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Abstract: Exosomes are a subtype of membrane-contained vesicles 40–200 nm in diameter that are
secreted by cells into their surroundings. By transporting proteins, lipids, mRNA, miRNA, lncRNA,
and DNA, exosomes are able to perform such vital functions as maintaining cellular homeostasis,
removing cellular debris, and facilitating intercellular and interorgan communication. Exosomes
travel in all body fluids and deliver their molecular messages in autocrine, paracrine as well as
endocrine manners. In recent years, there has been an increased interest in studying exosomes as
diagnostic markers and therapeutic targets, since in many disease conditions this machinery becomes
dysregulated or hijacked by pathological processes. Additionally, delivery of exosomes and exosomal
miRNA has already been shown to improve systemic metabolism and inhibit progression of cancer
development in mice. However, the subcellular machinery of exosomes, including their biogenesis,
release and uptake, remains largely unknown. This review will bring molecular details of these
processes up to date with the goal of expanding the knowledge basis for designing impactful exosome
experiments in the future.
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1. Exosome Biogenesis

Exosome biogenesis pathway is initiated by endocytosis of molecular cargo into the
cell. Early endosome, the initial vesicle generated by the plasma membrane budding
into the cell, is the first stop in the endosomal trafficking pathway; its role is to perform
primary sorting and fate determination of the endocytosed cargo [1,2]. There are three
paths that the cargo can take from the early endosome. Cargo that needs to be recycled will
localize to the peripheral tubular domains of the endosomes, from where it will separate to
fuse with the Golgi network or the plasma membrane in the recycling endosome. Cargo
not destined for recycling will concentrate at the central vacuolar regions of the early
endosome and commit to the endosomal maturation pathway, eventually forming the
late endosome. Late endosomes will follow one of the two fates: fusion with lysosomes
and subsequent degradation or fusion with the plasma membrane and exosome release
(Figure 1) [1]. In addition to changes in subcellular localization, endosomal maturation
process is accompanied by changes in the endosomal membrane. First, the endosome
changes its membrane composition to allow for its downstream mobility and sorting.
Sphingomyelin is exchanged for ceramides, and Rab5, a marker of an early endosome
which participates in delivery of vesicles toward the cell center, is substituted for Rab11,
which plays a role in late endosome trafficking [3,4]. Second, as vesicular maturation
is taking place, certain regions of the endosomal membrane start to invaginate and bud
away from the cytoplasm into the intraluminal space of the endosome. The generated
intraluminal vesicles (ILVs), in which the cargo is now enclosed, lead to the multivesicular
appearance of late endosomes, giving them the name “multivesicular bodies” (MVBs)
(Figure 1) [5,6]. If an MVB goes down the path of lysosomal fusion, the cargo within the
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ILVs will be degraded. However, if an MVB fuses with the cell plasma membrane instead,
the ILVs will be secreted into the extracellular space, becoming exosomes.
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required for transport) is a multiprotein machinery that coordinates molecular binding 
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ILVs. ESCRTs consist of class E vacuolar protein sorting (Vps) proteins, which assemble 
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(yeast/human orthologues) and Hse1/STAM; ESCRT I consists of Vps 23/TSG101, Vps 28, 
Vps 37, Mvb12; ESCRT II–Vps 22/EAP30, Vps 25/EAP25, Vps 36/EAP45; ESCRT III–Vps 
20/CHMP6, SNF7/CHMP4, Vps 24/CHMP2, and Vps 2/CHMP3 [10]. Vps4 is an AAA 
ATPse complex that is tightly associated with ESCRTs and is considered to be a part of 
the machinery. The main function of ESCRT 0-IIs is sorting cargo into functional 
microdomains on the endosomal membranes; these microdomains serve as organizing 
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III is responsible for budding and scission of these domains to produce ILVs, and Vps4 
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Figure 1. Schematic of the exosome machinery. Cargos are sorted by endocytosis to the early
endosomes. Early endosomes are committed to the endosomal maturation pathway, which results
in multivesicular appearance of the late endosomes (MVB). Finally, MVBs fuse with the plasma
membrane (PM) to release exosomes. Created with BioRender.com.

1.1. ESCRT-Dependent ILVs Biogenesis

Upon fusion of MVBs and cell membranes, ILVs will be released into the extracellular
space becoming exosomes; as such, ILV biogenesis is biogenesis of future exosomes. Bud-
ding of endosomal limiting membrane to generate ILVs is regulated by many pathways
and molecules, which can be broken down into two general categories: ESCRT-dependent
and ESCRT-independent [7–9] (Figure 2). ESCRT (endosomal sorting complex required for
transport) is a multiprotein machinery that coordinates molecular binding and membrane
deformation events that result in biogenesis of and cargo recruitment to ILVs. ESCRTs
consist of class E vacuolar protein sorting (Vps) proteins, which assemble into four distinct
complexes: ESCRT 0, I, II, III. ESCRT 0 is composed of Vps 27/Hrs (yeast/human ortho-
logues) and Hse1/STAM; ESCRT I consists of Vps 23/TSG101, Vps 28, Vps 37, Mvb12;
ESCRT II–Vps 22/EAP30, Vps 25/EAP25, Vps 36/EAP45; ESCRT III–Vps 20/CHMP6,
SNF7/CHMP4, Vps 24/CHMP2, and Vps 2/CHMP3 [10]. Vps4 is an AAA ATPse complex
that is tightly associated with ESCRTs and is considered to be a part of the machinery.
The main function of ESCRT 0-IIs is sorting cargo into functional microdomains on the
endosomal membranes; these microdomains serve as organizing centers for assembly
of molecular machinery that facilitates signal transduction. ESCRT III is responsible for
budding and scission of these domains to produce ILVs, and Vps4 facilitates dissociation of
ESCRT III after membrane scission is complete.
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(B) ESCRT-independent ILVs biogenesis. Created with BioRender.com. 
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as the main driver of ESCRT III’s role in membrane deformation leading to its inward 
budding and ILVs generation. Polymerization of SNF7/CHMP4s forms filament spirals 
which store potential energy; as the spirals elastically compress, this energy is released to 
create negative curvature in the membrane [15]. After membrane fission is complete, 
ESCRT III is disassembled when its polymers translocate through the central pore of AAA 
ATPase Vps4 [16,17]. In addition to its role in ESCRT III disassociation, Vps4 has been 
shown to participate in the membrane remodeling process itself through interaction with 
ESCRT III to stabilize necks of the growing ILVs [18]. 
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(B) ESCRT-independent ILVs biogenesis. Created with BioRender.com.

The assembly of ESCRT machinery on the endosomal membrane begins when Vps27/Hrs
of ESCRT 0 is localized to an early endosome through its FYVE and coiled coil domains
binding to early endosomal transmembrane proteins [11]. Vps27/Hrs then recruits ESCRT
I by binding its Vps 23/TSG101; Vps 28 of ESCRT I then binds Vps36/EAP45 of ESCRT
II [12,13]. Finally, assembly of ESCRT III takes place when ESCRT II binds Vps 20/CHMP6
of ESCRT III, an event which facilitates polymerization and activation of ESCRT III unit
SNF7/CHMP4 and subsequent recruitment of ESCRT III units Vps 24/CHMP2 and Vps
2/CHMP3 to the endosomal membrane [14]. SNF7/CHMP4 acts as the main driver of
ESCRT III’s role in membrane deformation leading to its inward budding and ILVs genera-
tion. Polymerization of SNF7/CHMP4s forms filament spirals which store potential energy;
as the spirals elastically compress, this energy is released to create negative curvature
in the membrane [15]. After membrane fission is complete, ESCRT III is disassembled
when its polymers translocate through the central pore of AAA ATPase Vps4 [16,17]. In
addition to its role in ESCRT III disassociation, Vps4 has been shown to participate in the
membrane remodeling process itself through interaction with ESCRT III to stabilize necks
of the growing ILVs [18].

In addition to the four ESCRTs, there are many other molecular players that participate
in ILV generation within the ESCRT-dependent pathway (Figure 2). For instance, ESCRT-
associated protein ALIX is intricately involved in the process. In yeast it has been shown
that aside from the classical ESCRT 0—ESCRT I—ESCRT II—ESCRT III pathway, ESCRT III
can be recruited by an alternative pathway of ESCRT 0—Bro1/ALIX—SNF7/CHMP4 [19].
In mammals, ESCRT III is recruited fully independently of upstream ESCRT complexes in
sorting and delivering tetraspanins to exosomes by ALIX in the presence of lysobisphospha-
tidic acid (LBPA) [20]. Bro1 (yeast homologue of mammalian ALIX) interacts with ESCRT
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III, Vps4, and ubiquitin conjugated to the cargo protein to create a Bro1—Vps4—ESCRT
III axis, which plays a role in ILV formation [21]. Furthermore, ALIX can associate with
syndecans, a class of transmembrane proteins, through a scaffolding protein syntenin to
participate in the membrane budding steps of ILV biogenesis [22]. In EGF-stimulated
cells, annexin-1, a substrate for EGFR tyrosine kinase, as well as phosphatidylinositol (PI)
3′-kinase, participates in the process of ILV generation [23,24]. In Charcot–Marie–Tooth
(CMT) disease, mutation of small integral membrane protein of the lysosome/late endo-
some (SIMPLE) results in decreased exosome biogenesis on endosomal membrane [25].
Just like proteins, membrane lipids actively participate in membrane budding. For instance,
Pi3P, a phospholipid specific to endosomal membranes, binds to and helps with recruitment
of early ESCRT protein Vps27/Hrs [26]. More generally, the shape and curvature of the
endosomal lipid membrane has been implicated in ILV generation, since ESCRT complexes
preferentially assemble on highly curved surfaces [6,27].

1.2. ESCRT-Independent ILVs Biogenesis

While classically ESCRTs are involved in ILV generation, some proteins and lipids
allow for the process to take place in an ESCRT-independent manner (Figure 2). For in-
stance, tetraspanins participate in various steps of exosome biogenesis pathway, such as
directing cargo toward MVBs, compartmentalizing endosomal membrane into functional
domains (tetraspanin enriched domains (TEMs)), and increasing exosome secretion of
certain compounds [28,29]. Tetraspanin CD63 in particular has gotten significant attention
for its role in vesicular transport and tumor signaling [30]. Gi-coupled S1P1 receptors
have also been implicated in MVB maturation, although the exact mechanism remains elu-
sive [31]. Ceramides, membrane sphingolipids, are greatly involved in ESCRT-independent
membrane deformation. They organize the plasma membrane into nanoscale assemblies
of sphingolipids, cholesterol, and proteins, termed lipid raft microdomains, which induce
spontaneous negative curvature of the membrane and lead to IVL generation in the ab-
sence of ESCRT III [32]. Recently, activated Rab31 GTPase was identified as the trigger
for membrane budding within these microdomains [33]. The ceramide transfer protein
(CERT) plays a central role in ceramide mediated exosome biogenesis and secretion, since
it facilitates transfer of ceramides onto early and late endosomes from the Golgi and ER
networks [34].

1.3. ILVs Cargo Sorting Machinery

Before these processes of inward membrane budding on endosomes can take place,
the appropriate cargo needs to be recruited to the vesicles. Since the cargo consists of
different classes of molecules, such as proteins, nucleic acids, and lipids, the mechanisms
for their endosomal sorting are also distinct (Figure 3). The signal for proteins to join the
endosomal pathway is monoubiquitination (unlike polyubiquitination that targets cargo for
proteosomal degradation), which allows the cargo to become recognized by and bound to
ubiquitin-interacting-motif (UIM) domain of ESCRT 0 Vps27/Hrs protein [35,36]. By bind-
ing to Vps 27/Hrs, the ubiquitinated cargo is concentrated in clathrin-rich microdomains of
the endosomes, regions which will bud away from the cytoplasm to generate ILVs [37,38].
In addition to ESCRT 0, ESCRT I and II also contain ubiquitination recognition motifs
that help to direct and spatially organize the cargo [39]. Before being enclosed in ILVs,
ubiquitin is removed from the cargo proteins by deubiquitinating enzymes. One such
enzyme is ubiquitin thiolesterase Doa4, which gets localized to endosomal membranes by
binding to ALIX/Bro1 [40]. In tumor cells, in addition to ubiquitination, phosphorylation
of Vps27/Hrs by extracellular signal-regulated kinases (ERKs) favors delivery of PD-L1
protein to exosomes [41]. Not all protein sorting requires ubiquitination. For instance,
recruitment of integral membrane protein Cvt17/Aut5p and Sna3p protein in yeast is
ubiquitination independent [42,43]. Similarly, unubiquitinated IL-2Rb is sorted to the endo-
somal pathway by binding to the non-UIM domain of Vps 27/Hrs [44]. Other proteins, such
as GPCRs, can be recruited by binding to ALIX instead of Vps 27/Hrs [45]. Interestingly,
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ESCRT 0 has a role in cargo sorting beyond Vps 27/Hrs [46]. Just like some proteins do not
require the ubiquitin tag to be directed to the endosomal pathway, sorting of other cargo is
independent of the ESCRT machinery. Proteins with KFERQ motif require LAMP2A and a
molecular chaperone HSC70, in addition to Alix, CD63, Syntenin-1 and RAB31, without the
need for ESCRT complexes [46]. Recently, there has been an increasing body of evidence on
interconnections between exosome secretory and autophagy pathways in the cells. Cargo
sorting is one process in which autophagy machinery is involved: LC3-II located on the
MVB membrane participates in recruitment and sorting of RNA-binding proteins, such as
heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B
(SAFB), to ILVs [47].
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While posttranscriptional modification by ubiquitination is known to be a common
tag to direct proteins to exosomes, loading of non-protein cargo is understood less. miRNA
can be directed to exosomes by binding to a selectively sumoylated (conjugated with small
ubiquitin-related modifier) heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1)
expressed in the exosomal membranes [48]. In KRAS colorectal cancer cells, KRAS and
Ago2 participate in targeting miRNAs to exosomes [49,50]. Other proteins have been
implicated in RNA loading into exosomes, such as major vault protein (MVP) for miR-193a
in colon carcinoma cell line, HuR for miR-122 in human hepatic cells, Arc protein for
mRNA in neurons, etc. [51–53]. The abovementioned proteins, as well as many others, have
been grouped into the RNA-binding protein (RBPs) class of exosomal RNA sorting [54].
Whether specific mechanisms for DNA sorting into exosomes exist is still poorly under-
stood, since several studies observed complete genome sequences of the parent cell in their
exosomes [55].
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1.4. Commitment of ILVs to the Exosome Pathway

After cargo sorting and ILV generation processes are complete, MVBs face two choices:
to fuse with lysosomes for cargo degradation or with the plasma membrane for release
of ILVs as exosomes. Although, some recent discoveries have proposed additional fates
for ILVs: ILVs can undergo retrofusion with the MVB membrane instead of becoming
exosomes or be secreted from the cells after lysosomal fusion by the process of lysosomal
exocytosis [56,57]. While the specifics of what commits MVBs to the classical lysosomal or
cell membrane pathway have not been fully elucidated, a variety of factors has been shown
to play a role. For instance, in B-lymphocytes, only MVBs with high cholesterol content are
able to fuse with the plasma membrane and release their ILVs as exosomes [58]. On the other
hand, ISGylation of MVB protein Vps 23/TSG101 has been shown to favor MVB fusion
with lysosomes and direct them away from the secretory pathway [59]. Vps23/TSG101
is also a target of ubiquitination by Mahogunin Ring Finger-1 (MGRN1) protein, which
favors fusion of late endosomes with lysosomes [60]. Several Rab GTPases, a group of
small GTPases that coordinate events of vesicular traffic, participate in determination of
MVB’s fate. Rab7, a GTPase that regulates transport and fusion of late endosomes with
lysosomes, promotes degradation of MVBs, thereby decreasing exosome secretion [61].
The mechanism lies in creation of NEDD8-Coro1a complex on the MVB membrane, which
in turn recruits Rab7 [62]. On the other hand, Rab31 counteracts the action of Rab7 and
promotes exosome secretion by recruiting GTPase-activating protein TBC1D2B, which
subsequently deactivates Rab7 [33].

Autophagy proteins further play a role in guiding MVB traffic. One example is in-
volvement of Atg5, an autophagosome protein, in MVB fusion with the plasma membrane
through regulating pH of the late endosomes [63]. Moreover, autophagosomes can either
fuse with lysosomes for degradation of their contents or with MVBs for secretion of their
cargo into the extracellular space [64]. For this reason, factors affecting the rate of secretory
autophagy in turn affect the rate of exosome release. For instance, phosphorylation of au-
tophagosome proteins by ATM, a player in the DNA-repair machinery, in cancer-associated
fibroblasts (CAFs) under conditions of hypoxia favors autophagosome fusion with MVBs
over lysosomes [54].

Once the MVBs are committed to the exosome pathway, they are transported from
the center of the cell to its periphery. There are a few key players in this vesicular traffic
system: actin filaments and microtubules, along which the vesicles move, motor proteins,
such as kinesin and dynein, which directly facilitate the movement, and Rab family of
small GTPases which recruit and activate the motor proteins [65,66]. One example of a
motor protein that promotes exosome secretion through controlling vesicular transport is
cortactin, an actin regulatory protein; in tumor cells, its knockdown leads to a decrease
of exosome secretion, and its overexpression produces the opposite effect [67]. The types
of Rabs which participate in trafficking MVBs to the cell membrane are highly variable
between different organisms and cell types. For instance, in human leukemia K562 and
drosophila S2 cells, but not in HeLa cells, downregulation of functional Rab11 leads to
decrease in exosomal secretion [68–70]. Others GTPases, such as Rab2b, Rab5a, Rab9a,
Rab27, and RAL-1 have also been shown to participate in secretion of exosomes [70]. Alix
and clathrin are likewise involved in directing MVBs to the plasma membrane, most likely
by interacting with plasma membrane-associated actin networks [71,72].

2. Exosome Release

After the MVBs get delivered to the plasma membrane of the cell, they follow a gen-
eral scheme for vesicular docking and fusion onto a cell membrane, with main players
consisting of v-SNAREs (on vesicles), t-SNAREs (on target membranes), Rab GTPases,
tethers, and additional proteins (Figure 4) [73]. Typically, multiple binding complexes of
one v-SNARE and three t-SNAREs occur between the merging membranes. Rabs, such
as Rab27a, Rab27b, and Rab35, ensure proper membrane targeting by recruiting specific
tethers to bind to the SNARE proteins, as well as take part in vesicular docking at the cell
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membrane [70,73,74]. SNARE proteins, such as VAMPs (v-SNAREs), syntaxins (t-SNAREs),
and SNAPs (t-SNAREs), play a crucial role in the secretory process by facilitating the fusion
of the endosomal and plasma membranes. For instance, VAMP7 localized to late endo-
somes forms VAMP7/syntaxin 1/SNAP-25 and VAMP7/syntaxin 3/SNAP-23 complexes,
allowing for the abovementioned fusion to occur [75,76]. In an Alzheimer’s disease model
in neurons, another late endosomal v-SNARE VAMP8 participates in fusion of tau-carrying
vesicles with the cellular membrane [77]. Syntaxin 4 is involved in Hepatitis C virus (HCV)
spread by facilitating fusion of virus-carrying MVBs with the membranes of infected cells,
leading to HCV’s release in exosomes [78]. Furthermore, in Parkinson’s disease models,
increased concentration of α-syn correlated with decreased interaction between syntaxin 4
and VAMP2, leading to decreased exosome secretion [79]. Knockdown of another t-SNARE,
syntaxin 6, in prostate cancer cells significantly decreased exosome production and reduced
drug resistance conferred by this secretory mechanism [80]. While involvement of many
SNARE proteins is cell type-specific, it has become apparent that VAMP7 and SNAP-23 are
ubiquitously central to the membrane fusion process [75].
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SNARE (V-SNARE) forms four-helix bundles with two target SNAREs (T-SNARE) to drive the fusion
between MVB with plasma membranes to secret exosomes. Created with BioRender.com.

Many regulatory mechanisms of exosome secretion occur at the plasma membrane
through the SNARE complex. One group of such regulations is post-translational mod-
ifications of SNARE proteins, such as O-GlcNAcylation and phosphorylation. Reduced
O-GlcNAcylation of SNAP-23 promotes its interaction with syntaxin 4 and VAMP 8, leading
to increased exosome secretion; phosphorylation of a SNAP-23 by an activated histamine
H1 receptor in HeLa cells produces a similar effect [81,82]. Another study in cancer cells
showed that phosphorylation of SNAP-23 at Ser95 by PKM2 upregulated exosome re-
lease [83]. In addition to posttranslational modifications, RNAs have been implicated in
regulation of SNARE complex proteins and, subsequently, of exosome release. In non-
small cell lung cancer models, miR-134 and miR-135b microRNAs inhibit SNARE protein
YKT6 and thereby reduce exosome secretion [84]. In pancreatic cancer cells, long non-
coding RNA (lncRNA) PVT-1 plays a role in MVB fusion with the plasma membrane by
regulating colocalization of YKT6 and VAMP3, as well as palmitoylation of YKT6 [85].
Furthermore, lncRNA HOTAIR affects colocalization of SNAP-23 with VAMP3, as well as
induces phosphorylation of SNAP-23 [86].
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3. Exosome Uptake

After MVB and cell membranes fuse, ILVs are secreted into the extracellular space as
exosomes. Currently, the mechanisms and players of extracellular vesicle (EV) targeting are
not fully understood, and there is still a question of how much of the exosome delivery is
stochastic rather than destination-specific [87]. However, it is known that once an exosome
reaches its target cell, it can affect that cell in one of three ways: directly interact with its
plasma membrane receptors through exosomal surface proteins, fuse with its membrane,
or undergo endocytosis (phagocytosis, micropinocytosis, lipid raft- or clathrin- or caveolin-
mediated endocytosis) (Figure 5) [88–93]. Exosome surface molecules, such as tetraspanins,
immunoglobulins, proteoglycans, and lectin receptors are involved in exosomes binding to
target cells through mechanisms that are largely unknown [93–95]. Exosomal ligands that
are currently of the most therapeutic interest are PD-L1, TNF, FasL, and TRAIL, since their
receptors are located on the surfaces of tumor cells, thereby making them potential targets
for cancer therapies.
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When an exosome directly fuses with the cell membrane, its contents are released
into the cytoplasm and its journey is complete. While this pathway is the most efficient
one for cargo delivery into the cell, evidence suggests that the dominating mechanism of
exosome uptake is endocytosis: an intact exosome is engulfed and bound by the plasma
membrane, subsequently joining the endosomal system [87]. In this case, for the exosome
cargo to produce its effects, it needs to escape from vesicles into the cytoplasm (“endosomal
escape”); if it remains within the endosomal pathway, it will be degraded by a lysosome,
recycled within the cell, or secreted to the extracellular space without affecting the function
of the target cell [96–98]. A few proposed mechanisms for cargo to reach the cytoplasm are
fusion with endosomes in a pH dependent manner and permeabilization of and subsequent
escape from endolysosomes [99,100]. Once in the cytoplasm, the cargo can carry out its
designated function. There is still much to be understood about the mechanisms of exosome
cargo release into the cytoplasm, since poor predictability of the process across different
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cell types is currently one of the main challenges in utilizing the extracellular vesicle system
for clinical applications [98,101,102].

Since exosomes travel in the blood, before they reach their target organs, they must
cross the endothelial layer of the vasculature. While much remains to be understood about
the mechanisms of this process, recent studies on EV passage through the blood–brain
barrier (BBB) have suggested transcytosis as the most plausible mechanism of exosome
transport across the endothelium [103]. Breast-cancer derived EVs have been suggested to
enter endothelial cells via clathrin-mediated endocytosis; they were then sorted by Rab11
for exocytosis at the basolateral membrane and were finally secreted from the cell through
interactions of a v-SNARE VAMP-3 on the EVs with membrane associated t-SNAREs
SNAP23 and syntaxin 4 [104]. In a separate study, heparan sulfate proteoglycans on the
surface of endothelial cells were shown to be involved in exosome endocytosis; however, it
is not clear whether they participate in exosome internalization or attachment [105]. Ad-
sorptive transcytosis, a mechanism that facilitates transport through the cell by interactions
of positive and negative molecular charges, has also been suggested [106].

4. Limitations and Challenges in Exosome Research

Existence of many imperfect exosome isolation and purification protocols has been
one of the greatest limiting experimental factors in exosome research. Size exclusion and
affinity-based chromatography, as well as ultracentrifugation are currently the mainstay ap-
proaches in the field [107]. However, each method has its own caveats—ultracentrifugation
does not rid the samples of other components of similar sizes and densities, and affinity-
based methods possess limited purification power, as no surface marker is exclusive to
exosomes [108]. To get purer exosome population, researchers are encouraged to combine
several methods in their protocols. For example, several studies reported the presence of
mitochondria proteins and nucleic acids in their isolated exosomes. However, by com-
bining ultracentrifugation with Opti-Prep based step gradient density column, one group
was able to separate out a similar in size, yet characteristically distinct, population of
sEVs of mitochondrial origin, mitovesicles, and thereby obtain a more pure exosome
fraction [109–114].

Another significant challenge when working with exosomes is their storage condi-
tions. While freezing samples to temperatures below biochemical reactivity is the standard
approach for sample storage in research, scientists working with exosomes must get more
creative, as freeze–thaw cycles may cause formation of exosomal aggregates. Freeze-drying
or adding cryo-stabilizers could improve exosome quality for storage and transportation,
but little is known about significance or effectiveness of using these methods [115].

In addition, there is a nomenclature discrepancy between research groups is “exo-
somes” and “small extracellular vesicles” (sEVs). While all exosomes are sEVs, not all sEVs
are exosomes [114]. Since the two can be of similar sizes and since exosomes possess a great
variety of surface markers, it can be difficult to draw definitive experimental conclusions
about sEVs vs. exosomes. In order to maximize standardization of methods across the field,
International Society for Extracellular Vesicles (ISEV) has already released two versions
of Minimal Information for Studies of Extracellular Vesicles (MINEV), one in 2014, and a
revision in 2018. MINEV is a set of guidelines produced by the leaders in the field with
the goal of introducing standard methods for EV study to increase rigor and reproducibil-
ity of research conducted by different institutions. Regarding the EV nomenclature, the
guidelines generally suggest the use of the term “extracellular vesicles” with specifications
of size and/or surface markers. On the topic of isolation and purification methods the
consensus is less clear, and the recommendations are limited to suggesting researchers to
choose methods appropriate for their respectful downstream analysis. Currently, the latest
edition of MINEV is in the works, leaving us hopeful for improved protocol clarity in the
near future.
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5. Conclusions and Future Prospects

Over the span of the past few decades, the field of exosomes has greatly expanded,
changing their status from cellular garbage disposals to promising diagnostic and thera-
peutic tools. In the past 10 years, there has been a steady increase in the number of research
articles and review papers published per year on exosomes, a trend which suggests an
increasing interest in advances, as well as the need for systematic summaries of existing
knowledge in the field. In our review, we bring together well-established understanding
of exosome machinery and overview of discoveries from the past two years, focusing on
exosome biogenesis, release, and uptake. Most up-to-date knowledge of these pathways
combined with development of novel techniques is crucial for advancing the exosome field
in the direction of clinical applications. In the upcoming years, with increasing availability
of the exosome reporter mice (ex. CD63-GFP mice [116] and Cre-inducible His-tagged
CD9/TurboGFP reporter mice [117], Jackson Lab), tissue specific function of exosomes is
expected to widely explored through in vivo gain- and loss-of-function experiments. An-
other technique that is expected to gain popularity is utilization of novel live cell reporters
of exosome secretion and uptake (ex. pHluo_M153R-CD63) to study the complete life cycle
of the vesicles in question [118]. Such genetic tools, as well as high sensitivity exosome
isolation and purification protocols, will allow this evolving field to create a significant
impact on healthcare in the future.
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