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Abstract: Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as
a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life
as the most prevalent RNA-binding protein involved in several neurological disorders, such as
amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact
that these two research areas could be considered very distant from each other, in recent years an
increasing number of publications pointed out the existence of a potentially important connection.
Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes
this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent
observations regarding the involvement of TDP-43 in viral entry, replication and latency in several
viruses that include enteroviruses (EVs), Theiler’s murine encephalomyelitis virus (TMEV), human
immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV),
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes
simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities
with the most commonly studied TDP-43 related neuronal dysfunctions.

Keywords: TDP-43; RNA-binding proteins; RNA metabolism; viral entry; viral replication; viral
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1. Introduction

Transactive response DNA binding protein 43 kDa (TDP-43), encoded by the TARDBP
gene, belongs to the family of heterogeneous nuclear ribonucleoproteins (hnRNPs) that
serve multiple roles in the generation and processing of RNA. Its critical role in RNA pro-
cessing occurs through its interaction with many ribonucleoprotein complexes (spliceosome,
Drosha, poly-adenylation, stress granule, and translational complexes) in the nucleus and
cytoplasm. Through all these interactions, TDP-43 is now known to regulate many cellular
processes that include all aspects of gene expression, from transcription to RNA maturation
(both coding and non-coding), transport, stability, and eventual translation [1–7].

This ubiquitously expressed RNA-binding protein predominantly resides in the nu-
cleus although a minor proportion is always shuttling back and forth to the cytoplasm
together with its bound RNAs. However, cellular stresses are known to transiently increase
the amount of TDP-43 into the cytoplasm and assemble in stress granules [8]. As a result,
many cellular alterations that lead to disruption of nucleocytoplasmic trafficking, prolonged
stress, and changes in liquid–liquid phase separation can lead to TDP-43 accumulation
in insoluble aggregates that are located mostly in the cytoplasm of glia and degenerating
neurons in the central nervous system (CNS) [9]. The TDP-43 in these aggregates is variably
modified and subjected to cleavage, ubiquitination, and several other post-translational
modifications that include phosphorylation, acetylation, and sumoylation [10–12]. All these
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modifications represent pathological hallmarks of amyotrophic lateral sclerosis (ALS), fron-
totemporal lobar degeneration (FTLD) as well as other types of conditions such as traumatic
brain injury [10,13]. In general, however, aberrant cleavage and cytoplasmic aggregation of
TDP-43 are identified as molecular signatures for most forms of ALS and FTLD and have
been shown to contribute significantly to disease progression [10]. Following aggregation
in insoluble forms, the loss of “active” TDP-43 in the cellular pool is thought to lead to
abnormalities of splicing and RNA metabolism with subsequent neuronal dysfunction [14].
Very recently, this has been clearly observed in patients by the detection of “cryptic” exons
inclusion in important genes, such as UNC13A and STMN2, where the absence of TDP-43
during the splicing process induces the spliceosome to include pre-mRNA sequences in
the mature mRNA which in normal conditions would never have been included (with
consequential loss of function effects) [15,16].

The cellular toxicity that results from TDP-43 aggregation pathology is thought to
initiate a cascade of downstream toxic effects that not only occur within the initiating cell
but also can be spread between vulnerable cell types and to other regions of the nervous
system [17]. This transmission through the tissue may involve prion-like properties of TDP-
43, in which pathologically misfolded protein templates the propagation of aggregation
pathology [17–19].

From a historical point of view, it is interesting to note that the first identification
of TDP-43 occurred in the mid-nineties when it was hypothesized to bind the DNA
transactivation–responsive (TAR) sequence of the human immunodeficiency virus type
1 (HIV-1) and inhibit viral transcription; hence, the name of TDP-43, where 43 refers to the
molecular weight of the wild-type protein based on its primary amino acid sequence [1].
However, this transcriptional inhibitory activity was not confirmed in later studies [20],
although more recent studies have reported the capability of TDP-43 to influence cell
permittivity to HIV-1 infection [21] and latency [22].

In parallel and interestingly, enterovirus-induced pathology has also been widely
studied in the context of ALS and TDP-43 [23]. However, despite great efforts in this
direction, the clinical data are controversial, probably due to the inconsistency and dif-
ferences in viral detection techniques, disease stage of sample collection, as well as the
potential virus-triggered “prion-like mechanism”. Most importantly, however, although a
causal relationship between chronic viral infection and ALS development remains to be
established, many recent observations have reported that TDP-43 can play a role in many
viral infections. Therefore, this review article aimed to describe the novel potential relation-
ship between TDP-43 and enteroviruses (EVs), Theiler’s murine encephalomyelitis virus
(TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs),
hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
West Nile virus (WNV), and herpes simplex virus-2 (HSV).

2. Viral Infections and TDP-43
2.1. Enteroviruses (EVs)

This is probably the most studied virus with regards to ALS because recent studies
have suggested that the mechanisms underlying cellular dysfunctions in ALS appear to
be closely related to enterovirus-induced pathology [24,25]. Therefore, there is a critical
need for evidence to support the suspected contribution of enteroviruses (EVs), a family of
positive stranded RNA viruses, to the development of ALS.

Recently, a molecular link has been demonstrated between EV infection and ALS
pathogenesis as the consequence of RNA-processing defects [26–28], impairment in nucleo-
cytoplasmic transport [29,30], neuroinflammation [31,32], and disrupted protein quality
control [33,34]. An explanation behind these altered cellular processes arises by the fact
that the replication of EVs occurs in cytoplasm, where many RBPs, including TDP-43,
are hijacked during EV infection [35]. For example, dysregulation of TDP-43 during
Coxsackievirus B3 (CVB3) infection was found to be involved in viral pathogenesis and
infectivity [26]. Six serotypes of group B coxsackievirus are currently known and CVB3
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is responsible for several impairment mobilities with a wide spectrum of symptoms, in-
cluding pancreatitis, myocarditis, aseptic meningitis, and even juvenile diabetes [36]. It has
been demonstrated that CVB3 infection causes a cytoplasmic redistribution and protein
aggregation of TDP-43, leading, in turn, to the loss-of-function of endogenous TDP-43. This
process was found to be mediated by the viral protease 3C, whereby creating a N-terminal
cleavage fragment of TDP-43 is able to interfere with the splicing properties of TDP-43
itself [26].

2.2. Theiler’s Murine Encephalomyelitis Virus (TMEV)

Theiler’s murine encephalomyelitis virus (TMEV) is a single-stranded RNA murine
virus belonging to the family Picornaviridae and closely related to Cardiovirus subgroups [37].
This virus is highly virulent, and it is the causative agent of acute encephalitis in mice [38].
On the basis of its genetic characteristics and tropism, this virus has been largely used as a
model for multiple sclerosis [39].

Recently, Masaki and collaborators have pointed out a potential role of TDP-43 in
TMEV infection. In their study, it has been observed that cytoplasmic mislocalization and
phosphorylation of TDP-43, along with cleavage into products similar in size to those found
in ALS, occurred in TMEV-infected cultured cells as well as in neuronal and glial cells of
TMEV-infected mice [40]. This TDP-43 mislocalization was presumably supported by the
fact that TDP-43 can bind to mRNAs encoding myelin genes and its depletion can lead
to demyelination and neuronal death [41], as well as by the concomitant action of further
inflammatory stimuli such as the expression of tumor necrosis factor-α [42].

In addition, in virus-induced demyelinated regions, other RNA-binding proteins were
found to be mislocalized in glial cells, including oligodendrocytes [40]. Taken together,
these results have suggested that the mislocalization of RNA-binding proteins in TMEV
infections could disrupt cellular splicing and mRNA translation, thereby contributing to
the observed neuronal dysfunction and death [40].

2.3. Human Immunodeficiency Virus (HIV)

Human immunodeficiency virus (HIV) is a retrovirus belonging the family of Retro-
viridae and Orthoretrovirinae subfamily [43]. Two subtypes are described in literature, based
on genetic and viral antigen differences: HIV type 1 (HIV-1) and HIV type 2 (HIV-2). Struc-
turally, the HIV genome consists of two identical single-stranded RNA molecules that are
enclosed within the core of the provirus particle.

Over the years, HIV-1 infection had a global impact on social and economy affairs,
due to its association with several illnesses, including acquired immune deficiency syn-
drome (AIDS) [44], cardiovascular disease [45], bone dysfunction [46], hepatic, and renal
impairment [47,48].

From a biological point of view, a multitude of host factors has been found to be
involved in HIV pathology. Among these, TDP-43 was initially identified in 1995 as
a transcriptional repressor of HIV-1 gene expression through the binding of the trans-
activation response element (TAR) DNA sequence at the level of the HIV-1 long terminal
repeat (LTR) promoter [1]. Unfortunately, this relationship was challenged in later studies
which failed to demonstrate the capability of TDP-43 to modulate the HIV-replication
in vivo [20]. In this study, it was shown that modulating TDP-43 expression in several
cellular model of HIV infection does not represent a viable strategy to prevent transcription
from viral genome. Indeed, the HIV-replication in T cell and macrophages was found to be
independent on TDP-43 expression [20].

Nevertheless, some interesting connections between HIV-1 and TDP-43 have emerged
in recent years. In fact, TDP-43 has been shown to be potentially involved in HIV-1
latency and cell permittivity. Specifically, Rathore and collaborators have demonstrated
that reactivation of HIV-1 was promoted by removal of the steric hindrance posed by
TDP-43 at the level of HIV-1 LTR promoter [22]. In addition, the Valenzuela–Fernández
group have found that the silencing of TDP-43 was able to reduce the expression of the
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antiviral enzyme histone deacetylase 6 (HDAC6), both at the mRNA and protein level,
increasing the fusogenic and infection activities of HIV-1 [21].

Overall, therefore, the relationship between HIV and TDP-43 still remains complex
and concomitant pathologies may contribute to influence viral entry, disease progression
and eventually neuronal susceptibility.

In this context, it is interesting to mention that a link between ALS-related TDP-43
pathology and HIV infection seems to be consistent with the re-activation of human endoge-
nous retrovirus-K (HERV-K), indicating that the mechanisms behind TDP-43 dysfunction
and neuronal inflammation are similar in both ALS and retroviral pathology [49,50].

2.4. Human Endogenous Retrovirus K (HERV-K)

Human endogenous retroviruses (HERV) are endogenous retroviral sequences that
account for ca. 8% of human genome [51,52]. These viral elements are derived from
an ancestral infection of germ-line cells by exogenous retrovirus and conserve structural
similarities with exogenous retroviruses, such as HIV [51]. HERV re-activation has been
progressively associated with neurological disfunction, e.g., schizophrenia [53], multiple
sclerosis [54,55] and motor neuron disease [56], as well as cancer [55,57]. Notably, a
novel link between TDP-43 and HERV-K has been provided by two articles published
few years ago. Basically, it was reported that the disruption of the HERV-K env gene was
associated with a significant decrease of TDP-43 expression, at both the mRNA and protein
level [58] and that over-expression of ALS-associated TDP-43 mutants was reported to
significantly increase HERV-K viral protein accumulation [50]. This scenario highlights the
interdependence of HERV-K expression to TDP-43 and vice versa, suggesting that there is a
tight regulation of both factors especially in neuronal cells.

2.5. Hepatitis B Virus (HBV)

Hepatitis B virus (HBV) is a hepatotropic and small DNA virus member of the Hepad-
naviridae family, with a partially double-stranded relaxed circular DNA (rcDNA) genome
which may cause severe liver diseases, such as liver cirrhosis and hepatocellular carci-
noma [59].

In order to understand the molecular mechanisms behind the control of HBV replica-
tion and pathogenesis, a plethora of studies have been performed to analyze potentially
implicated cellular factors, including hnRNPs [60,61]. In this regard, it has been recently
suggested that TDP-43 may play a role in promoting HBV infection through several mecha-
nisms involving DNA and RNA binding. In particular, Mokokha and collaborators have
described TDP-43 as an important host factor capable to facilitate HBV gene expression
by stimulating transcription from the HBV core promoter, by inhibiting the pre-genomic
(pg) RNA splicing, and by participating to the assembly of protein complexes implicated in
transcriptional and post-transcriptional stages of the virus life cycle [61]. Overall, this study
has provided a valuable insight into the interaction between host cells and HBV and the
authors have actually suggested to exploit TDP-43 as a potential target for novel anti-HBV
therapies [61].

2.6. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense,
single-stranded RNA virus that belongs to the Coronaviridae family and has been recently
identified as the etiological agent of coronavirus disease 2019 (COVID-19) [62].

Most interestingly, in addition to respiratory disease, several abnormalities in the
central nervous system such as cognitive decline, neuronal autoimmune disease, and
delirium have been observed in patients suffering from SARS-CoV-2 pathology [63]. As a
result, it has been suggested that coronaviruses contribute to trigger these neuropathologies
through different mechanisms, including direct neurotoxic effects on synaptic transport [64],
as well as neuronal inflammation [65].
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In 2021, SARS-CoV-2 spike protein S1 was found to be linked to several amyloidogenic
proteins, including tau and TDP-43 [66]. In this regard, TDP-43 RRMs (RRM1 and RRM2)
were found to form eleven H-bonds and one salt bridge interaction with the viral S1
protein [66]. Moreover, hyperphosphorylation and subsequently aggregated inclusion of
TDP-43 have been detected in the brain of SARS-CoV-2 infected patients [67]. Finally, while
several neurodegeneration markers (YKL40, NCAM-1, CCL23) were elevated in COVID-19
survivors, the serum levels of TDP43 were found to diminish after admission to recover
at 28 days in survivors [68]. In addition, ferritin, which is used to gauge the degree of
inflammation in several inflammatory processes and COVID-19, was described to be the
main marker of inflammation that correlates with TDP43 [68]. Overall, these results suggest
that alteration of different neuronal factors, including TDP-43, may favor the establishment
of neurodegenerative symptoms observed in individuals with acute COVID-19 disease.

2.7. West Nile Virus (WNV)

West Nile virus (WNV) is a Flavivirus with a positive-sense, single-stranded RNA
genome that is responsible for severe neuroinvasive disease, such as meningitis and en-
cephalitis [69,70]. In 2022, Constant and collaborators discovered several biomarkers
involved in neurodegeneration in the serum of patients with WNV disease (WNVD) [71].
Among these factors, TDP-43 expression has been found to be significantly increased in
WNVD patient serum [71]. Considering that in other similar viral infections accumulation
of TDP-43 aggregates has been associated to a direct effect on viral replication [26], these
researchers have hypothesized that the overexpression of TDP-43 in MNV infection could
increase the chance to develop brain degenerative disorders [71].

2.8. Herpes Simplex Virus-2 (HSV-2)

Herpes simplex virus-2 (HSV-2) is an enveloped doubled-stranded DNA virus, sub-
type 2 of the herpes simplex viruses and together with HSV type 1 (HSV-1) it belongs
to the Alphaherpesvirinae subfamily of the Herpesviridae family [72]. Despite HSV-1 and
HSV-2 being mostly known as the causative agents of oral and genital ulcerative lesions,
respectively, these viruses are also able to infect several tissues, including brain [72,73].

Specifically, HSV-2 has been associated with neurological disorders due to its capa-
bility of establishing long-lasting infection within nervous system [74]. In this context,
therefore, it has been proposed in a recent study that HSV-2 latently infected neurons
could express increased levels of endogenous TDP-43 in response to the presence of HSV
latency-associated transcripts. This hypothesis was also corroborated by the identification
of a multitude of potential TDP-43 binding sites along these sequences [75].

3. The Role of Neuroinflammation in Viral Infection and Neurodegeneration: A
Potential Link with TDP-43 Dysfunction

Research interest in investigating the relationship between neuronal inflammation
and neurodegeneration has been exponentially increased through the pass years. The
establishment of neuronal dysfunctions frequently involve the release of numerous pro-
inflammatory cytokines and the activation of apoptotic pathways leading to cell death [76].
Specifically, abnormal accumulation of pro-inflammatory cytokines, such as interleukins
(IL)-1β [77], IL-6 [78], and transforming growth factor beta (TGF-β) [79], has been described
surrounding the amyloid plaques of Alzheimer’s disease (AD) patients, as well as in serum
and plasma of patients affected by neuropsychiatric disorder [80]. In addition, increasing
levels of IL-4, IL-5, IL-10, IL-6, and tumor necrosis factor alpha (TNF-α) were detected
in serum of ALS patients comparing to healthy subjects [81], and some of those factors
were also linked to neuroinflammation in FTD [82–84]. Finally, it is important to note that
an imbalance between pro- and anti-inflammatory molecules has been described during
different viral infections that are occasionally associated with the Induction of neurolog-
ical manifestations. For example, it has been widely demonstrated that the injection of
pro-inflammatory cytokine TNF-α induces neuropathic pain in humans [85,86]. TNF-α is
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normally expressed at low levels in CNS, although microglia and astrocytes can release
high amount of this factor during injury, neurodegenerative disorders, and infections [87].
For example, studies performed in mice have highlighted that injection of HIV envelope
glycoprotein gp120 induced the activation of microglia and astrocytes with the conse-
quent production of TNF-α at the spinal cord levels. This, in turn, triggered neuropathy
symptoms similar to those seen in HIV-1 patients with neuropathic pain [88]. Another
example of immunological neuropathy has been described in TMEV infection. TMEV is
an RNA virus with tropism for nervous system where it establishes chronical demyeli-
nating disorder in susceptible mouse strains similar to that observed in multiple sclerosis.
During TMEV infection, it has been demonstrated that both microglia and macrophages
stimulate the production and release of numerous interleukins, TNF-α, and Interferon
gamma (IFN-γ) [89]. Neurological symptoms were also associated with the activation of
endogenous retroviruses and more recently observed in patients affected by prolonged
SARS-CoV-2 pathology. In these cases, the mechanisms behind those symptoms are linked
to autoimmunity or chronic inflammation [90,91].

With this in mind, it is important to highlight that several immunoproteins are spatially
and temporally modulated in the nervous system, as well as expressed in specific subsets
of neuronal cells [92,93]. Moreover, the impairment of the cross-talk between neurons and
glia has been described as a further consequence of neuroinflammatory cascades. In this
respect, astrocytes (macroglia) play a fundamental role in maintaining neuronal milieu due
to their neuroprotective and metabolic functions, such as controlling blood–brain barrier
(BBB) integrity, modulating the extracellular amount of neurotransmitter and ions, the
elimination of toxins from cerebrospinal fluid and providing trophic sources for neuron’s
energy metabolism [94]. Notably, reactive astrocytes were found to be involved in the
production of several neuronal mediators during viral infections. This process is also
supported by microglia through the expression of IL-1, IL-6, TNF-α, and IFN-γ that in turn
stimulates astrocyte proliferation throughout a defense mechanism namely astrogliosis [95].

In addition to these connections, defects in RBP functions due to mutations, post-
translational modifications, and aggregation, may contribute to exacerbate and sustained
this unhealthy process. In fact, it is well-known that RBPs are key players in the RNA
metabolism especially in neurons where they are particularly expressed [96]. Recently, it
has been demonstrated that pro-inflammatory mediators, such as IFN-γ and TNF-α, are
able to trigger hnRNP A1 mislocalization and stress granule formation in murine primary
neuron culture, with consequently neurite damage [97]. Specifically, SAFA (also known as
hnRNP U) was found to be involve in protecting cells from viral infections, since it acts
at a nuclear sensor for viral dsRNA and is able to trigger the activation of super-enhancer
of anti-viral gene expression, such as IFNB1 [98]. Interestingly, the ability of hnRNPs to
commonly regulate mRNA targets implicated in both brain functions and inflammatory
pathways is recently emerged. siRNA mediated the depletion of hnRNP U, hnRNP D,
hnRNP K, DAZAP1, hnRNP Q, hnRNP R, and TDP-43 in human neuroblastoma SH-SY5Y
cell line pointed out the importance of RBP homeostasis in modulating both processes
and providing further evidence of their connection [99,100]. Among the genes commonly
regulated by TDP-43 and other hnRNPs is important to mention TNF-α (described above)
and intercellular adhesion molecule 1 (ICAM-1, or CD54). Although TNF-α mRNA was
found to be upregulated in SH-SY5Y treated with siRNA against TDP-43 [99], in monocytes
TNF-α was downregulated after siTDP-43 treatment [101], indicating that the mechanism
occurring during TDP-43-mediated TNF-α regulation is dependent on cell types, and likely
involved the participation of other cellular factors. Indeed, these results highlight the
importance of cell-specific differences in the shaping of TDP-43 functional properties [102].

On the other hand, ICAM-1 is an adhesion molecule that participates together with
vascular cell adhesion molecule 1 (VCAM-1) at both interaction and extravasation of
leukocytes at the BBB. ICAM-1 is also expressed in microglial cells and astrocytes of
white and grey matter and its overexpression on CNS vascular endothelium is one of the
hallmarks of brain inflammation [103]. In particular, it has been demonstrated that TDP-43
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silencing is capable of upregulating ICAM-1 mRNA expression in neuronal-like cells, as
well as that the knockout of ICAM-1 in mice can confer resistance of encephalitis related
to WNV infection, by diminishing viral load, leukocyte infiltration, and neuronal damage
with respect to control animals [99,104]. Increasing levels of ICAM-1 were also reported in
aging, bipolar disorder, and even dementia [105,106].

Notably, downregulation of TDP-43 was also associated with strongly suppression
of IL-6 production after IL-1β and TGF-β1 stimulation in cultured primary human brain
pericytes. Scotter and collaborators have hypothesized that this could be due to the TDP-43
dependent splicing regulation of hnRNP D [107]. These results have been supported by two
recent publications regarding the role of Protein tyrosine phosphatase 1B (PTP1B) inhibition
in attenuating astrocytes cell death as a consequence of TDP-43 mediated suppression of
IL-6 [108], as well as the role of TDP-43 as a scaffold protein of the interleukin-6 and
-10 splicing activating compartment (InSAC) [109].

Regarding the network TDP-43/virus/neurodegeneration, it is important to notice
that IL-6 is an interleukin produced by several types of brain cells in way that is dependent
on cell ages and in response to injury, such as tissue damage and infection [110]. Further-
more, IL-6 expression was found to be linked to both pro- and anti-inflammatory effects,
highlighting its importance in the regulation of immune response. In keeping with these
effects, IL-6 was also described to inhibit the replication of HBV via several mechanisms,
including downregulation of human liver bile acid transporter Na(+)/taurocholate cotrans-
porting polypeptide (NTCP) receptor [111], repression of viral transcripts by targeting
the epigenetic modification (histone acetylation) of the HBV covalently closed circular
DNA (cccDNA) [112] and by blocking the expression of both hepatocyte nuclear transcrip-
tion factors (HNF) 1 and 4 alpha [113]. Circulating levels of IL-6 have also been used as
predictive biomarker to identify severe SARS-CoV-2 pathology [114] and the increased
levels of IL-6 were found to correlate with several abnormalities in blood tests observed in
patients suffering from COVID-19 [115], as well as in HIV patients developing autoimmune
disease [116].

Regarding neurodegeneration, increased levels of IL-6 expression were detected in
the astrocyte-derived extracellular vesicles of sporadic ALS patients [117], in nigrostriatal
region and in the cerebrospinal fluid of PD patients [118] and within and nearby amyloid
plaques in AD patients [119]. On the contrary, the knockout of IL-6 in a mice transgenic
model of Huntington’s disease (HD) was reported to worsen the phenotype associated to
HD leading to dysregulation of genes essential for synaptic functions and relevant for the
pathogenesis of HD [120].

Finally, neuroinflammatory pathways linked to TDP-43 dependent modulation of IL-
1β and nuclear factor-κB (NF-κB) can also be observed during neurodegenerative disorders
and viral illness. In 2020, Lee and collaborators demonstrated that overexpression of
TDP-43 was able to induce IL-1β and NF-κB upregulation in primary mouse astrocytes. In
this report, the signaling cascade TDP-43-PTP1B-NF-κB was found to be responsible for
the TDP-43 mediated neuronal death and mitochondrial dysfunction observed in those
cells [108].

In this respect, it is interesting to note that IL-1β is an immune mediator involved
in pro-inflammatory signaling in astrocytes and glia cells [121,122], while NF-κB is a
transcriptional factor of several cytokines, chemokines and is important in the functional
activity of inflammasome [123].

Accordingly, increased levels of IL-1β were described in brain of AD patients [77]
and it has been described to drive ALS pathogenesis in mice [124], as well as to promote
SARS-CoV2 viral entry in A549 human lung cell line [125].

Furthermore, NF-κB resulted to be activated in ALS patients and mouse models [126,127]
in a mouse model of progranulin (GRN)-deficient FTD [128], in PD patients [129], in HD
patients and mouse models [130]. Moreover, a role of NF-κB signaling was detected in
SARS-CoV-2 [131], HBV [132], HIV-1/2 [133,134], CVB3 [135], and HSV-1 [136] infection.
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Last but not the least, it is important to mention the link between several long non-
coding RNAs (lncRNAs), RBPs activity, and the role this can play in the maintenance of
immune homeostasis [137,138]. In this context, metastasis associated lung adenocarcinoma
transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) are two
lncRNAs implicated in neurodegenerative process and viral infection, also in association
with TDP-43 [139–143]. For example, upregulation of MALAT1 was reported in response
of flavivirus and human papilloma virus (HPV) infection [141,142]. Additionally, a role
of MALAT1 and TDP-43 in regulating the expression of antiviral type I IFN (IFN-I) has
been recently proposed [143]. Specifically, in this work it has been demonstrated that
different viruses were able to induce downregulation of MALAT1 leading to TDP-43 release,
activation, and consequently IFN-I production [143].

In addition, altered expression of NEAT1 was described during HIV-1 and HSV-1
infection [144,145], as well as during several neurological disorders linked to TDP-43
disorders such as ALS and FTLD [140]. Moreover, upregulation of constitutive NEAT1
isoform (NEAT1_1) was reported to ameliorate TDP-43 induced toxicity in models of
TDP-43 proteinopathy [139].

Taken together, all this information provides clear evidence of the importance of
maintaining a healthy brain homeostasis, as well as supporting the role of TDP-43 and,
more, in general, of RBPs in controlling transcripts implicated in neuronal inflammation
and brain dysfunctions (Figure 1).
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Figure 1. Relationship between TDP-43-controlled immune mediators and neuronal dysfunc-
tions/viral infection. Regulation of TDP-43 levels contributes to increase or reduce the expression of
different immune mediators, such as IL-1β, NF-κB, IL-6, ICAM-1, and TNF-α. Up- and downregu-
lated effects are indicated with upward and downward arrows, respectively. Neurodegenerative and
viral implications are also reported in the table.
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4. Conclusions

Over the years, the role of TDP-43 in the onset and progression of several disease
have been extensively study. Despite the well-known involvement in brain pathologies,
including, ALS, FTLD, Alzheimer’s, and Parkinson’s disease, TDP-43 has also been associ-
ated with cancer and viral infection [146]. Here, we summarized all the novelty regarding
the interaction of TDP-43 and various DNA and RNA viruses (Figure 2). Overall, TDP-43
was found to actively contribute to viral entry, replication, and latency by binding sev-
eral viral transcripts, as well as to participate in the establishment or at least significant
contributions to neuropathic symptoms similar to those observed in neuronal disorders.
Not by chance, some of the viruses presented in this review have also been described to
be associated with brain dysfunction, as reported in Table 1. In keeping with this, during
viral infections TDP-43 expression results to be frequently dysregulated, and it can also
be post-translationally modified and translocated in the cytoplasm in a way that is similar
to its modifications in neurodegeneration. All these alterations could therefore determine
to the loss of TDP-43 endogenous functions, leading to cellular impairment and even cell
death. It is interestingly to mention that TDP-43 collaborates with other RBPs in the main-
tenance of cell homeostasis and, presumably not by chance, some of these factors are also
implicated in the same viral infection and in brain dysfunctions. For example, mutations in
FUS encoding gene can exacerbate the sensibility to HIV-1 infection, and vice versa HIV-1
can increase the cytoplasmic localization of Fused in sarcoma (FUS) [147]. Furthermore,
depletion of hnRNP K was described to reduce the HBV viral load in human hepatoma
HepG2 cells, as well as hnRNP A1 was found to stimulate EV viral translation [27,60].
Finding new viral TDP-43 interactors could therefore be useful not only for a deeper char-
acterization of the importance of TDP-43 pathology in viral disease, but also to provide
deeper insight in the way this protein can establish unhealthy neurological conditions and
inflammatory symptoms. As a consequence, the modulation of TDP-43 through chemical
compounds, peptides, small interfering RNA (siRNAs), circular RNAs (circRNAs), and
CRISPR/Cas9 based approaches may potentially represent novel therapeutic strategies
for treating these virus-related disorders. Regarding TDP-43, in fact, several compounds
have already been tested by employing different cellular/animal models and aspects of
TDP-43 pathology, which includes its expression, nucleo-cytoplasmic balance and aggrega-
tion propensity [148]. For example, a small molecule called nTRD22, able to interact with
the N-terminal domain of TDP-43 and to ameliorate the climbing defects, was observed
in a Drosophila model of TDP-43 overexpression [149]. In the future, some of these com-
pounds could be tested in cellular/animal models of viral infections to test their therapeutic
functionality. In parallel, siRNA molecules and CRISPR/Cas9 therapeutic approaches
aimed against specific TDP-43-viral protein interactors could also be tested to assess their
ability to revert aberrant TDP-43 pathology during viral infections, as has been tried for
neurodegenerative processes [150,151]. Finally, different antisense oligonucleotides (ASOs)
have also been designed to target RBPs or their modifiers looking at neurodegenerative
disorders and cancer. Among these, it is interesting to mention a study of 2017 performed
on TDP-43 transgenic mice using ASOs targeting Ataxin-2 (Atxn-2) [152]. Basically, the
reduction of Atxn-2 levels obtained by a single administration of ASOs into the CNS was
successful in prolonging mice lifespan and improving their motor functions [152]. It would
be therefore interesting to see, in the future, if some of these modulating factors of TDP-43
toxicity could also have a modifier effect on specific viral infections.

In conclusion, all the evidence that has been accumulating with regards to the increas-
ing connection between TDP-43 and viral infections could represent a novel and potentially
interesting area to better understand the role played by this protein in cellular metabolism,
its possible connections with neurodegeneration, but also a novel area to explore to develop
novel anti-viral therapeutic approaches.
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Figure 2. Overview of several viruses linked to TDP-43 proteinopathy. TDP-43 is involved in sev-
eral infections by DNA and RNA viruses, including Coxsackievirus B3 (CVB3), Theiler’s murine
encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retro-
viruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). This picture was created with
Biorender.com. Predicted TDP-43 ternary-structure was created using AlphaFold algorithm and
reprinted with the permission from Refs. [153,154].

Table 1. List of TDP-43 related viruses and brain involvement.

Virus Brain Involvement

Coxsackievirus B3 (CVB3)

CNS of neonatal mice were found to be susceptible to CVB
illness likely through the infection of progenitor cells [155].

CVB3 was found to be associated with aseptic meningitis in a
Hong Kong population [156].

Theiler’s murine
encephalomyelitis virus

(TMEV)

TMEV is widely used as a model to study multiple sclerosis [39].
It can induce apoptosis, neuronophagia and inflammation in

infected neurons [157].

Human immunodeficiency
virus (HIV)

HIV is the etiological agent of HIV encephalitis. HIV can be
carried into CNS through infected CD4+ T cells and/or

monocytes and, as a result, brain macrophages and microglia
are widely considered the reservoirs for persistent viral

infection. When these cells are activated, they can trigger an
immunological response leading to neuronal death and the

consequent establishment of HIV-associated
dementia (HAD) [158].

HIV is responsible for opportunistic infection in CNS of
HIV-positive individuals, including cerebral toxoplasmosis,

progressive multifocal leukoencephalopathy (PML),
tuberculous meningitis, cryptococcal meningitis and

cytomegalovirus infection [159].
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Table 1. Cont.

Virus Brain Involvement

Human endogenous
retroviruses (HERV)

HERV endogenous expression can be induced by viral RNAs
and proteins, following infection of HIV-1, HBV and influenza
A viruses [56,160]. Interestingly, increased HERV-K expression
has been detected in brain of ALS patients, and it was found to
induce neuronal injury in a model of transgenic animals [56].

Hepatitis B virus (HBV)
Impairment of neuronal structures has been observed to occur

in HBV-positive individuals with associated chronic liver
dysfunction [161].

Severe acute respiratory
syndrome coronavirus 2

(SARS-CoV-2)

Cognitive dysfunctions and encephalitis were reported in
patients suffering from SAR-CoV-2 infection [162,163].

SARS-CoV-2 has been proposed to induce morphological and
cellular alteration of brain structures [162].

West Nile virus (WNV)

WNV causes severe neurological illness, generally referred to
West Nile neuroinvasive disease (WNND) and including West

Nile encephalitis (WNE), West Nile meningitis (WNM), and
West Nile paralysis (WNP) [164].

WNV infection has been linked to neuronal dysfunction, loss of
synapses, and astrocytic gliosis, both in human patients and

animal models [165–168].

Herpes simplex virus-2
(HSV-2)

HSV-2 has been observed to cause neurological complication
and establishes latent infection in neurons of ganglia [74,169].
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