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Abstract: This work reports the synthesis, structural and thermal analysis, and in vitro evaluation
of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial
drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from
active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective
formulations with improved features over their parent drugs, thus enabling the mitigation of some
of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely
limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported
have improved solubility and thermostability, without any major deleterious effects on the drug’s
bioactivity profile.
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1. Introduction

The genus Mycobacterium comprises more than 200 species of bacteria, some of them
responsible for pulmonary and extrapulmonary diseases in humans and other animals.
Mostly found in soil or water sources, these pathogenic bacteria can be separated into two
categories: the species of the M. tuberculosis complex and M. leprae, agents of tuberculosis
and leprosy, respectively, and non-tuberculous mycobacteria (NTM), such as the species
from the M. avium complex (MAC) [1]. The prevalence of disease caused by NTM infection
has been increasing globally in the last decades, in opposition to what is observed for
tuberculosis [2]. Even though they predominantly affect patients who are immunocom-
promised or with a history of pulmonary disease, NTM-positive cultures, especially of
MAC, are frequently obtained from patients without any of the known risk factors [3]. In
the host, mycobacteria infect phagocytic cells, such as macrophages, in which the bacteria
replicate inside small vacuoles by inhibiting the phagosome–lysosome fusion [4]. The basis
of MAC disease therapy is a macrolide drug, typically azithromycin or clarithromycin,
which should be combined with ethambutol and a rifamycin to avoid macrolide resistance.
A fourth drug is added to the regimen in more severe cases [5,6]. The treatment is long
and often results in discontinuation or modification due to toxicity. Moreover, many an-
timycobacterial drugs have their therapeutic efficacy hampered by quite poor solubility
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or low oral bioavailability. On the other hand, developing new drugs from scratch is an
unsustainable, time-consuming, and expensive process, which does not guarantee that the
candidate with the best therapeutic index will not induce the selection of resistant strains.
This underpins the wide interest in rescuing and repurposing known active pharmaceutical
ingredients (APIs) and in using drug combinations instead of monotherapies, privileging
the most simple and cost-effective approaches possible [7].

In connection with the above, the 2007 paper “The third evolution of ionic liquids: ac-
tive pharmaceutical ingredients” by Hough et al. [8] turned the spotlight onto the paradigm
shift that has been occurring over the past decade regarding ionic liquids (ILs): the growing
relevance of ILs in drug discovery and formulation, including the development of ILs
derived from APIs (API-ILs) as a cost-effective way to rescue or repurpose the latter [9–12].
In fact, the conversion of APIs into API-ILs may help to overcome some issues such as poor
solubility, polymorphic conversion, or low bioavailability, taking advantage of the unique
properties of ILs [13]. While ILs are commonly defined as organic salts (OSs) with a melting
point below 100 ◦C [12,13], which includes room-temperature ionic liquids (RTILs) [14],
this is a somewhat limiting definition. It is the type of interactions established by and
within such OSs, rather than their melting points, which differentiates them from the classic
inorganic salts [15]. Weaker Coulombic interactions and lower cohesive energies in the
solid phase, due to a lack of ion symmetry and low charge density, confer to OSs unique
properties, such as their much lower melting points compared to conventional salts and
higher solubility compared to their parent organic building blocks [13]. A recent trend to
classify this special group of OSs, irrespective of their melting points, is to gather them
in the so-called Group of Uniform Materials Based on Organic Salts (GUMBOS) [16–18].
Regardless of which may be the most adequate terminology, pairing APIs with selected
organic ions offers the possibility to fine-tune the biological and physicochemical properties
of the resulting API-derived organic salts (API-OSs) [15,19]. Hence, the production of
API-OSs emerges as an attractive way to improve the therapeutic index of known APIs
whose clinical use may be hampered by bioavailability and/or solubility issues [12,20–25].

Bearing all the above in mind, we have recently considered the possibility of improving
the solubility of the antimycobacterial drug clofazimine (Clf), while decreasing the chance
of selecting clofazimine-resistant strains, by producing two novel clofazimine-derived
OSs via the acid–base pairing of that drug with two fluoroquinolones, namely, ofloxacin
(Of) or norfloxacin (Nf), as shown in Figure 1. Fluoroquinolones inhibit bacterial DNA
gyrase and topoisomerase IV, two key enzymes involved in DNA synthesis [26]. Relevantly,
some fluoroquinolones have shown activity against extracellular and intracellular M. avium
in vitro and in vivo in infected mice [27]. In MAC patients, the addition of fluoroquinolones
to the recommended three-drug therapy results in similar treatment outcomes but implies
more adverse side effects [28]. Clf is part of the standard treatment against leprosy, although
it was deemed ineffective in monotherapy against M. tuberculosis [29]. Retrospective and
observational studies show that Clf is active against NTM, especially M. avium [30–32], being
currently in a Phase II clinical trial for the treatment of pulmonary M. avium disease (https:
//clinicaltrials.gov/ct2/show/NCT02968212, accessed on 4 January 2023). Its mechanism
of action is not completely clear and is thought to be multifactorial, acting in the respiratory
chain and ion transporters of mycobacteria, promoting the release of reactive oxygen
species (ROS) and binding to DNA, disturbing it [29]. Although Clf affects the host’s innate
response by inducing apoptosis in macrophages [33], its ability to increase the humoral
immune response [34] is an advantage in the treatment of immunocompromised NTM
patients, such as those infected with HIV [35].

https://clinicaltrials.gov/ct2/show/NCT02968212
https://clinicaltrials.gov/ct2/show/NCT02968212
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Figure 1. Structural formulae of the fluoroquinolones ofloxacin (Of) and norfloxacin (Nf), and of the
antimycobacterial drug clofazimine (Clf).

2. Results and Discussion
2.1. Synthesis and Physico-Chemical Properties of the Clf-Derived OSs

The Clf-derived OSs were produced by combination with either Of or Nf, through the
acid-base neutralization method [21,22], using methanol/dichloromethane as the solvent
system, as given in detail in Section 3 (Materials and Methods). The target API-OSs,
[Clf][Of] and [Clf][Nf], were obtained in nearly quantitative (100%) yields as red powders,
hence precluding their classification as RTILs. Spectroscopic data (see Materials and
Methods) agreed with their expected structures.

Considering that thermal stability is an important issue for any API or derived for-
mulation, both API-OSs were next tested by simultaneous thermal analysis (STA) which
combines thermogravimetry with differential scanning calorimetry. Thermograms were
obtained for the API-OSs and their parent fluoroquinolones (Figure 2), providing their
respective melting points and decomposition temperatures. As shown in both Figure 2 and
Table 1, the two new API-OSs have melting points lower than those of their respective par-
ent APIs, as expected, but in all cases well above 100 ◦C, which is generally acknowledged
as the threshold temperature separating common ILs from other types of GUMBOS. Addi-
tionally, all the compounds exhibited one thermal decomposition event, which occurs at
higher temperatures for the API-OSs compared to Clf alone. Therefore, the thermostability
of this parent antimycobacterial drug is improved when it is forming an ionic pair with the
selected fluoroquinolones.

Data obtained (Table 1) also show a clear improvement in the solubility of Clf upon
its ionic pairing with either of the two fluoroquinolones used. Of note, both this solubility
study, as well as in vitro bioactivity data (see Section 2.2) were obtained from stock solu-
tions of all compounds in dimethylsulfoxide (DMSO) as an alternative to water, where
Clf is virtually insoluble [36]. DMSO has been previously established as an adequate
solvent for studies focused on Clf, including susceptibility testing on Mycobacteria [37].
Hence, the maximum concentration reached for soluble Clf was 10.2 mM, whereas 15.8
and 17.3 mM could be attained for the [Clf][Of] and the [Clf][Nf] OSs, corresponding
to a solubility improvement of ca. 57 and 72%, respectively, as compared to the parent
antimycobacterial drug. Any gain in the solubility of the highly lipophilic Clf in polar
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solvents is important and prospectively of clinical relevance in the long run: Clf is classified
as a class II drug in the Biopharmaceutics Classification System due to its poor solubility
in aqueous/polar media, including gastro-intestinal luminal fluids, thus implying a quite
limited oral bioavailability [38,39]. Indeed, Clf absorption rates in humans vary from 45 to
62% and the drug tends to be deposited predominantly in fatty tissue, whereas going above
the optimal human daily dosage (50–100 mg) to overcome oral bioavailability limitations is
not an option due to toxicity issues [36].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 12 
 

 

and prospectively of clinical relevance in the long run: Clf is classified as a class II drug in 

the Biopharmaceutics Classification System due to its poor solubility in aqueous/polar 

media, including gastro-intestinal luminal fluids, thus implying a quite limited oral bioa-

vailability [38,39]. Indeed, Clf absorption rates in humans vary from 45 to 62% and the 

drug tends to be deposited predominantly in fatty tissue, whereas going above the opti-

mal human daily dosage (50–100 mg) to overcome oral bioavailability limitations is not 

an option due to toxicity issues [36]. 

 

Figure 2. Thermograms obtained by STA of the API-OSs and their parent APIs: (A) [Clf][Of]; (B) 

[Clf][Nf]; (C) Of; (D) Nf; (E) Clf. Green trace—differential scanning calorimetry (DSC); blue trace—

thermogravimetric analysis (TG); red trace—1st order derivative of the blue trace (DTG). 

  

Figure 2. Thermograms obtained by STA of the API-OSs and their parent APIs: (A) [Clf][Of];
(B) [Clf][Nf]; (C) Of; (D) Nf; (E) Clf. Green trace—differential scanning calorimetry (DSC); blue
trace—thermogravimetric analysis (TG); red trace—1st order derivative of the blue trace (DTG).

2.2. In Vitro Activity of the Clf-Derived OSs against M. avium

The antimycobacterial activity and toxicity to host cells of both Clf-derived OSs were
tested in vitro, and the obtained results are shown in Table 1 and Figures 3–5.

The susceptibility of M. avium to the API-OSs and their parent drugs was first assessed
in axenic culture to determine the IC50 of each test compound. To this end, the bacteria were
incubated with increasing concentrations of the compounds for 7 days at 37 ◦C and their
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viability was assessed by the resazurin assay. Both API-OSs were found to be equipotent to
Clf and more potent than each of the individual fluoroquinolones (Table 1, Figure 3).

Table 1. Physico-chemical properties and in vitro effects of the API-OSs and their parent drugs. The
compounds were tested against both axenic cultures of M. avium 2447 SmT (IC50) and mammalian
host cells (bone marrow-derived macrophages, BMM, LC50) infected with M. avium 2447 SmT. 1.

Compound Molecular
Weight/g·mol−1 Net Charge 2

Melting Point
(Decomposition
Temperature)/◦C

Solubility/mg·mL−1

(mM) IC50/µM 3 LC50/µM 4

Clf 472.12 +1 221.9 (258.0) 4.8 (10.2) 0.33
(0.38 to 0.31) 5

4.1
(4.9 to 3.7) 5

Of 361.37 −1 274.8 (318.8) 5.7 (15.7) 3.85
(4.78 to 3.20) 5 >100

Nf 319.33 −1 206.1 (222.0) 11.0 (34.4) 7.93
(10.94 to 6.25) 5 >100

[Clf][Of] 833.26 0 212.0 (274.3) 13.9 (15.8) 0.34
(0.36 to 0.32) 5

6.7
(13.04 to 3.42) 5

[Clf][Nf] 791.25 0 202.0 (354.6) 13.0 (17.3) 0.35
(0.38 to 0.33) 5

6.9
(13.44 to 3.57) 5

1 Due to the negligible solubility of Clf in water, stock solutions of all compounds were prepared in dimethyl-
sulfoxide, so solubility data refer to this solvent (see text); 2 at physiological pH 7.4; 3 IC50 is the concentration
of the compound that inhibits by 50% the mycobacterial viability in axenic culture, obtained by interpolation of
nonlinear regression (4PL) of the experimental data; 4 LC50 is the concentration of the compound that inhibits by
50% the viability of the host cells, obtained by interpolation of nonlinear regression (4PL) of the experimental
data; 5 the values within the parenthesis represent the 95% confidence interval of the interpolation.
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Figure 3. Antimycobacterial activity of the API-OSs and their parent drugs. The symbols represent the
averages ± standard deviations of two to three independent experiments, presented as percentages
of viable mycobacteria relative to the non-treated mycobacteria. The lines represent the non-linear
4PL regression obtained in the GraphPad software for each experimental condition.

Considering that, after invading its mammalian host, M. avium replicates mainly inside
macrophages, the toxicity of test compounds to infected murine bone marrow-derived
macrophages (BMM) was also assessed. This was carried out by treating BMM infected
with M. avium 2447 SmT with increasing concentrations of the test compounds for 5 days at
37 ◦C and 7% CO2. Macrophage viability was assessed through a resazurin reduction assay.
As shown in Table 1 and Figure 4, though being more toxic to mammalian cells than their
parent fluoroquinolones, the Clf-derived OSs seem less toxic to BMM than Clf itself. We are
aware that the confidence intervals for LD50 values shown in Table 1 for Clf and its derived
OSs have some degree of overlap which, alongside the large standard deviations depicted
on the macrophage viability curves shown in Figure 4, are not statistically significant
different. Still, visual inspection of the viability curves in Figure 4 does suggest a decrease
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in toxicity for the OSs as compared to the parent Clf, and the same is hinted by the LC50
confidence intervals in Table 1.
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Figure 5. Activity of the API-OSs and respective parent drugs against intracellular mycobacteria. The
graph shows the averages + standard deviations of one representative experiment, presented as the
percentage of bacterial load to nontreated macrophages on day 5 of incubation.

Then, to test the activity of the compounds against intracellular mycobacteria, BMM
infected with M. avium 2447 SmT were treated with three concentrations of the test com-
pounds that were not toxic to the macrophages (0.1, 0.3 and 0.5 µM) for 5 days at 37 ◦C
and 7% CO2. The intracellular bacterial loads were quantified by the colony-forming units
(CFUs) assay (Figure 5). Relevantly, even though the Clf-derived OSs were less active
than the parent Clf, they still reduced the bacterial load up to 80% at the tested concen-
trations, being considerably more active against intracellular M. avium than their parent
fluoroquinolones.
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3. Materials and Methods
3.1. Compounds

The API-OSs were prepared as follows: a solution of either ofloxacin (Sigma-Aldrich,
St. Louis, MO, USA; 36.1 mg; 100 µmol) or norfloxacin (Sigma-Aldrich, St. Louis, MO,
USA; 31.9 mg; 100 µmol) in methanol (VWR International, Carnaxide, Portugal; 15 mL)
was added dropwise to a solution of clofazimine (Sigma-Aldrich, St. Louis, MO, USA;
47.2 mg; 100 µmol) in dichloromethane (15 mL). The acid–base reaction was allowed to
proceed overnight at room temperature, under magnetic stirring and protected from light.
Then, the solvents were removed by evaporation under reduced pressure on a rotatory
evaporator, and the waxy solids obtained were dried overnight in a vacuum oven at
50 ◦C. The API-OSs were analyzed by proton (1H-) and carbon-13 (13C-) nuclear magnetic
resonance (NMR) on a Bruker Avance III 400 MHz instrument (Centro de Materiais da
Universidade do Porto, Porto, Portugal), as well as by electrospray ionization-ion trap
mass spectrometry (ESI-IT MS) on a Finnigan Surveyor LCQ DECA XP MAX spectrometer
operating with electrospray ionization and ion trap quadrupole detection (Department
of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal),
as given in detail in the Supplementary Information (Figures S1–S6). The API-OSs were
stored at −4 ◦C until further use.

3.2. Simultaneous Thermogravimetry Analysis

The thermal stability of the compounds was evaluated using a Hitachi STA7200RV in-
strument (Scancsi, Vila Nova de Gaia, Portugal), following the manufacturer’s instructions.
The compounds were subjected to heating from room temperature to 500 ◦C at a speed of
5 ◦C/min, obtaining the thermograms provided in Figure 2. For better visualization of the
degradative events, the derivatives (red trace) of the thermogravimetric curves (blue trace)
are also displayed in the thermograms.

3.3. Bacteria

Mycobacterium avium 2447 smooth transparent (SmT) strain (kindly provided by Dr.
F. Portaels, Institute of Tropical Medicine, Antwerp, Belgium) was grown to the mid-log
phase in Middlebrook 7H9 medium (BD DifcoTM, Fisher Scientific, Porto Salvo, Portugal)
containing 0.2% of glycerol (VWR International, Carnaxide, Portugal) and 10% of Albumin-
Dextrose-Catalase (ADC, Merck KGaA, Darmstadt, Germany) supplement at 37 ◦C, as
described previously [40].

3.4. Direct Effect of Test Compounds against Mycobacteria

The antimicrobial activity of the different compounds was assessed by broth microdi-
lution, following the Clinical and Laboratory Standards Institute (CLSI) guidelines [41]
and as described previously [40], using stock solutions of the compounds in DMSO, due to
the negligible solubility of Clf in water [37]. Briefly, M. avium was grown in Middlebrook
7H9 medium to the exponential phase and 1 to 5 × 105 CFU/mL of bacteria was seeded
in 96-well plates with increasing concentrations of the compounds. Each condition was
tested in triplicate. The plates were incubated at 37 ◦C in a humid atmosphere. After
6 days of incubation, bacterial viability was assessed by resazurin reduction. Then, 10%
(v/v) of resazurin (Sigma-Aldrich, St. Louis, MO, USA) at 2.5 mM in phosphate-buffered
saline (PBS, Sigma-Aldrich, St. Louis, MO, USA) was added to each well, and after
24 h of incubation at 37 ◦C, the fluorescence of resorufin, resulting from the conversion of
resazurin by metabolically active cells, was measured at λex = 530 nm and λem = 590 nm in
a SynergyTM Mx microplate reader from BioTek (Agilent Technologies Inc., Santa Clara,
CA, USA) using the Gen5 software also from BioTek. The results are expressed as the
percentage of the fluorescence obtained in experimental wells relative to the fluorescence
obtained in nontreated wells.



Int. J. Mol. Sci. 2023, 24, 1402 8 of 11

3.5. Bone Marrow-Derived Macrophages (BMM)

Macrophages were derived from the bone marrow of male C57BL/6 mice bred at
the i3S animal facility and infected with M. avium 2447 SmT as described previously [42].
Immediately after infection, BMM were treated with different concentrations of each
compound. Each condition was tested in triplicate. The intracellular growth of M. avium
2447 SmT was evaluated 5 days after infection, by colony-forming units (CFUs) assay,
plating the bacteria in Middlebrook 7H10 agar (BD DifcoTM, Fisher Scientific, Porto Salvo,
Portugal) supplemented with 10% Oleic Acid-Albumin-Dextrose-Catalase (OADC; Merck
KGaA, Darmstadt, Germany) for at least 7 days at 37 ◦C. The viability of macrophages was
determined by resazurin reduction as detailed above for mycobacteria.

3.6. IC50 and LD50 Determination

The viability of both mycobacteria and host macrophages was determined by resazurin
reduction as detailed above. IC50 (concentration that inhibits 50% of mycobacterial growth
after 7 days of incubation) and LD50 (concentration that inhibits 50% of macrophage
viability) values were interpolated by fitting the experimental data through a 4PL nonlinear
sigmoidal curve using the GraphPad Prism software version 9 (GraphPad Software Inc.,
La Jolla, CA, USA). The respective 95% confidence interval of the interpolations was
also retrieved.

4. Conclusions

Two new Clf-derived OSs were produced by a simple acid–base reaction between this
drug and two fluoroquinolones, namely Of and Nf, in near-quantitative yields. 1H-NMR
analysis demonstrated that a 1:1 cation:anion proportion was present in both cases, with
complete transfer of the acidic proton from the fluoroquinolone to Clf. Both API-OSs
showed good thermal stability, as determined by STA, and improved solubility over Clf,
thus reducing one of the major disadvantages of this drug. This was achieved without
either substantial loss of antimycobacterial action or increase in toxicity to host cells,
compared to the parent antimycobacterial drug. This is unprecedented, as despite there
being previous reports addressing the combination of Clf with bioactive carboxylic acids
such as p-aminobenzoic [43] and p-aminosalicylic acid [44], the antimycobacterial activity
and cytotoxicity of the resulting OSs were not assessed, hence their therapeutic potential
remains to be demonstrated.

Diverse formulation strategies have been investigated to overcome oral bioavailability
limitations of Clf arising from its poor solubility in aqueous/polar environments: encap-
sulation in different types of nanoparticles [45,46], nanosuspensions [47], emulsions [48],
and other organic salts [49]. This is clear evidence that any gain in Clf solubility is a plus
towards the medical application of this drug, highlighting the relevance of research efforts
in such direction. This is the case of the present study that paves the way towards new
cost-effective strategies to improve the therapeutic index of Clf. It could be argued that
some ILs and OSs are quite expensive, but their cost is highly variable, depending on
the specific ions that compose them and their respective sources [50]; for instance, quite
affordable personal care products can be found in supermarkets shelves that include cetyl
pyridinium chloride, a widely known IL used as an active antiseptic ingredient in such
products and recently reported to have virucidal (including on SARS-CoV-2) activity [51].
In the specific case of our work, the OSs are obtained by simply mixing two existing APIs,
Clf and a fluoroquinolone, and this is undeniably a much simpler and more cost-effective
way to ameliorate Clf than most of the nanoformulation strategies mentioned above.

The therapeutic relevance of Clf-fluoroquinolone ionic conjugates as those herein
reported may go beyond leprosy treatment, as Clf has been repurposed for inclusion in
combination therapies to tackle multidrug-resistant tuberculosis [52] and is known to be
active against non-Mycobacteria pathogens, e.g., Staphylococcus sp., Streptomyces sp., Listeria
sp., and other bacilli [36]. Therefore, using bactericidal agents such as fluoroquinolones as
the counter-ions in Clf-derived OSs may become an effective way to afford a double thera-
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peutic benefit, by boosting not only the antimycobacterial but also the general antibacterial
action of Clf, including against opportunistic pathogens that colonize leprous lesions [53].
Ongoing assays will allow a full assessment of the new Clf-derived OSs herein reported,
namely testing the compounds in more complex in vitro models of infection and assessing
their in vivo antimycobacterial activity. This will hopefully consolidate the value of these
API-OSs as a simple and affordable way to ameliorate the physico-chemical profile of Clf
without putting its bioactivity at stake or even leading to its improvement.
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