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Abstract: Although several therapeutic options have been shown to improve survival of most patients
with prostate cancer, progression to castration-refractory state continues to present challenges in
clinics and scientific research. As a highly heterogeneous disease entity, the mechanisms of castration-
resistant prostate cancer (CRPC) are complicated and arise from multiple factors. Among them,
noncoding RNAs (ncRNAs), the untranslated part of the human transcriptome, are closely related to
almost all biological regulation, including tumor metabolisms, epigenetic modifications and immune
escape, which has encouraged scientists to investigate their role in CRPC. In clinical practice, ncRNAs,
especially miRNAs and lncRNAs, may function as potential biomarkers for diagnosis and prognosis
of CRPC. Therefore, understanding the molecular biology of CRPC will help boost a shift in the
treatment of CRPC patients. In this review, we summarize the recent findings of miRNAs and
lncRNAs, discuss their potential functional mechanisms and highlight their clinical application
prospects in CRPC.

Keywords: castration-resistant prostate cancer; long non-coding RNAs; micro RNAs; androgen
receptor; tumor metabolisms; epigenetic modifications

1. Introduction

Prostate cancer (PCa) is the most prevalent male-related malignancy in the western
world and is driven largely by androgen receptor (AR) signaling [1,2]. Given this, androgen
deprivation therapy (ADT), including chemical and surgical castration, is the first line
of defense for men with advanced prostate cancer and an important adjunctive therapy
to radiotherapy for patients with medium- and high-risk prostate cancer [3,4]. Despite
responsiveness, however, relapse almost invariably occurs as the cancer evolves toward
the lethal phenotype of the disease: so-called castration-resistant prostate cancer, for which
there is no effective medication [5]. As a result, despite its slow course, PCa still ranks third
in cancer-related mortality in the United States [1]. CRPC is a highly heterogeneous disease
that involves several molecular mechanisms, including intratumoral androgen synthesis,
the formation of AR splicing variants and the enhanced activity of AR coactivators [6–10].
In recent years, despite great advances in the treatment of CRPC, most patients with CRPC
progress to lethal metastatic castration-resistant prostate cancer (mCRPC) and eventually
show resistance to the FDA-approved medications abiraterone and enzalutamide, two
classical anti-androgen drugs [11–14]. Therefore, a better understanding of the mechanisms
that drive CRPC is crucial for clinical management. Recently, immune checkpoint inhibitors
have been used successfully to treat several solid tumors, such as liver, cervical and breast
cancers [15]. Additionally, immune checkpoint blockade (ICB) could be a novel therapeutic
option for CRPC patients with bone metastases derived from the upregulation of IL-1ra in
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PCa [16,17]. For instance, a phase II clinical trial reported that nivolumab plus ipilimumab
(anti-PD-1) has antitumor activity in patients with mCRPC [18].

For decades, studies on the molecular mechanism of prostate cancer have focused
on protein-coding genes. Quite recently, the doctrine of molecular biology was changed
with a deeper understanding of noncoding RNAs (ncRNAs). In recent decades, a series
of studies have revealed the scientific secrets of ncRNAs, which have pivotal regulatory
roles in almost all cellular and biological functions, such as apoptosis, migration, drug re-
sistance [19], cellular metabolism [20], chromatin structure [21], RNA modifications [22,23]
and translation regulation [24], making them a novel target for drug discovery. In addi-
tion, advances in ncRNA isolation and detection techniques have made them promising
candidates for biomarker development. For instance, plasma exosomal miR-1290 and
miR-375 were considered robust prognostic biomarkers for CRPC patients based on the
significant correlation of these two miRNAs with survival [25]. Finally, ncRNAs can be
therapeutically targeted through synthesis of complementary oligonucleotides to either
enhance the stability or accelerate degradation of other molecules in clinical practice [26,27].

Historically, ncRNAs can be classified as short ncRNAs (snc RNAs, approximately 18–
200 nt transcript) and long noncoding RNAs (lncRNAs, >200 nt transcript) based on their
sizes. The most investigated ncRNA types include microRNAs (miRNAs), lncRNAs and
circular RNAs (circRNAs) [28]. miRNAs are endogenous, small ncRNAs of approximately
18–22 nt in length that negatively regulate gene expression at the posttranscriptional level by
base pairing with target mRNAs. In animals, miRNAs typically bind to the 3′ untranslated
region (UTR) of their target mRNA through limited sequence complementarity [29], which
leads to increased degradation of target mRNAs; however, stabilization of the target
mRNAs has also been reported [30]. Consequently, molecular modes of miRNA-mediated
translational repression mainly include the following: a single miRNA could target multiple
mRNAs, and one mRNA can be targeted by several miRNAs cooperatively [31]. This
classical action model makes miRNA mimics and miRNA inhibitors a class of promising
therapeutic agents.

In contrast to miRNAs, lncRNAs are a group of transcripts with sizes greater than
200 nt that play regulatory roles at both the transcriptional and posttranscriptional lev-
els [32,33]. Structurally, lncRNAs can be classified into five categories: sense lncRNAs,
antisense lncRNAs, bidirectional lncRNAs, intergenic lncRNAs and intronic lncRNAs [34].
lncRNAs function through a variety of mechanisms which depend on their subcellular
localization. A classic example is that cytoplasmic lncRNAs usually act as miRNA sponges
to regulate the expression of mRNA targeted by miRNAs through competing endoge-
nous RNAs (ceRNAs) [35]. In contrast, nuclear-localized lncRNAs could bind to specific
transcription factors or chromatin-modifying complexes to regulate gene regulation indi-
rectly [36].

In the present review, we attempt to clarify the major contribution of ncRNA-regulated
mechanisms, including cancer metabolism, epigenetic modifications and abnormal AR
signaling, to the occurrence of castration-resistant prostate cancer (Table 1).

Table 1. The cellular functions and clinical significance of representative ncRNAs in CRPC.

Noncoding
RNAs Expression Functions Clinical Significance Reference

miR-32 Up Proliferation (+);
Apoptosis (−)

Potential marker for
aggressive disease [37,38]

miR-148a Up Proliferation (+);
Cell cycle (+)

Urine-circulating
mir-148a used for
detection of PCa

[37]

miR-99a Down Proliferation (−) N/A [39]
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Table 1. Cont.

Noncoding
RNAs Expression Functions Clinical Significance Reference

miR-21 Up

Migration (+);
Invasion (+);

Proliferation (+);
Apoptosis (+);
Chemo- and

radiosensitivity (−)

Associated with
biochemical recurrence

in low-risk PCa
[40–43]

miR-221 Up
Proliferation (+);
Metastasis (+);

EMT (+)

Prognostic marker in
high-risk prostate

cancer
[44,45]

miR-205 Down Metastasis (−);
Migration (−)

Attenuates progression
of prostate cancer [46,47]

miR-1246 Down

Proliferation (−);
Migration (−);
Invasion(−);

Apoptosis (+)

Correlated with
increasing pathologic

grade, positive
metastasis and poor

prognosis

[48]

miR-34a Down Metastasis (−)
Potential invasive

biomarker; Influences
response to docetaxel

[49,50]

LncRNA
DRAIC Down

Migration(−);
Invasion (−);

EMT (−)

Predicts poor patient
outcomes [51]

LncRNA
HOTAIR Up

Proliferation(+);
Invasion (+);

Enzalutamide
resistance (+)

May be a biomarker of
enzalutamide resistance [52]

LINC00963 Up Proliferation(+);
Apoptosis (−)

May be a novel
diagnosis biomarker [53,54]

LncRNA
MALAT-1 Up

Proliferation (+);
Migration(+);
invasion (+)

Arrest in the G0/G1
phases (+)

Correlated with high
Gleason score, prostate

specific antigen and
tumor stage

[55]

LncRNA
PCAT29 Down

Proliferation (−);
Migration (−);
Apoptosis (+)

Associated with higher
rates of biochemical

recurrence
[56]

LncRNA
PCGEM1 Up Proliferation (−)

Associated with
high-risk prostate

cancer patients
[57]

LINC00675 Up
Proliferation (+);

Migration (+);
EMT (+)

Associated with
Gleason score [58]

LncRNA
HORAS Up Proliferation (+) Predicts poorer clinical

outcomes [59]

LncRNA
PCAT14 Down Invasion (−)

Associated with
Gleason score;

predicts disease
aggressiveness and

recurrence

[60]



Int. J. Mol. Sci. 2023, 24, 1305 4 of 25

2. CRPC and Its Mechanisms

The diagnostic criteria of CRPC status are serum testosterone <50 ng/dL or 1.7 nmol/L
plus biochemical progression or radiologic progression [61]. Biochemical progression refers
to three continuous increases in PSA 1 week apart, while radiologic progression refers to
appearance of either new bone lesions or soft tissue lesions using the response evaluation
criteria in solid tumors [62]. Despite serum testosterone deficiency, the occurrence and
progression of CRPC are still largely dependent on androgens and the androgen receptor,
usually due to the persistent interaction between androgen and AR [63]. The adaptive re-
sponses of the AR pathway in CRPC can occur as a result of excrescent androgens synthesis
and androgen receptor changes, such as AR gene amplification, AR gene mutations and
AR variants formation [64].

Androgens are not only involved in the normal development of the prostate gland, but
also in the occurrence of PCa. Given this, androgen deprivation therapy (ADT), including
chemical and surgical castration, is the first line of defense or an important adjunctive
therapy to radiotherapy for men with PCa [65]. Despite responsiveness, however, relapse
almost invariably occurs as the cancer evolves toward the lethal phenotype of the disease,
so-called castration-resistant prostate cancer, for which there is no effective medication [5].
Androgen can be synthesized from adrenal androgens in prostate tissues by steroidogenic
enzymes. ADT reduces serum DHT levels, but DTH can still be detected in CRPC [66].
Therefore, when ADT is performed, the remaining androgens synthesized from adrenal
gland and tumor tissues are sufficient to activate androgen receptor [67]. Elevated AR
expression is one of the most common changes in CRPC and related to the development
of ADT resistance [68]. Increased AR levels also hypersensitize PCa cells to castration
status, which can induce resistance to anti-AR drugs [69]. The elevated AR levels in CRPC
are usually caused by AR gene amplification, with the amplification rate reaching about
50%, which depends on the different course of CRPC and therapy [68,70]. In addition,
the amplificated AR gene could also be detected in CTCs (circulating tumor cells) of
patients with CRPC [71]. Another contributing factor of CRPC is AR mutations, with
a mutation rate of 5–30% [72]. However, studies have confirmed that AR mutation can
be observed in primary PCa and increased after ADT treatment, which underlies the
basis of ADT resistance [73]. Most common mutation sites of the AR gene are located
in the ligation binding domain, which allows AR to be activated even at low androgens
conditions [71]. In addition, mutations in the AR-NTD often cause changes that promote
AR transactivation activity, such as altered recruitment of coactivators, increased response
to androgens, enhanced AR stability and nuclear localization [71,74]. Additionally, studies
have confirmed that AR variants (AR-Vs) are a driving factor of CRPC. Other studies have
also suggested that current targeted drugs, such as enzalutamide, are unable to effectively
inhibit AR activity driven by AR-Vs, which lacks AR-LBD (ligand-binding domain) [75,76].
It is well known that non-transcriptionally active AR-FL is located in cytoplasm where
it interacts with Hsp90. However, some truncated AR-Vs, such AR-V7 and AR-V1, lack
exon7, a Hsp90 binding site, and could be transported directly into the nucleus where they
are constitutively active [77]. In addition to the ability of AR-Vs to locate in the nucleus
independent of androgens, AR-Vs can also form dimers directly with AR-FL, leading to
nuclear localization and thus binding to AREs [77–79].

3. Noncoding RNAs and Metabolic Remodeling in CRPC

Metabolic remodeling is considered a common hallmark of the biological capabilities
of cancer obtained during the multistep initiation of human tumors, including PCa [80].
Currently, the most widely studied tumor metabolism is glucose metabolism abnormali-
ties. A series of studies have revealed the close interactions between metabolic disorders
and cancer biology, including tumor proliferation, metastasis and drug resistance [81–83].
Clinically, the treatment of mPCa (metastatic prostate cancer) and CRPC is a significant
challenge because of the complex pathogenesis. Recent studies found that patients treated
with ADT showed an elevation in bile acid levels [84], implying a correlation between ADT
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and lipid metabolism changes. Thus, there is a reason to suspect that lipid metabolism
changes are a potential causative factor of castration resistance. In contrast, cancer biology
could also influence metabolic processes. For instance, it is well known that the dysregu-
lation of autophagy is closely related to cancer. Interestingly, studies have found that the
significance of autophagy in cancer may be due to its potential effect on tumor metabolism
regulation [85,86]. Thus, a better understanding of cancer metabolism is conducive to
understanding the etiology and pathogenesis of tumors.

Given the key regulatory function of ncRNAs in cancers, ncRNAs have been reported
to be involved in multiple cancers, including metabolic abnormalities [87]. A previous study
found that the LncRNA CCAT2 regulates the expression of GAC (glutaminase isoform C),
an alternative splicing isoform of GLS, uncovering the regulation of glutamine metabolism
by lncRNAs. This modulation of cellular energy metabolism was achieved by interacting
with the cleavage factor I (CFIm) complex in an allele-specific manner, which contributes
to the malignant transformation and progression of CRC (colorectal cancer) [88].

Similarly, in prostate cancer, an androgen-induced prostate-specific LncRNA named
prostate cancer gene expression marker 1 (PCGEM1) was discovered to increase glucose
uptake and glycolysis for adequate energy supply and the proliferation and survival of
LNCaP cells [89]. PCGEM1-mediated metabolism regulation was achieved via affecting
several metabolic pathways, including glucose and glutamine metabolism, and functioning
as a coactivator of c-Myc and a series of metabolic genes, making it a promising target for
treatment intervention [89].

Previous studies have confirmed that AR signaling may limit glycolysis and enhance
lipogenesis in PCa, hence driving the proliferation and migration of PCa cells [90–92].
Therefore, it is reasonable to assume that cellular metabolism alterations may contribute
to the development and progression of CRPC due to the key function of AR in the tu-
morigenesis and progression of CRPC. However, currently, there is little research on the
involvement of ncRNAs in metabolic abnormalities in CRPC. It is well-known that c-Myc
may drive many metabolic changes, including simulating glycolysis, to meet the increased
need for nucleic acids, proteins and lipids for an aggressive proliferative phenotype [93–95].
Recently, a report by Jay et al. confirmed that c-Myc is a direct target of miR-644a in
PCa cells. Consistently, as a key enzyme in glycolysis, GAPDH expression was signifi-
cantly suppressed by miR-644a by direct interaction with GAPDH which subsequently
decreased its expression and enzymatic activity, thereby suppressing CRPC cells prolif-
eration, indicating the inhibitory role of miR-644a in the Warburg effect [96]. Therefore,
this result confirmed that miR-644a could influence the malignant behaviors of CRPC cells
by regulating metabolism-related genes expression. Additionally, as a member of the Sp
transcription factor family, it has become increasingly clear that Sp1 can lead to metabolic
dysregulation and the progression of PCa [97,98]. Recently, a study indicated that high
expression of Sp1 significantly increased glucose consumption and lactate production in
CRPC cells [99]. Mechanistically, miR-361-5p can reverse regulate Sp1 by directly binding to
the 3′-UTR of Sp1 mRNA, consequently inhibiting CRPC cell growth and glycometabolism
in a Sp1-dependent manner [99]. Moreover, LncRNA MALAT1 plays a key role in PCa
glycolysis and lactate through enhancing MYBL2 protein levels, thus driving PCa initiation
and progression [100]. SREBP-1, a kind of sterol regulatory element-binding transcription
factor involving in controlling lipogenesis and lipid metabolism, is currently reported to be
transcriptionally regulated by miR-21 in PCa [101]. In addition, miR-21 inactivation also
decreased the levels of FASN (fatty acid synthase) and ACC (acetyl-CoA carboxylase), and
thus inhibited the proliferation and migration of human PCa cells [101]. GLUT1 (glucose
transporter 1), a glucose and fructose transporter, mediates the basal-level uptake of glucose
into various types of cells [102]. A recent study has showed that GLUT1 was a direct target
of miR-378a. miR-378a hampered glucose metabolism and weakened proliferation in PCa
cells via regulating mRNA levels of GLUT1 and may be a potential treatment target for
highly aggressive glycolytic PCa [103]. Additionally, previous study has found that two
miRNAs, miR-185 and miR342, could regulate lipogenesis and cholesterogenesis in PCa
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cells [104]. Mechanistically, miR-185 and miR342 could inhibit the expression of FASN
(fatty acid synthase) and HMGCR (3-hydroxy-3-methylglutaryl CoA reductase), which are
the target genes of SREBP-1, a critical regulatory factor for lipogenesis [104].

4. Noncoding RNAs and Epigenetic Dysregulation in CRPC
4.1. Noncoding RNAs and Epigenetics Modifications

In recent decades, biologists have become increasingly concerned about the epigenome.
Epigenetic alteration has become a driving factor of malignant cell proliferation and the
development of cancers. Conventional epigenetic aberrations at the transcriptional level
include methylation and acetylation modifications of DNA and histones, as well as chro-
matin remodeling [105]. Moreover, with deeper research on ncRNAs and the development
of novel sequencing techniques, scientists have found that epigenetic modifications exist
in ncRNAs and regulate their expression level through various mechanisms [106,107]. A
dozen years ago, researchers found that lncRNAs may be more competitive epigenetic
regulation molecules than proteins, at least in the case of locus- and allele-specific con-
trol [108]. A series of experiments in recent years confirmed its epigenetic regulatory
functions in RNA and proteins [109] through direct interaction with methylation-related
enzymes or recruitment of chromatin modifying complexes, therefore influencing gene
expression [110,111]. Additionally, ncRNAs are base modifications, which explains their
abnormal expression [112–116].

4.2. The Interaction between ncRNAs and Epigenetics in CRPC

There is an increasing amount of evidence that regulatory ncRNAs play a significant
role in epigenetic control, and these ncRNAs highlight the prominent role in gene expres-
sion. Recently, a novel LncRNA, LncRNA NXTAR, has been discovered to be repressed and
been identified to act as a tumor suppressor in PCa [117]. LncRNA NXTAR could suppress
AR expression via binding upstream of the AR promoter and recruiting EZH2, which
marks the AR promoter with H3K27me3 repressive epigenetic marks [117]. This negative
regulation on AR expression undoubtedly inhibited PCa cells proliferation and aboro-
gated enzalutamide-resistant in PCa, therefore providing a therapeutic strategy for CRPC.
PRMT5 is a protein arginine methyltransferase that catalyzes the majority of symmetric
arginine dimethylation in many histone and non-histone proteins [118]. Recently, a study
reported that the epigenetic regulator PRMT5 promoted PCa progression by inhibiting the
transcription of CAMK2N1 and was mediated by miR-331-3p [119]. Serving as a ceRNA,
circSPON2 could abrogate the repressive effect of miR-331-3p on its direct downstream
target of PRMT5 and thus induce PCa cells proliferation and migration [119]. In addition
to epigenetic modifications of genes and proteins that are affected by lncRNAs, epigenetic
alterations are also involved in miRNA dysregulation associated with the development and
progression of CRPC. It has been reported that miR-27a-5p was significantly upregulated in
PCa cells in comparison to PNT2 [120]. Interestingly, LNCaP cells (an androgen-sensitive
cell line) exhibited lower miR-27a-5p expression levels and higher promoter methylation
levels, whereas in PC3 cells (an androgen-insensitive cell line), miR-27a-5p expression and
promoter methylation levels had the opposite trends [120]. The low methylation levels
of the miR-27a-5p promoter in PC3 cells allow c-Myc to bind to its promoter region and
consequently positively regulate the expression of miR-27a-5p. Another study indicated
the upregulation of miR-146a expression in both LNCaP and PC3 cells following 5-aza-CdR
treatment, an inhibitor of DNA methyltransferase. Surprisingly, the miR-146a expression
level in LNCap cells was significantly higher, whereas methylation levels were lower than
those in PC3 cells, suggesting a delayed effect of miR-146a promoter hypomethylation on
the progression of castration-resistant prostate cancer [121]. Several studies have already
indicated that hypermethylation of the promoter is a major contributor to low expression
of miR-124 in different tumors, including cervical cancer and pancreatic cancer [122,123].
Likewise, in another study, a DNA methylation analysis showed that the promoters of
miR-124-2 and miR-124-3 were in a higher methylation status in AR-negative PCa cells
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than in AR-positive PCa cells [124]. However, the high methylation activity was only
significant in DU145 cells, rather than in PC3 cells [124]. Unexpectedly, the expression of
miR-124 has not changed considerably, which is inconsistent with the conventional view
that DNA methylation leads to permanent gene silencing. One possibility would be that
DNA methylation cannot be thought of as a “lock” for gene reactivation but provides a
memory signal for long-term gene silencing [125]. Overall, these studies illustrated that
the abnormal methylation status of certain miRNAs plays a vital role in the progression of
androgen-dependent prostate cancer to castration-resistant prostate cancer.

4.3. Noncoding RNAs Related Signaling Pathway in CRPC

Cell signaling plays an important role in a variety of biological processes, including
carcinogenesis. Numerous signaling pathways have been identified in CRPC, such as
the WNT pathway [126,127], the PI3K/AKT/mTOR pathway and the Hippo/YAP path-
way [128,129]. Recently, the prominent role of ncRNAs as essential signal transduction
mediators in cancer signaling pathways has also emerged. The interactions between lncR-
NAs and key signaling mediators act as the major mechanism in cancer signaling pathway
regulation [130].

PI3K/AKT signaling is among the pivotal pathways responsible for driving the process
of malignancy in many solid tumors and is emerging as a potential target for cancer [131].
Shang et al. reported that lncRNA PCAT1 expression showed a significant increase in CRPC
tissues compared with HSPC tissues via bioinformatics analysis, suggesting the positive
relevance of lncRNA PACT1 to CRPC development or progression [132]. Carcinogenesis is
accomplished by the activation of AKT and NF-kB signaling pathways in CRPC through
increasing the expression of phosphorylated AKT and phosphorylated NF-kB p65 [133,134].
Mechanistically, lncRNA PCAT1 competitively inhibited the binding of PHLPP (PH domain
leucine-rich repeat protein phosphatase) to FKBP51 (FK506-binding protein 51) by directly
binding to FKBP51, a scaffold protein regulating the function of PHLPP and CHUK (con-
served helix-loop-helix ubiquitous kinase), and therefore mediated the activation of AKT
and NF-kB signaling [135]. Similarly, Daniela et al. reported that miR-27a-5p expression
was higher in CRPC than in MNPT (morphologically normal prostate tissue) and that miR-
27a-5p downregulation was associated with an increased ERGF/Akt1/mTOR oncogenic
signaling axis [120]. Interestingly, the results also showed decreased expression of ERGF,
phosphorylated Akt1 and mTOR in PC3 cells compared with LNCaP cells [120]. Mechanis-
tically, increased miR-27a-5p directly targets Akt1 and mTOR within the ERGF signaling
axis and decreases the expression of ERGF, phosphorylated Akt1 and mTOR [120]. YAP and
LATS2 proteins are major downstream effectors of the Hippo pathway, and their abnormal
expression has been observed in multiple human cancers, including CRPC [136,137]. Guo
et al. reported that the expression of miR302/367 cluster members (miR-302a, miR-302b,
miR-302c, miR-302d and miR-267) increased markedly in androgen-insensible PCa cell lines
(PC3 and C4-2B) compared with androgen-sensitive cell lines (LNCaP). The underlying
mechanism by which the miR-302/367 cluster promotes CRPC development lies in the
direct binding of miR-302/367 to the LATS2 3′UTR, a pivotal tumor suppressive effector in
the Hippo signaling pathway that exerts a negative effect [138]. In addition, miR-10a could
inactivate the Hippo pathway via suppressed transcription of YAP and its target genes,
thus playing a tumor-suppressor role in PCa [139].

5. Noncoding RNAs and AR-Related Signaling
5.1. AR Structure and Functions

AR is an androgen-activated steroid hormone receptor produced by the AR gene,
which is located on the long arm of the X chromosome [140,141]. The ligand-dependent
nuclear transcription factor controls the expression of a series of genes associated with
several cancers, especially prostate cancer and breast cancer [142]. Similar to other nu-
clear hormone receptors, the full-length AR is mainly composed of four functional motifs:
(1) highly conserved LBD (the ligand-binding domain), which possesses the property of
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specific androgen recognition and binding and moves from an inactive state to a transcrip-
tionally active state once combined as a molecular switch [143]; (2) the best conserved DBD
(DNA-binding domain) is mainly responsible for DNA binding and receptor dimeriza-
tion [144,145]; (3) the NTD (N-terminal transactivation domain), a primary effector region
of transcriptional activity achieved by the interaction of NTD at AR with coactivators [146];
(4) the hinge region is a poorly conserved connection between the DBD and LBD harboring
a nuclear localization signal (NLS) [147].

The AR signaling pathway is initiated by androgen (testosterone and its active form,
dihydrotestosterone) after binding to AR. Then, AR separates from Hsp90 and forms an AR
dimer, which elicits its translocation into the nucleus [148]. AR signaling plays a pivotal role
in the development and growth of the normal prostate, BPH (benign prostatic hyperplasia)
and prostate cancer [2].

Alternative splicing is a ubiquitous regulatory mechanism that brings about the
production of proteome complexity from a limited number of genes [149]. Not surprisingly,
at least 20 AR variants (AR-Vs) have been identified thus far (Figure 1) [74,76,150]. For
instance, AR45 is a naturally occurring AR variant and has been found in multiple normal
tissues, including heart, breast and prostate tissue [151]. Interestingly, studies have shown
that AR45 may inhibit the transcriptional activity of full-length AR and biologically reduce
androgen-sensitive LNCaP cell growth due to its function as a dominant-negative inhibitor
of AR-FL [152]. Another androgen splice variant, AR-V1, could heterodimerize with AR-FL,
even in the absence of androgen. This interaction could inhibit the ability of AR-FL to confer
castration-resistance cells growth, which suggested that AR-V1 could act as a negative
regulator of AR-FL [153]. Yet despite all that, the molecular mechanisms of the interaction
between AR-V1 and AR-FL remain unclear. AR-V7, the most extensively studied and the
best-characterized AR variant, is highly related to various biological functions, particularly
anticancer treatment resistance and poor clinical outcomes [11,154,155]. Structurally, AR-V7
is a truncated isoform lacking the LBD of AR and remains constitutively active even after
castration, thus representing an intrinsic mechanism of resistance to ADT [156]. Indeed,
increased expression of AR-V7 mRNA and protein can be detected in both primary and
metastatic tissues of CRPC patients, in contrast to the undetectable level of AR-V7 in
benign prostatic hyperplasia and primary PCa patients with no endocrine therapy, which
supports the driving role of AR-V7 in the occurrence and progression of CRPC [155,157].
Similarly, AR-V567es (aka AR-V12) could promote castration-resistance growth of PCa
cells in the absence of ligand and is associated with resistance to both abiraterone and
enzalutamide [158]. In cells co-expressing AR-V567es and AR-FL, AR-V567es could interact
with AR-FL and induce the nuclear translocation of AR-FL in a ligand-independent manner
or in an androgen depleted condition [159]. In addition, AR-V567es has also been showed
to be capable of regulating canonical androgen-responsive genes in the absence of the
AR-FL signaling [160].
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5.2. AR-Related Signaling in CRPC

Aberrant AR signaling is fundamental to prostate cancer growth, metastasis, metabolic
reprogramming and ultimately to its lethality [161–163]. Given this, androgen ablation
therapy is the first line of defense for patients with prostate cancer and improves survival
outcome [164]. However, because these treatments do not effectively block the production
of androgen from adrenal, prostate and other tissues, a transition to castration resistance
conditions is usually unavoidable. Research over the past few decades has revealed
multiple mechanisms involved in CRPC and remains to be elucidated further; however, it is
certainly known that the sustained activation of AR signaling program frequently underlies
the development of CRPC [165]. Given this, the androgen biosynthesis and androgen
signaling pathways have been identified as important targets for the development of
anti-androgen drugs (Figure 2) [12,13].

In the test, the last step of androgen biosynthesis involves two critical sequential
reactions that are catalyzed by a single enzyme, the cytochrome P450 monooxygenase
17α-hydroxylase/17,20-lyase (collectively referred to as CYP17) [166]. Obviously, inhibition
of the critical enzymes that catalyze the biosynthesis of androgen could stop androgen
production from all sources, therefore, potentially providing an effective treatment for
patients with PCa [167]. As a class of key catalytic enzymes in androgen biosynthesis,
CYP17 is currently an important target for PCa treatment, and several CYP17-inhibiting
drugs have been developed. Abiraterone, a small molecule derived from the structure of
pregnenolone, is the first to be used in clinical practice in several new drugs developed to
target adrenal androgen production. It could irreversibly inhibit the catalytic activity of
CYP17, which was highly expressed in CRPC, and has been shown to reduce the serum
testosterone levels to below a detection threshold of 1 ng/dL [168,169]. Interestingly,
abiraterone has been found to inhibit other AR pathway targets, even including the anti-AR
activity due to its steroidal structure. However, multiple mechanisms of maintaining AR
signaling were observed in the abiraterone-treated PCa, including upregulated expression
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of AR-FL and ligand-independent AR variants, which leads to abiraterone-resistance in
clinical practice and promotes the development of more potent CYP17 inhibitors [170].
TOK-001 and TAK-700, next-generation CYP17 inhibitors, were found to be selective for
C17-20 lyase inhibition and exhibited suppressive effects on androgen biosynthesis. In
addition, the two inhibitors also cause down-regulation of AR protein expression, which
papers attribute to their anti-tumor efficacy.
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Figure 2. Inhibitors in the treatment of PCa. (A) Androgen biosynthesis pathway. All steroid
hormone synthesis follows the conversion of cholesterol to pregnenolone, which can subsequently
progress down the androgen formation pathway, or be converted to progesterone. CYP17 catalyzes
two key reactions involved in the production of sex steroids, which occur sequentially; the 17α-
hydroxylase activity typically converts pregnenolone to 17α-hydroxypregnenolone and progesterone
to 17α-hydroxyprogesterone, while the 17,20-lyase activity converts 17α-hydroxypregnenolone to
DHEA and 17α–hydroxyprogesterone to androstenedione. The DHEA and androstenedione may be
subsequently transformed to testosterone by other enzymes. (B) Canonical AR signaling pathway
and AR-V7 signaling. The inactive AR primarily exists in the cytoplasm and binds to heat shock
proteins. Androgen binding to the AR induces conformational changes in the ligand-binding domain
and heat-shock protein dissociation from the AR. The transformed AR undergoes dimerization,
phosphorylation and translocation to the nucleus. The translocated receptor dimer binds to androgen
response elements located in the promoter or enhancer region of AR target genes, leading to the
transactivation of AR-regulated gene expression. Abbreviations: DHEA, dehydroepiandrosterone;
DHT, dihydrotestosterone; Hsp, heat-shock protein; AR, androgen receptor; LBD, ligand-binding
domain; DBD, DNA-binding domain; ARE, androgen receptor element.
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Enzalutamide is a second-generation competitive inhibitor of AR. It weakens the AR
pathway on three levels—through inhibition of androgen binding, nuclear translocation
and DNA binding—and thus induces apoptosis, which makes it an attractive option in
CRPC [171]. Finasteride is a competitive and specific inhibitor of 5α-reductase, similar
in structure to testosterone but has no affinity for AR [172]. Finasteride was originally
developed as a pharmacological therapy for BPH (benign prostate hyperplasia) to reduce
prostate volume and treat symptoms associated with BPH [173]. Researchers later found
that finasteride could be used as a chemopreventive for PCa, for which it was approved for
clinical trials and use in 1992 [174,175]. Dutasteride is another inhibitor of 5α-reductase
for inhibiting the conversion of testosterone to DHT (dihydrotestosterone). Dutasteride
is distinguished from finasteride in that it inhibits both type 1 and type 2 5α-reductase.
Therefore, dutasteride is likely to significantly reduce DHT levels when compared with
finasteride [176].

Currently, the usual first-line therapies for CRPC are abiraterone and enzalutamide.
These AR-targeting agents can extend the survival of patients with CRPC for an extra
5 months but are not curative due to a series of drug resistance mechanisms, including
restored androgen receptor signaling, androgen receptor splice variants, androgen recep-
tor bypass signaling and complete androgen receptor independence [177]. Accordingly,
previous and recent studies all showed a strong correlation between AR-V7 levels and
resistance to enzalutamide and abiraterone [11,178,179]. These findings are in accordance
with the special structure of AR-V7, which lacks the LBD, the direct target of enzalutamide
and the indirect target of abiraterone. Interestingly, niclosamide, an anti-helminthic drug,
was confirmed to re-sensitize enzalutamide-resistant cells to enzalutamide treatment by
specifically inducing the degradation of AR-V7 [180,181].

5.3. AR-Related ncRNAs in CRPC

Over the past decades, noncoding transcripts have been increasingly recognized as
targets or mediators of the AR signaling axis and may play a central role in the enhancement
and maintenance of AR signaling activity (Table 2) [37,52,182]. Therefore, the identification
of CRPC-associated ncRNAs via bioinformatics analysis or clinical sample testing is im-
portant for the development of potential therapeutic targets. Recently, several lncRNAs
have been reported to engage in regulating AR expression at the post-transcriptional level
(Figure 3). For instance, LINC00675, also known as TMEM238L, has been reported to be
dysregulated in several cancers, including gastric cancer, colorectal cancer and cervical
cancer [183–185]. Recently, a study reported that LINC00675 was more highly enriched
in CRPC tissues or cells than in primary PCa tissues or cells, indicating its correlation
with CRPC [58]. Functionally, LINC00675 overexpression promoted, whereas knock-
down attenuated, cell viability, migration and EMT of LNCaP-SF and LNCaP-C4–2b, two
androgen-independent cell lines, showing its relevance to PCa progression [58]. Further
experiments found that LINC00675 could stabilize the AR protein by prohibiting AR ubiqui-
tination. This stability function is based on a competitive combination mechanism, whereby
LINC00675 could bind to the NTD of AR to damage the interaction between AR and MDM2
(mouse double minute 2), a kind of E3 ubiquitin ligase, thus leading to AR protein stabil-
ity [58]. Similarly, another study identified and termed an unannotated lncRNA, HORAS,
by analyzing PCa PDX models and found that HORAS5 was significantly upregulated
in castration-resistant PDXs, considerably expressed only in AR-positive CRPC-derived
cell lines and promoted the proliferation and migration potential of CRPC-derived cells
by maintaining AR activity in the absence of androgen [59]. Conversely, knockdown of
HORAS5 caused a significant decline in the expression of AR and its canonical targets, such
as KLK3 and KIAA0101 [55]. Nevertheless, the potential mechanisms were not illuminated
and need further research. The maintenance of AR mRNA stability is likely due to a
posttranscriptional regulatory mechanism because HORAS5 is predominantly localized in
the cytoplasm. Moreover, Gu et al. explored CRPC-relevant lncRNAs via transcriptome
microarray and found that lncRNA LBCS could function as an AR translational repressor
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even under low androgen or AR blockade conditions [186]. LncRNA LBCS was markedly
downregulated in CRPC cell lines and tissues in comparison with androgen-dependent
cells and correlated with tumor stage, Gleason score and progression [186]. Forced expres-
sion of LBCS inhibited prostate cancer viability, whereas LBCS depletion sustained prostate
cancer viability by blocking AR signaling in the absence of androgen. Mechanistically,
LBCS affects AR protein levels by epigenetic regulation. LBCS could function as a protein
scaffold by interacting directly with hnRNPK and guiding it to the 5′-UTR of AR mRNA,
thus inhibiting AR translation efficiency, which consequently relieves PCa progression and
castration resistance [186]. A novel tumor-suppressor, lncRNA NXTAR, has recently been
found to suppress AR expression through recruiting EZH2 methyltransferase. Interestingly,
the loss of AR could promote NXTAR expression in turn by allowing GCN5 acetyltrans-
ferase to bind to the NXTAR upstream region [117]. This negative feed regulation between
NXTAR and AR partly explains lower levels of NXTAR in AR-positive CRPC [117].

Table 2. Representative AR-related ncRNAs and molecular mechanisms involved in CRPC.

Noncoding
RNAs Expression Regulation Mechanisms Reference

miR-32 Up Upregulated by
AR

BTG2 is targeted by
miR-32 [37]

miR-148a Up Upregulated by
AR

PIK3IP1 is targeted by
miR-148a [37]

miR-99a Down Repressed by AR
EZH2 promotes the

repression of miR-99a
by AR

[39]

miR-21 Up Repressed by AR
Drives the

downregulation of
TGFBR2

[187,188]

miR-221 Up
Abolishes

AR-mediated
transcription

Mediated by targeting
HECTD2 [44]

miR-135 Down
Reduces AR
protein and

mRNA levels

Interacts with the 3′UTR
of AR mRNA [189]

miR-185 Down
Reduces AR
protein and

mRNA levels

Interacts with the 3′UTR
of AR mRNA;

Suppresses BRD8 ISO2
protein

[190]

miR-34a Down
Reduces AR
protein and

mRNA levels
N/A [191]

miR-205 Down
Reduces AR
protein and

mRNA levels

Interacts with the 3′UTR
of AR mRNA [46]

miR-124 Down
Reduces AR
protein and

mRNA levels

Interacts with the 3′UTR
of AR mRNA

miR-644a Down

Reduces both
AR-FL and

AR-V7 protein
levels

Interacts with the 3′UTR
of AR mRNA;
Suppresses the

expression of AR
coregulators

[96]
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Table 2. Cont.

Noncoding
RNAs Expression Regulation Mechanisms Reference

LncRNA
DRAIC Down Repressed by AR

The occupation of
FOXA1 and NKX3-1 at
DRAIC promoter was

abolished

[51]

LncRNA
HOTAIR Up Upregulates AR

protein

Prevents AR
ubiquitination and

protein degradation by
blocking its interaction

with MDM2

[52]

LncRNA
PCAT29 Down Repressed by AR AR binds to the PCAT29

promoter [56]

LncRNA
PCGEM1 Up

Upregulates
both AR-FL and
AR-V7 proteins;
Repressed by AR

Binds to the
DOT1L-mediated

methylated AR
N-terminus;

Functions as a
transcriptional

coregulator of the AR

[192,193]

PlncRNA-1 Up
Upregulated by

AR;
Upregulates AR

Protects AR from
miR-34c- and

miR-297-mediated
suppression

[194]

LncRNA
ARLNC1 Up Upregulated by

AR

Directly regulated by
AR and modestly

regulated by FOXA1;
Interacts with 3′UTR of

AR mRNA

[195]

LINC00844 Down

Repressed by
AR;

Enhances AR
activity

AR binds to the TSS of
LINC00844;

Influences AR-regulated
transcriptome partly by

facilitating the
recruitment of AR to the

chromatin

[196]

LINC00675 Up Upregulates AR
protein

Stabilizes the AR
protein by prohibiting

AR from ubiquitination
[58]

LncRNA
HORAS Up Upregulates AR

Likely due to a
posttranscriptional
regulatory manner

[59]

LncRNA LBCS Down Reduces AR
protein

Guilds hnRNPK to the
5′-UTR of AR mRNA
and thus inhibits AR
translation efficiency

[186]

LncRNA
NXTAR Down Reduces AR

protein

Recruits EZH2 to
promoter region of AR

mRNA
[117]
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red. (C) Metabolic pathways contributing to histone methylation and acetylation. These two histone 
epigenetic modifications were inhibited by lncRNAs, as shown in red. Abbreviations: SKP2, S-phase 
kinase associated protein 2; CHIP, carboxyl terminus of HSC70-interacting protein; GAPDH, glycer-
aldehyde-3-phosphate dehydrogenase; 1,3-BPG, 1,3-bisphosphoglycerate; PEP, phosphoenolpy-
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Figure 3. The major contribution of miRNA- and lncRNA-mediated mechanisms, including AR
protein regulation, cancer metabolism and epigenetic modification, to the occurrence of CRPC.
(A) AR protein production and ubiquitin-mediated degradation processes. Key steps were inhib-
ited or promoted by miRNAs, and lncRNAs are shown in red. (B) Network of several metabolic
pathways involved in glycolysis, glutaminolysis, fatty acid metabolism and the pentose phosphate
pathway. Key enzymes in these metabolic pathways were inhibited by miRNAs, and lncRNAs
are shown in red. (C) Metabolic pathways contributing to histone methylation and acetylation.
These two histone epigenetic modifications were inhibited by lncRNAs, as shown in red. Abbrevi-
ations: SKP2, S-phase kinase associated protein 2; CHIP, carboxyl terminus of HSC70-interacting
protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; 1,3-BPG, 1,3-bisphosphoglycerate;
PEP, phosphoenolpyruvate; PKM2, pyruvate kinase M2; G-6-P, glucose-6-phosphate; 6-PG, 6-
phosphoglukconate; R-5-P, ribose-5-phosphate; G6PD, glucose 6-phosphatedehydrogenase; 6PGD,
6-phosphogluconate dehydrogenase; HMGCR, hydroxymethylglutaryl-CoA reductase; FASN, fatty
acid synthase; GLS, glutaminase; PRC2, polycomb-repressive complex 2; SAM, S-adenosyl methion-
ine; HAT, histone acetyltransferase.
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Additionally, as AR mRNA contains a long 3′-UTR, it is highly probable that the AR
signaling pathway or AR expression is affected by a range of miRNAs (Figure 3). Indeed,
a recent study revealed that ectopic expression of miR-644a could obviously reduce AR
protein and mRNA levels in both androgen-sensitive and androgen-resistant cell lines
through a direct interaction with the 3′-UTR of AR mRNA from nucleotides 340 to 358.
Most strikingly, a decrease in both full-length and AR-V7 protein levels by miR-644a was
also observed in 22RV1 cells, an androgen-independent cell line [96], underpinning the
viewpoint that both AR amplification and AR variants were implicated in the development
of CRPC. miR-644a also exerts an inhibitory effect on AR transactivation by directly sup-
pressing the expression of AR coregulators, such as SRC-1, SRC-2, SRC-3, CCND1 and CBP
(CREB binding protein) mRNA and protein levels [96]. Moreover, miR-22 and miR-212
were downregulated and could modulate the expression levels of hnRNPH1, AR and AR-v7
in C4-2B cells, an AR-expressing CRPC cell line [197]. Additionally, hnRNPH1 was signif-
icantly enriched in AR-positive MDA-PCa-2b and C4-2B cells compared to AR-negative
PC-3 cells [197]. Interestingly, in accordance with this result, hnRNPH1 silencing induced
the inhibition of cell proliferation in MDA-PCa-2b cells but had no significant inhibitory
effect in AR-naive PC-3 cells, implying that AR may participate in the modulation of hn-
RNPH1 expression. Indeed, further research found that miR-22 and miR-212 inhibitors
upregulated hnRNPH1 expression, which in turn promoted the expression of AR and its
splice variant AR-v7 under hormone-induced and hormone-deprived conditions, which
was mediated through the direct binding of hnRNPH1 to AR associated with the recruit-
ment of SAC-3, an AR coactivator [197]. Unlike classical negative regulation of miRNAs
to mRNA by base pairing to the 3′UTR of mRNAs, miRNAs also seem to activate mRNA
targets in certain situations. Claire E et al. screened a series of AR-targeting miRNAs by
transfecting a miRNA inhibitor library into hormone-responsive and hormone-resistant PC
cells and identified by luciferase assays that miR-346, miR-361-3p and miR-197 inhibitors
significantly repressed AR reporter activity, which resulted from reduced AR protein and
mRNA levels [198]. Additionally, miR-346 and miR-361-3p positively regulate AR-v7 levels,
a constitutively active variant of AR mRNA lacking the LBD, in 22RV1 and C42 cells [199].
Moreover, miR-346, miR-361-3p and miR-197 inhibitors were discovered to increase apop-
tosis and suppress proliferation, EMT, migration and invasion after castration [200]. This
positive modulation of AR mRNA and protein may be due to the activatory binding of
these miRNAs with the 3′UTR of AR and upregulation of AR 3′UTR activity, which is
different from the traditional mode of target inhibition by miRNAs. Another possibility
is that other effectors may be involved in the above miRNA-mediated regulation of AR
expression.

6. ncRNAs and Drug Resistance

Although current targeted drugs for PCa have greatly improved the prognosis of
men with PCa, patients also inevitably develop resistance to these therapies. While the
exact mechanisms of drug resistance have not been fully elucidated, ncRNAs have been
found to play a critical role in reversing ADT resistance and improving the sensitivity of
targeted drugs with the deepening understanding of ncRNAs recent years [201]. Therefore,
correcting the abnormal expression of ncRNAs could be a promising aspect to reverse the
drug-resistance of PCa. miR-199a was downregulated in recurrent PCa and paclitaxel-
resistance cell lines [202]. Overexpression of miR-199a could increase paclitaxel sensitivity
of PCa cells via targeting YES1 expression [202]. Similarly, it has been found that miR-148a
was downregulated in hormone-refractory PCa cells and inhibited multiple malignant
behaviors [203]. miR-148a could also increase the sensitive to paclitaxel, which was directly
mediated by decreasing the expression of MSK1, a direct target of miR-148a [203]. In
addition to affecting paclitaxel sensitive, miRNAs also affect docetaxel resistance. The
expression of miR-195 was decreased in docetaxel-resistance PCa cells and miR-195 over-
expression could promote cells apoptosis and improve the sensitivity of cells to docetaxel
via suppressing CLU expression [204]. Similarly, the expression of miR-204 was lower in
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chemoresistance PCa tissues when compared to that in chemosensitive PCa tissues. Forced
expression of miR-204 could markedly promote cells apoptosis and effectively attenuate
docetaxel resistance via suppressing ZEB1 expression [205]. Additionally, Lnc CASC2 could
also enhance the sensitivity of PCa cells to docetaxel via positively modulating SPRY2
expression and serving as a ceRNA for miR-183 [206].

7. Conclusions and Future Prospects

Although most men with prostate cancer benefit from ADT, progression to a castration-
resistant state remains inevitable within 2–3 years of initiation of ADT and this poses a
major challenge in clinical management. Therefore, a thorough elucidation of the intrinsic
mechanisms of CRPC may help to solve this dilemma. An increasing number of ncRNAs
have been identified to be involved in epigenetic modifications, tumor metabolism and
AR regulation, which are all closely related to the occurrence and progression of CRPC.
Clinically, several studies have recognized their roles as promising diagnostic, prognostic
and even therapeutic biomarkers, especially miRNAs on account of their relative stability,
tiny size and significant control of gene expression. It is conceivable that ncRNAs signa-
tures in circulating cancer cells or macrovesicles secreted by cancer cells could provide
personalized treatment for patients with PCa.

However, despite these favorable prospects, circulating ncRNA detection faces techni-
cal challenges due to the low abundance of ncRNA in circulation. Therefore, there is an
urgent need for other more accurate and convenient non-invasive tests to diagnose PCa.
Due to the ease of collection of PCa cells and their direct release into the urethra via the
prostate duct, urine is expected to become the non-invasive biomarker test of choice for
diagnosis and prognosis. Unfortunately, until now, only Lnc PCA3 has been utilized as
a urinary biomarker in the clinical diagnosis of PCa [207]. Additionally, it has recently
become obvious that miRNAs interact with their targets in more complex ways than ini-
tially realized because an increasing number of researchers have found that many miRNAs
engage in both positive and negative feedback loops with their targets. It is also worth
pointing out that since the biological functions and mechanisms of action have not been
elucidated, drug development targeting ncRNAs must be cautious. For instance, a miRNA
might target several genes, even both oncogenes and tumor suppressors, which means that
when the expression of one target transcript in malignant tumors increases, the available
level of inhibitory miRNA decreases, and this inhibitory effect on other transcripts may be
mitigated by target competition. This problem must be given sufficient attention; other-
wise, it will place a heavy burden on miRNA-based agent discovery. Further preclinical
studies are therefore needed to investigate the interactions between miRNAs and their
targets in PCa and the long-term effects of manipulating these subtle networks. Lastly but
most significantly, the small molecule inhibitors currently developed to target androgen
biosynthesis or AR signaling, as mentioned in Figure 2B, have limitations in delaying the
progression of PCa to the castration-resistance stage. Since CRPC is activated by multiple
pathways, a single therapeutic strategy is not sufficient to overcome the lethal phenotype of
CRPC. However, it is possible for specific ncRNAs to address this restriction; many ncRNAs
have been discovered to simultaneously regulate the expression of several members of
multiple signaling pathways or cellular processes. Thus, further understanding of the
critical regulatory ncRNAs involved in simultaneously targeting multiple pathways, such
as the AR signaling pathway and metabolic remodeling, will provide further insight into
the development of targeted drugs against highly heterogeneous diseases such as CRPC.
In summary, potential ncRNA-directed drugs should undergo extensive preclinical trials to
minimize their side effects and toxicity before widespread clinical use.
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