure 1b,d. In other words, a thicker coating can be
obtained with a calcium compound containing MAO. This is consistent with previous
research, where more Ca2+ and PO4

–3 ions were added to the MAO treatment solution,
which increased the coating thickness [40].
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coated ZK60 samples.

Surface roughness is an important factor affecting the structural integrity of a surface.
Figure 2 shows the average roughness (Sa) of the MAO- and MAOCa-coated samples. Sa is
a dispersion parameter established as the mean of the absolute values of surface departure
above and below the mean plane within the sampling area. The Sa values of the MAO and
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MAOCa coatings were 0.293 and 0.355 µm, respectively, as shown in Figure 2. This means
that the MAO coating was flatter than the MAOCa coating. This result was consistent with
the SEM morphology (Figure 1a,c).
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2.1.2. Chemical Composition

The chemical composition of both MAO-treated ZK60 samples was analyzed by EDS
and SEM. Table 1 shows the EDS analysis results for the different MAO-coated samples on
the ZK60 Mg alloys. The EDS results in Table 1 show O, Mg, Na, Si, and P. Among them,
the P content in the MAOCa coating was greater than that in the MAO coating, and the Ca
content in the MAOCa coating was approximately 4%. In other words, the results clearly
show the formation of Ca and P compounds by the MAO process in this study.

Table 1. EDS analysis of the different MAO-coated samples on ZK60 Mg alloys.

Element—Atomic%
O Mg Na Si P Ca Total

MAO 43.6 42.5 0.6 11.7 1.6 - 100
MAOCa 55.8 28.3 0.2 9.2 2.4 4.1 100

2.1.3. Corrosion Resistance

Figure 3 shows the polarization curves of the bare ZK60 and MAO- and MAOCa-
coated samples in the SBF solution. The corrosion potential (Ecorr) is used to evaluate the
driving force for bio-corrosion, and a system with a higher Ecorr indicates that more energy
is required to initiate the corrosion reaction [41–43]. The Ecorr values of the bare ZK60,
MAO coating, and MAOCa coating were −1.659 V, −1.642 V, and −1.61 V, respectively.
The corrosion potential is mainly influenced by the composition. This also shows that
the corrosion resistance of both coatings was better than that of bareZK60. Corrosion
current density (icorr) is another important parameter for determining the activity of the
corrosion reaction. The icorr suffers a structural effect, which is utilized to evaluate whether
the protective and denser passive layers were formed on the material surface. The icorr
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values of bare ZK60, the MAO coating, and the MAOCa coating were 8.73 × 10–4 A/cm2,
2.03 × 10–6 A/cm2, and 1.98 × 10–6 A/cm2, respectively, indicating that both MAO-coated
samples were capable of generating a more protective and compact passive layer on the
surface in the SBF solution than bare ZK60. The above results show that both MAO-treated
processes degrade the corrosion reaction and retard corrosion activity.
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in the MAO and MAOCa treatments.

Although the corrosion resistance of both MAO-treated samples could be greatly
improved, the corrosion current density was approximately the same. To prove the superior
corrosion resistance of the MAOCa coating compared to that of the widely applied MAO
coating in biomedical implants, hydrogen evolution tests were conducted. Figure 4 shows
the hydrogen evolution of the bare ZK60 and MAO- and MAOCa-coated samples in the
SBF solution. It showed lower corrosion rates for the MAOCa-coated samples than for the
bare ZK60 and MAO-coated samples in the SBF solution. This is because Ca2+ and PO4

–3

ions can reduce the corrosion rate to protect biodegradable medical materials [40,44–46].
Figure 5 shows the thickness measurements for both MAO-coated ZK60 samples, recorded
every 1 week during long-term immersion in test solutions. Thickness measurement was
conducted after immersion in the SBF solution for different periods of up to 13 weeks. It
was found that the MAO-coated ZK60 film thickness changed from 15.7 µm to 3.6 µm after
immersion for 13 weeks in SBF solution, the film thickness decreased by about 12.1 µm, and
the corrosion rate was about 0.93 µm/week. In the same way, the MAOCa-coated ZK60 film
thickness changed from 16.3 µm to 6.7 µm after immersion for 13 weeks in SBF solution, the
film thickness decreased by about 9.6 µm, and the corrosion rate was about 0.74 µm/week.
In short, the MAOCa-coated sample had a great deal of corrosion resistance potential in
the SBF solution in the long term. These results show that our synthetic MAOCa-coated
sample is suitable for long-term implantation in the corrosive environment of body fluids.
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week during long-term immersion in SBF solution.

The SST is a rigorous test to demonstrate differences in the corrosion resistance of the
specimens. Figure 6 shows the results of the 24 h SST for the bare ZK60 and MAO- and
MAOCa-coated samples. When bare ZK60 was subjected to SST for 24 h, the corroded
area fraction was >80%. In contrast, there were no rust spots on the MAO-treated samples,
which means that they did not affect the corrosion resistance of the additives of Ca2+ and
PO4

–3 ions in the MAO treatment. This result is consistent with the potentiodynamic
polarization and hydrogen evolution measurements. In summary, we successfully created
a MAOCa-coated sample with good corrosion resistance by using an electrolytic mixture
of Ca3PO4 and EDTA solutions. MAO coatings were successfully produced with a less
porous and denser microstructure and, therefore, exhibited enhanced corrosion resistance.
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2.1.4. Biological Activity Enhancement

XPS was performed to further investigate the biological activity and surface chemical
composition of the ZK60 plates, as shown in Table 2. Table 2 shows the XPS elemental
analysis at 10 nm from the surfaces of the bare ZK60 and MAO-coated ZK60 plates before
and after immersion in the SBF solution. Both phosphorus and calcium ions in the MAO
oxide film increased after immersion in the SBF solution, which was better than that of
the untreated sample. In particular, in the MAOCa treatment (bioactivity) sample after
immersion in SBF for 48 h, the elemental analysis of the surface layer down to 10 nm by
XPS showed that the calcium and phosphorus ions increased the most. Thus, phosphorus-
and calcium-containing components were deposited on the surface of the sample immersed
in SBF media after MAOCa treatment of ZK60. To further understand the composition
of the oxide film and surface deposits after immersion in the SBF solution, SEM surface
morphology and EDS line scan analyses were carried out, as shown in Figure 7. EDS
analysis showed that it contained phosphorus and calcium, which confirmed that the
MAOCa-coated ZK60 could quickly induce the adhesion and deposition of phosphorus
and calcium after immersion in SBF for 48 h. Phosphorus and calcium were only deposited
in the corrosion deposits on the surface of the oxide film.

Table 2. XPS results for the bare ZK60 and MAO- and MAOCa-coated ZK60 plates before and after
immersion in SBF solution.

Elemental Analysis at 10 nm from
the Surface

Before Immersion After 48 h Immersion
Bare ZK60 MAO MAOCa Bare ZK60 MAO MAOCa

Ca 0% 0% 4.01% 7.45% 14.6% 18.8%
P 0% 1.82% 2.03% 6.12% 8.92% 11.1%
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Figure 7. (a) SEM morphology and (b,c) EDS line scan analysis of the MAOCa-coated ZK60 samples.

2.2. Mechanical Properties of the MAOCa-Coated ZK60 Bone Screws
2.2.1. Results of the Three-Point Flexure Test

Generally, scaffolds with sufficient mechanical strength can maintain a suitable matrix
for cell ingrowth, nutrient transport, and physiological loading support. Cells and tissues
can infiltrate and grow within the macrostructure and are especially critical for bone re-
construction [47,48]. The MAO process produces porous and uniform oxide coatings with
complex geometries on implant surfaces (Figure 1). This porous structure and rough mor-
phology have been proven to increase the mechanical interlocking of tissue and implants,
and the Ca-P layer enhances the initial cellular response owing to its high osteoconductivity
and bioactivity [49]. Thus, to determine the mechanical properties of the MAOCa-coated
ZK60 Mg alloy bone screws, a three-point flexure test was used for mechanical testing.
Although this test can provide the results of flexural stress and flexural modulus, this study
investigated whether the MAOCa coating of the bone screw cracked after stress. Figure 8
and Table 3 show that the ZK60 Mg alloy bone screws treated with MAOCa were subjected
to three-point bending measurements, and cracks in the oxide film under different dis-
placements were observed by SEM. Through SEM observation, it was shown that the oxide
film of ZK60 Mg alloy bone screws began to have obvious cracks when they were pressed
down by 0.75 mm (Figure 8e). Therefore, the pressing distance was reduced to 0.5 mm, and
the results showed that there were no cracks (Figure 8d). These defects were due to the
flexure testing results, as it can be assumed that these cracks will extend by enduring a
greater force and cause film peeling. It also means that a good implanted material must be
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able to restrain stress and decrease debris release after long-term use, which stimulates the
immune system and inflammatory responses [50].
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Table 3. Three-point bending measurement of the ZK60 Mg alloy bone screws treated with MAOCa.

The ZK60 Mg Alloy Bone Screw Depression Distance (mm)
0.5 0.75 1.0 2.0

The angle of deformation 3.3◦ 5◦ 6.6◦ 13.1◦

Load force 70 N 90 N 201 N 254 N

2.2.2. Adhesion Test Analysis

To understand the adhesion characteristics of the MAOCa-coated ZK60 Mg alloy bone
screws, each sample was locked into a pre-drilled D3 synthetic bone, and the adhesion of
the oxide layer was observed. In the screw-in experiment, when the hole is 2.2 mm, the
screw-in force will be greater than 35 N, and the screw head will be broken or twisted;
therefore, the relevant experiment was carried out with a pre-drilled hole of 2.3 mm,
as shown in Figure 9a. The surface morphology of the ZK60 Mg alloy bone screw was
observed using SEM, and there was no obvious peeling or cracking of the oxide film after
screwing, as shown in Figure 9b.

2.2.3. Locking Force Analysis

Although the MAOCa-coated ZK60 showed good electrochemical properties (Figure 3)
and biological activity (Figure 7) in SBF solution, studies of its mechanical properties are
still rare. Hence, it was necessary to pay more attention to the mechanical properties
combined with biological activity, such as immersion in an SBF solution. MAOCa-coated
ZK60 Mg alloy bone screws with dimensions of 5 mm × 30 mm were used, and a bone
screw locking force test was performed. We screwed the SBF non-immersed and immersed
bone screws into pre-drilled and tapped D3 synthetic bone (4.8 mm and a force of 3.5 kg)
for 6 and 10 weeks. Then, they were locked into the D3 synthetic bone to 20 mm with the
ASTM F543 standard and fixed. Finally, the samples were stretched upward at a speed of
5 mm/min until the ZK60 Mg-alloy bone screws were pulled out of the D3 synthetic bone.
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The results showed that after 10 weeks of immersion in SBF, the ZK60 Mg alloy bone screw
retained 84% (213 N) of its original locking force (251 N), as shown in Table 4. Figure 10
shows that the surface morphology of the ZK60 Mg alloy bone screws and the corrosion
products on the surface tended to increase with immersion time in the SBF solution. After
the locking force test, no deformation was observed on the surface.
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Figure 9. (a,b) Test setup for the locking force and (c) SEM morphology of the ZK60 Mg alloy bone
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Table 4. Locking force of the ZK60 Mg alloy bone screw.

ZK60 Mg Alloy Bone Screw

Locking force of SBF non-immersed screw
(A) 251 N

Locking force of screw immersed for 6 weeks
(B) 233 N

Residual locking force of screw immersed for 6 weeks
(B/A) 92%

Locking force of screw immersed for 10 weeks
(C) 213 N

Residual locking force of screw immersed for 10 weeks
(C/A) 84%
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2.3. Animal Experiments and In Vitro Cell Test
2.3.1. Biocompatibility Analysis

Biocompatibility is a term that describes the interactions between biomaterials and
biological systems that do not have toxic or injurious effects on biological systems [51].
Thus, cytotoxicity testing was used to evaluate the death of living cells in the designed
environment. Figure 11 shows the results of the in vitro cytotoxicity test—MTT assays of
three cell cultures with the control species, bare ZK60, MAO-coated, and MAOCa-coated
specimens after 24 h of immersion in the medium. A blank control was used as the standard
for cell viability testing. Ions released into the culture medium could be the major factor
causing cell death. The light blue, pink, and yellow bars represent the cell viabilities of
the bare ZK60, MAO-coated, and MAOCa-coated specimens, respectively, under the same
experimental conditions. The cell viability for each group was higher than 80%, indicating
only mild cell death in the in vitro cytotoxicity test. In vitro cell viability and proliferation
assays showed that the MAOCa-coated specimens maintained a certain degree of cell
viability with minimal cytotoxicity.
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To understand the effect of surface modification on the osteoblast-like MG-63 cell
viability, the bioactivity of bare ZK60, MAO-coated, and MAOCa-coated specimens was
studied using human osteosarcoma (MG-63) cells in MTT cell proliferation tests. Figure 12
shows the cell proliferation rates for MG-63, where the Ca and P ion release numbers for 1,
3, and 7 days are shown. On day 1 of cell proliferation, more Ca and P ions proliferated
on the MAOCa-coated specimen compared to the other specimens. The results for day 7
showed that more Ca and P ions proliferated on the MAOCa-coated specimens compared
to the untreated and MAO-coated specimens. In particular, the MAOCa-coated specimen
exhibited the best cell performance, which was the most remarkable. This indicates that
the MAOCa coatings enhanced osteoblastic cell activity and improved bone healing of
surrounding tissues after implantation owing to the presence of the Ca-P compound, which
was similar to previous studies [30,52,53].

2.3.2. Radiological Examination

To gain further understanding of the relationship between Ca-P coatings and their
evident properties as an implantation bed, ZK60 bone screws were implanted into the
leg bones of rabbits. Figure 13 presents photo images showing the corresponding X-ray
images after surgical operations to implant various ZK60 bone screws (untreated, MAO,
and MAOCa-treated) into rabbit tibias. The rabbits were implanted without infection. They
recovered well and were fed under intensive care. The physical structures of the three
ZK60 bone screws treated with nothing, MAO, or MAOCa were completed after 1 week
of implantation, as shown in Figure 13a. However, air cavities were created, representing
the phenomenon of existing material degradation (Figure 13b). The X-ray images showed
no radiolucent line around any of the three ZK60 bone screws, indicating that there was
no local inflammation. Therefore, inflammation-induced osteolysis was prevented and
was not observed in the X-ray images. Two weeks after implantation, air cavities were
present but not expanded (Figure 13c). After 4–6 weeks of implantation, the formation
of air cavities slowed down, but the untreated ZK60 bone screw corroded and gradually
disappeared (Figure 13d,e). Finally, the treated ZK60 bone screws were rigidly fixed to
the bone after 8 weeks of implantation, which demonstrated that there was no severe
degradation (Figure 13f).
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2.3.3. Micro-CT Scanning

Figure 14 shows micro-CT images of the untreated, MAO-treated, and MAOCa-treated
ZK60 bone screws 12 weeks after implantation, which were used to further evaluate
the bone growth and growth properties of the implanted screws. Compared with X-
ray detection (Figure 13), the bone screw implantation method in this section involved
implanting the bone screws from each process into rabbit bone separately. After 4 weeks
of implantation, the lower part of the untreated ZK60 bone screw began to corrode, while
the others exhibited no corrosion phenomenon, as shown in Figure 14a,d,g. The untreated
ZK60 bone screw was completely corroded after 12 weeks of implantation (Figure 14c).
Similarly, the MAO-treated ZK60 bone screw also suffered severe corrosion 12 weeks after
implantation (Figure 14f). The most interesting finding in this study was that the µCT
images revealed that the bone grew around the MAOCa-treated ZK60 bone screws, and
the osteotomy sites healed well (Figure 14g). This indicated that the sample exhibited
superior osteoconduction properties. Simultaneously, we identified some newly formed
bone tissues that dominated the repaired space. As the implantation time increased, the
bony tissues gradually transformed into bone and bone screws without active signs of
degradation throughout the experimental period, as shown in Figure 14h. Most of the
newly formed bones were also in close contact with the MAOCa-treated ZK60 bone screws
and were distributed evenly throughout the repaired space. The addition of bone grafting
materials could create more space and mediate osteogenesis [50,54]. In this study, MAOCa
treatment induced more bone tissue growth.
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Figure 13. Plain X-rays of the various ZK60 Mg alloy bone screws in the femoral shaft of a rabbit:
(a) Just implanted, (b) 1, (c) 2, (d) 4, (e) 6, and (f) 8 weeks.

Biocompatibility is the ability of a prosthesis implanted in the body to exist in harmony
with the tissue without causing deleterious changes [51]. Hence, biomaterials with good
biocompatibility are more suitable for biomedical applications [55]. After materials are
implanted in vivo, body fluid contact begins when the pH of plasma and tissue fluid ranges
from 7.35 to 7.45. The concentrations of chloride ions in the plasma were 113 and 117 mEq/L,
respectively. Such high chloride-ion concentrations can readily corrode implant alloys. In
addition, buffer solutions containing amino acids and proteins in the body accelerate the
corrosion of implant alloys [56,57]. After patients undergo orthopedic surgery, the pH in the
body drops to 5.2 and then rises back to 7.4 within 2 weeks [58]. This large difference in pH
causes the denaturation of proteins to further corrode implant alloys. Figure 15 shows the
blood tests of the untreated, MAO-treated, and MAOCa-treated ZK60 bone screws 12 weeks
after implantation, which were used to further evaluate the physiological and biochemical
states. The green lines in Figure 15 represent the standard values for GOT, GPT, serum
creatinine, and serum UREA, respectively. Blood analysis of ZK60 bone screw implantation
for 12 weeks revealed that GOT and GPT levels were significantly higher in the untreated
sample, and MAOCa-treated samples could effectively alleviate physiological changes.
This indicated that there was inflammation and a significant corrosion reaction caused by
the untreated ZK60 bone screw implanted in the in vivo test. A possible reason may be that
blood flow in the bone marrow may bring the released ions away from the implantation site
and cannot eliminate the accumulation of released ions from the untreated ZK60 bone screw.
In contrast, the low levels of various blood tests in the rabbits after 12 weeks of implantation
demonstrated that there was no obvious inflammatory reaction caused by the MAOCa-
treated ZK60 bone screw implant. The in vivo test showed that MAOCa-treated ZK60
bone screw implantation had good biocompatibility, and its enhanced osseointegration is
probable for biomedical purposes.
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3. Experimental Section
3.1. Preparation of Specimens

A piece of Mg–Zn–Zr alloy (ZK60 Mg alloy) with dimensions of 50 mm × 50 mm
× 2.0 mm was used as the metallic substrate. Before MAO treatment, all plates were
mechanically ground using SiC papers of up to 2000 grit to ensure the same surface
roughness. The plates were ultrasonically cleaned in acetone, rinsed with deionized water,
and dried in a stream of hot air at 60 ◦C. The process of preparing MAO coatings on the
ZK60 magnesium surface was carried out on a pulse power generator (MIRDC) with work
at a current density of 250 mA/cm2, the duty cycle of 60%, and an electrical frequency
of 500 Hz for 10 min [27]. The water bath made of stainless steel had a water capacity
of 45 L. A glass beaker containing 1 L of electrolyte was placed inside the water bath.
A stainless-steel plate was placed inside the glass to serve as the cathode, and a ZK60
alloy substrate was used as the anode in the process. Table 5 lists the composition of the
MAO treatment, including with/without calcium compound addition, in which the entire
treatment procedure involving the recirculation of cold water was maintained at 25 ◦C.

Table 5. Electrolyte composition and operating conditions for the MAO treatment.

Name Na2SiO3 NaOH Na3PO4 Ca3PO4 EDTA

MAO 60 g/L 70 g/L 20 g/L - -
MAOCa 60 g/L 70 g/L 20 g/L 10.5 g/L 7.5 g/L

Electrolyte information All electrolytes were from ECHO CHEMICAL CO., LTD.
(Miaoli County 35145, Taiwan).

3.2. Characterization

Microstructure images of the different MAO coating specimens on both the plane
and cross-sectional surfaces were obtained using a scanning electron microscope (SEM,
JEOL JSM-IT100). ImageJ software was used to process the stored SEM images for the
quantification of pore characteristics (number and average size of pores). Digital 3D white-
light interferometry (Chroma 7503, Taoyuan, Taiwan) was used to measure the surface
roughness of the different MAO coating specimens. In the hydrogen evolution method,
the amount of dissolved Mg can be estimated from the volume of hydrogen evolution as a
result of the corrosion reaction [59,60]. X-ray photoemission spectroscopy (XPS, PHI 5000
Versa Probe, Kanagawa, Japan) was used to analyze the surface compositions of the MAO
films. Owing to the overlapping characterization, the compositions of the as-deposited
coatings were checked by XPS instead of EDS; consequently, the detection depth of XPS was
more adequate than that of EDS. Additionally, the composition of the passive layer formed
on the surface was analyzed after immersion in simulated body fluid (SBF) for 2 days. For
the XPS spectra, all of the binding energies were calibrated using the C 1s peak at 284.8 eV.
Mechanical properties were measured using a biaxial servo-hydraulic machine (MTS Mini
Bionix II 858). The bone screw was manufactured as a tensile specimen, followed by the
design [40].

3.3. Electrochemical Measurements and Corrosion Test

The electrochemical behavior and bio-corrosion properties of the substrate and MAO-
coated samples in SBF (Hank’s solution, pH 6.5) at 37 ◦C were tested using potentiody-
namic polarization tests, which were conducted using an Autolab PGSTAT30 potentiostat-
frequency analyzer. A standard three-electrode system was used in this study. A saturated
calomel electrode was used as the reference electrode, and all of the potentials were ex-
pressed with respect to this electrode. A platinum plate was used as the counter electrode,
and the specimens were used as the working electrode, with an immersion area of approxi-
mately 1 cm2. The state of the electrochemical surroundings with specimens had to remain
steady in SBF until the open-circuit potential (OCP) changed by no more than 2 mV/10 min
before the potentiodynamic polarization measurements. After stabilization for 30 min
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at the open circuit potential (OCP), the potential scan rate was controlled at 0.5 mV/sec
from −300 mV to 500 mV based on the OCP. The corrosion current density (icorr), corrosion
potential (Ecorr), and corrosion rate were determined from the anodic polarization plots
using the Tafel extrapolation method. The salt spray test (SST) followed ASTM standard
B117 and was performed for each coated ZK60 plate, which was placed at a tilted angle
of 30◦ in a chamber containing 5 wt% NaCl fog. After the salt spray test, the percentage
of pitting area was examined using the ASTM D610-08 standard. All tests were repeated
three times.

3.4. Animal Surgery and Implant Harvest

In vitro cytotoxicity tests were performed to evaluate the biological compatibility of
the MAO-coated samples. Extraction of teat samples and treatment of mouse lung fibroblast
cells (L929 cells) with teat sample extracts were performed according to ISO10993-12 and
ISO10993-5, respectively. Cell viability determined by MTT assay showed that the test
sample extract had, on average, <30% inhibitory effects on the viability of cells, as examined
by SGS Taiwan Ltd (Taipei, Taiwan).

Animal experiments were conducted per the NIH Guide for Care and Use of Labora-
tory Animals and were approved by the animal ethics committee of Kaohsiung Medical
University (NO: IACUC-103052). New Zealand white rabbits (3.5–4.5 kg, Livestock Re-
search Institute, Taiwan) were used as animal models. Before the MAO coated ZK60 screw
samples were implanted into the femoral shaft of a rabbit drill, all animals were kept
in a single room, fed a dried diet and water ad libitum, and anesthetized with subcuta-
neous injection of ketamine 40 mg/kg and xylazine 10 mg/kg. At 4, 8, and 12 weeks
post-implantation, the rabbits were euthanized humanely with an intravenous overdose of
barbiturate (200 mg/kg).

To visualize the samples and analyze images of new bone formation three-dimensionally,
the samples were scanned using a micro-computed tomography scanner (µCT, Skyscan
1272, Bruker, Kontich, Belgium) with a high resolution in vivo µCT scanner for preclinical
research. A frame average of 3 was employed along with a filter of 0.11 mm X 2 mm copper.
The X-ray tube voltage was 100 kV, the exposure time 2050 ms, and the current 100 A.
The compiled CT films were viewed and analyzed using NRecon software where a 3-D
model was built to determine the quality of bone regeneration. After the implantation, the
rabbits were housed in cages individually and monitored by an experienced veterinarian
for signs of infection, inflammation, and any adverse reaction. The skin was dissected, and
the implantation site and surrounding bone were harvested by a mini-saw. The specimens
were fixed in 10% buffered neutralized formalin for 24 h at room temperature and prepared
for µCT and histological analyses.

4. Conclusions

In this study, MAOCa-coated ZK60 samples were sustained in SBF, exhibiting the best
corrosion resistance and electrochemical stability. Animal experiments and in vitro cell
tests confirmed that the MAOCa-coated ZK60 samples have strong potential for biomedical
applications because of their superior biocompatibility and very low cytotoxicity. This ma-
terial was demonstrated to be highly biocompatible and osteoconductive when implanted
in rabbit bones. In particular, it exhibited enhanced mechanical properties and in vitro
Ca-P compound forming abilities in SBF, and provided mechanical stiffness to overcome
some of the drawbacks. Moreover, we expect to develop a biocompatible implant system
with adequate mechanical properties and improved corrosion resistance using a simple
MAO technique to accelerate post-surgery recovery.
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