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Abstract: Biometals are all metal ions that are essential for all living organisms. About 40% of all
enzymes with known structures require biometals to function correctly. The main target of damage
by biometals is the central nervous system (CNS). Biometal dysregulation (metal deficiency or
overload) is related to pathological processes. Chronic occupational and environmental exposure to
biometals, including iron and copper, is related to an increased risk of developing Parkinson’s disease
(PD). Indeed, biometals have been shown to induce a dopaminergic neuronal loss in the substantia
nigra. Although the etiology of PD is still unknown, oxidative stress dysregulation, mitochondrial
dysfunction, and inhibition of both the ubiquitin–proteasome system (UPS) and autophagy are
related to dopaminergic neuronal death. Herein, we addressed the involvement of redox-active
biometals, iron, and copper, as oxidative stress and neuronal death inducers, as well as the current
metal chelation-based therapy in PD.
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1. Introduction

Metals play essential biological functions in all living organisms. The human body
requires minimal amounts of metallic elements to maintain a healthy development of
physiological functions. However, metal levels outside the normal range may lead to
the development of pathologies. An organism’s deficiency or excess of essential metals
leads to severe biological alterations. However, not all metals are essential or beneficial
to organisms; some nonessential and potentially toxic metals might be capable of causing
undesirable effects on the genome, glycolysis, Krebs cycle, oxidative phosphorylation, and
carbohydrate, lipid, protein, and amino acid metabolism [1]. Only biometals, including
iron, copper, zinc, manganese, molybdenum, sodium, potassium, calcium, chromium,
and cobalt, are indispensable for life. About 40% of all enzymes with known structures
require biometals to function correctly [2]. These biometals are not limited to enzymatic
activities but also play structural, electrostatic, energetic, and transport functions. Biometals
directly affect by targeting biomolecules (DNA, lipids, proteins) (Figure 1), organelles, cells,
tissues, organs, and the biological micro- and macro-environment, as they become part
of it [3,4]. Living cells possess a redox metabolism where oxidation-reduction (redox)
reactions occur in fundamental processes of redox regulation, collectively termed “redox
signaling” and “redox control” [5]. Several studies performed on biological systems have
shown that redox-active metals, including iron, copper, cobalt, chromium, and manganese,
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can undergo redox cycling reactions and produce reactive free radicals, also termed reactive
oxygen species (ROS) or reactive nitrogen species (RNS) by upregulating Haber–Weiss and
Fenton reactions and generating damage to cells [6].
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Figure 1. Biometals are essential for the proper function and maintenance of neuronal cells. Iron
is mainly found in the erythrocytes, bound to hemoglobin, and is essential for oxygen transfer to
all tissues, including neurons. Iron also takes place in the Fenton reaction producing free radicals.
Zinc and copper, and manganese are cofactors required for the antioxidant enzymes SOD1 and
SOD2, respectively. These enzymes are scavengers of superoxide anion, and their activity is critical in
regulating oxidative stress in the cytoplasm and the mitochondria. Oxidative stress may ultimately
induce DNA damage, protein oxidation, and lipid peroxidation with deleterious consequences.

The brain contains some of the highest iron, copper, zinc, and manganese concentra-
tions in the human body [7]. These metals participate in synaptic transmission, myelinogen-
esis, energy production, and regulation of oxidative stress. Many biochemical processes rely
on metals to transfer electrons via redox chemistry, neuronal excitation, protein structure,
and enzymatic function [8].

The average human young brain consumes 20% of the oxygen taken in through
respiration [9]. Because of high oxygen demand and cell complexity, high metal levels
diffuse to the central nervous system (CNS) [10]. Therefore, the CNS is susceptible to metal
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damage [11]. Alterations in Fe, Cu, Zn, and Mn levels and distribution are associated with
Parkinson’s Disease (PD) [12].

This review discusses the role of biologically essential redox-active biometals, iron,
and copper, as oxidative stress and neuronal death inducers and the current metal chelation-
based therapy in PD.

2. Metals, Parkinson’s Disease, and Oxidative Stress

Humans are regularly exposed to electromagnetic radiation, pollutants, and cellular
metabolism byproducts that generate free radicals. Free radicals have an unpaired electron
in their outer orbit [13,14], and oxygen radicals are involved in many cellular biochemical
activities, such as signal transduction and gene transcription [15]. The most common
cellular free radicals are hydroxyl (OH•), superoxide anion (O2

•–), and nitric monoxide
(NO•). Even some other species, such as hydrogen peroxide (H2O2) and peroxynitrite
(ONOO–), are highly reactive but are not free radicals; however, they can generate free
radicals [16]. Mammalian cells produce free radicals and ROS as byproducts through
physiological and biochemical processes, primarily due to aerobic metabolism [17]. Because
of this, cells have an effective antioxidant defense involving glutathione, arginine, vitamins
E, C, and A, and antioxidant enzymes to regulate ROS generation [18].

Overproduction of reactive species can cause oxidative damage to biomolecules (lipids,
proteins, DNA), leading to chronic diseases such as atherosclerosis, cancer, diabetes,
rheumatoid arthritis, myocardial infarction, chronic inflammation, and cardiovascular
and neurodegenerative diseases in humans [19].

Oxidative and nitrative stress in the mesencephalon, where dopaminergic neurons
are located, is one of the main factors related to PD pathogenesis [20,21]. Dopamine is
susceptible to auto-oxidization, producing toxic semiquinone species, H2O2, and a small
amount of the neurotoxin 6-hydroxydopamine [22,23]. A study performed in post-mortem
idiopathic PD brains and neurologically healthy adult brains matched by age showed that
glutathione peroxidase activity was slightly but significantly reduced in several brain areas,
including substantia nigra in PD brain samples [24]. A decrease in mitochondrial complex I
activity has been reported in the substantia nigra of PD patients, which ultimately increases
oxidative stress [25].

Chronic occupational and environmental exposure to metals, including iron and
copper, increases the risk of developing PD [26]. Abnormally high iron and zinc levels have
been detected in the substantia nigra of PD patients’ post-mortem samples. A deficiency
or an overload of metals may influence the appearance of this disorder [27]. Metal ions
and byproducts of the electron transport chain play a crucial role in forming intracellular
free radicals leading to oxidative stress, where the imbalance of free radicals, antioxidants,
and detoxifying enzymes occurs [28]. As a result, oxidatively modified molecules such
as nucleotides, proteins, and lipids accumulate in the cellular compartment provoking
dysfunction [29]. Therefore, the lack of control of the defense system, especially in sensitive
cells such as neurons, eventually will lead to cell death [28,30].

Lewy bodies (LB) are abnormal protein deposits containing α-synuclein associated
with ubiquitin and tau, among other proteins (Figure 2). Multivalent metal ions such as iron,
copper, and manganese increase α-synuclein fibril formation by inducing conformational
changes [31–33]. Oxidative modifications and phosphorylation may engage both protein
activity and half-life. Phosphorylated proteins strongly bind to certain metals [34–36].
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Figure 2. Interrelated events involved in the neurodegeneration process. Redox-active metals,
including iron and copper, are recognized as inducers of oxidative stress. The latter relates to
mitochondria dysfunction, lysosomal, and proteasomal degradation pathways inhibition, and ulterior
protein accumulation and aggregation. Both protein degradation pathways may compensate for each
other’s disruption and are affected in Parkinson’s Disease (PD) patients, where a more advanced
state is characterized by Lewy body appearance and dopaminergic neuronal loss.

Although non-enzymatic antioxidants have shown neuroprotective effects in PD
experimental models, they have failed to reproduce this protection in clinical trials [37].
Therefore, it is imperative to understand the mechanisms involved in PD to explore diverse
potential therapeutics more efficiently.
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3. How Cells Die: Classical Mechanisms of Cell Death

Before discussing the role of biometals in neuronal death, it is worth summarizing
the classical mechanisms of cell death. According to morphological, biochemical, and
genetic characteristics, cell death is classified into three major types: apoptosis, necrosis,
and autophagy. However, another section will discuss the latter, and additional cell death
mechanisms will briefly be described.

Apoptosis is well-characterized and known as programmed cell death type I (PCD
type I). Its morphological changes include cell shrinkage, chromatin condensation (pykno-
sis), nuclear fragmentation (karyorrhexis), loss of plasma membrane integrity, and plasma
membrane blebbing forming apoptotic bodies [38].

Necrosis, usually described as an accidental and uncontrollable mechanism, shows a
substantial gain in cell volume (oncosis), swollen organelles, and disruption of the plasma
membrane with the subsequent intracellular content release [39]. However, according to
recent findings and following the guidelines of the Nomenclature Committee on Cell Death
2018, this classification has been updated, and mitochondrial permeability transition (MPT)-
driven necrosis and necroptosis are now included, among other cell death subroutines [38].
MPT-driven necrosis is a regulated cell death induced by cell microenvironment distur-
bances that alter the inner mitochondrial membrane impermeability and is cyclophilin D
(CYPD)-dependent [40–42]. Necroptosis is a regulated process activated by the recogni-
tion of extracellular and intracellular triggers through death receptors, and mixed lineage
kinase domain-like pseudokinase (MLKL), receptor-interacting protein kinase 1 (RIPK1),
and RIPK3 are crucial signaling molecules [43]. Ferroptosis is an intracellular iron- and
ROS-dependent cell death mechanism that involves strong lipid peroxidation, glutathione
peroxidase-4 depletion, glutathione imbalance, and mitochondria morphological alter-
ations, including increased mitochondria membrane electron density, decreased or loss of
cristae, and outer mitochondrial membrane rupture [44].

4. Redox-Active Metals’ Role in Dopaminergic Neuronal Death
4.1. Iron

Iron is the most abundant metal on Earth, and almost all organisms have evolved
to use this ubiquitous transition metal [45]. This metal is essential for the human body’s
proper functioning. Iron is vital for oxygen transport (bound to hemoglobin), oxidative
phosphorylation (bound to cytochrome C), neurotransmitter synthesis, myelin formation,
and regulation of the biosynthesis of proteins such as ferritin and transferrin receptor (to
store or mobilize iron) through iron-response proteins binding to iron-responsive elements
at mRNA level [46–48].

In contrast, unbound iron causes cell toxicity as it can trigger a series of highly oxida-
tive and toxic reactions [49]; this occurs when the iron concentrations exceed the binding
capacity of transferrin [50]. Iron has a wide range of oxidative states, Fe2+ (ferrous) and Fe3+

(ferric) being the most common in biological environments [51] (Figure 3). Fe2+ binding to
proteins is very unstable [52]. Iron’s neurotoxic effect has been related to the divalent metal
ion transporter 1 (DMT1) overexpression, which imports iron into the cell, and can also
be inhibited by H-ferritin [53]. Moreover, S-nitrosylation (SNO) of DMT1 cysteine thiol
enhances Mn2+ and Fe2+ uptake [54]. Additionally, SNO-DMT1 has been detected in the
post-mortem substantia nigra of PD patients [54]. The redox state of iron determines its
role in cytotoxic reactions [55].
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Figure 3. Iron toxicity in neuronal cells is mediated by oxidative stress. Fe3+ is reduced to Fe2+ to
enter the cell, and DMT1 is the major iron importer in neurons. Iron toxicity is induced by a sequence
of highly oxidative and toxic reactions as it takes place in the Fenton reaction producing free radicals.
Fe2+ reacts with H2O2 or lipid peroxides to generate Fe3+, OH−, and hydroxyl radical (OH•) or lipid
radicals, which may lead to oxidative damage of macromolecules. Accumulation of OH• leads to
activation of the mitochondrial permeability transition pore (mPTP), which temporarily opens and
increases reactive oxygen species (ROS). It provokes apoptotic cell death triggered by decreased
ATP production, mitochondrial swelling, and rupture of the outer mitochondrial membrane, with
subsequent release of cytochrome C to the cytosolic compartment.

In a healthy brain, iron is distributed in a specific pattern by region and cell type. It
is abundant in the substantia nigra and the basal ganglia, which are rich in dopaminergic
neurons [56].

For over four decades, changes in iron and ferritin levels have been described in the
brain of PD patients [27]. Several mechanisms are associated with iron-induced dopamin-
ergic cell death, including (1) Fenton redox-reactions producing hydroxyl radicals [57]; (2)
DA oxidative deamination, which is catalyzed by monoamine oxidase B (MAO-B) and
regulated by Fe2+ and Fe3+ [58,59]; (3) 6-hydroxydopamine neurotoxic formation through
DA metabolites reaction with iron and H2O2 [60]; and (4) increased rate of iron-induced
α-synuclein fibril formation [33]. Iron takes part in the Fenton reaction producing free
radicals; Fe2+ reacts with H2O2 or lipid peroxides to generate Fe3+, hydroxyl ion (OH–),
and OH• or lipid radicals, which may lead to oxidative damage of macromolecules [47,61].
The Haber–Weiss reaction is where hydroxyl ion and hydroxyl radical are generated from



Int. J. Mol. Sci. 2023, 24, 1256 7 of 18

the reaction of H2O2 and O2
•– catalyzed by iron [62]. Additionally, the formation and

accumulation of OH• lead to activation of the mitochondrial permeability transition pore
(mPTP), which temporarily opens and increases ROS, provoking long-lasting activation
and cell death. The latter is triggered by a decrease of ATP production, mitochondrial
swelling, and rupture of the outer mitochondrial membrane, with subsequent release of
mitochondrial death factors such as cytochrome C to the cytosolic compartment activating
cell death by apoptosis [63]. Moreover, p53 is involved in mitochondrial dysfunction and
oxidative stress mediated by Fe2+ in neuronal synaptic terminals [64].

Interestingly, lysosomes contain a redox-active iron pool derived from iron-rich macro-
molecules and cellular organelles, such as ferritin and mitochondria [65,66]. Most iron is
found in a non-redox active form bound to ferritin. Ferritin degradation inside lysosomes
during autophagy may be an intracellular redox-active iron source [67]. Next, H2O2 dif-
fuses into lysosomes and reacts with the iron species through the Fenton and Fenton-like
reactions, resulting in hydroxyl radical generation [65]. Intriguingly, defective mitochondria
and lysosomes may promote RIPK1 activation, making cells susceptible to necroptosis [68].
Recently, necroptosis’s partial contribution to iron-mediated toxicity was demonstrated by
using iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1),
significantly reducing cell death rates in the glutamate-induced model in vitro [69].

Iron accumulation in the brain is age-dependent, having the lowest levels at birth and
a marked increase with age [70]. Brain regions associated with motor function have a high
concentration of iron [70], and its levels in the whole brain are around 35.6–54.2 µg/g [71].
Its accumulation in the brain affects neurons. Exposure of neurons to iron induces oxidative
stress, causing lipid peroxidation and DNA damage, which leads to caspase-dependent
apoptotic cell death [72].

Several key mediators of ferroptosis have previously been implicated in PD patho-
genesis. The SNpc is an iron-rich, dopamine (DA)-producing midbrain nucleus, which
probably explains why it has a high risk of suffering neuronal death [73,74], mainly when
iron accumulates, representing a PD feature [27,75]. Iron produces hydroxyl radicals with
subsequent dopamine oxidation, likely contributing to an oxidative environment that
increases the loss of nigral dopaminergic neurons in PD patients [76]. Moreover, genetic
disorders that result in brain iron dyshomeostasis often cause Parkinsonism [77–79], demon-
strating increased iron’s potential to contribute to PD pathogenesis. Indeed, mutations
in several proteins involved in iron transport, increasing iron uptake and decreasing its
export, are linked to PD. Mutant forms of transferrin, a critical protein for neuronal iron
uptake, are associated with increased susceptibility to PD [80,81]. These data suggest that
the iron uptake mechanism is overactive in these patients resulting in increased neuronal
iron accumulation.

Conversely, mutations in transferrin receptor 2 (TfR2) [81] are associated with a
protective effect in PD, potentially due to reduced iron uptake. Neuronal iron export
occurs via a transmembrane ion channel, ferroportin [82], and the Alzheimer’s disease
(AD)-implicated amyloid precursor protein (APP) stabilizes ferroportin expression on the
membrane to promote iron efflux [83]. In contrast, loss of APP membrane function results
in impaired iron efflux and consequent neuronal iron retention [84]. Indeed, several rare
variants of APP predispose individuals to PD, and several studies of familial AD indicate
APP mutations are associated with Parkinsonism and LB formation [85–88]. Deficits in iron
export in PD were further identified in the substantia nigra, with a significant depletion in
APP expression levels independently of cell loss and an 80% decrease in ceruloplasmin (CP)
activity [74,89]. Ceruloplasmin also has a ferrous oxidase activity and enables iron export
by converting Fe2+ to Fe3+ [90], which is then bound to and removed by transferrin. Several
point mutations in the CP-encoding gene are significantly associated with PD [91] and
Parkinsonism [78,92], indicating that CP-mediated iron homeostasis is also likely involved
in PD pathogenesis.

Vitamin C, or ascorbic acid, has been shown to improve the absorption of Levodopa
in some PD patients with poor Levodopa bioavailability [93]. However, it might be toxic as
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it loses one electron and forms an ascorbate radical (Asc•–). The electron can reduce metal
ions such as iron and copper. The acidic extracellular environment favors the reduction of
protein-centered metal, represented as Fe3+ reduction to Fe2+. Subsequently, Fe2+ donates
an electron to O2 forming O2

•– with subsequent dismutation to H2O2 [94]. Moreover,
vitamin C administration may aggravate PD progression due to the possible peroxidation
of Fe2+ bound to Asc•–. Therefore, combined vitamin C therapy for ROS scavenging and
an iron chelator to sequester the metal may be a promising PD treatment option, reducing
the toxicity induced by DA-derived quinones [95].

Current Status of Iron Chelation Therapeutic Effect on PD Patients

Iron chelation is a successful treatment for iron accumulation-based systemic patholo-
gies, such as cardiomyopathy associated with hemochromatosis [96] and thalassemia [97].
Since iron accumulation in the brain has been linked to PD development, this metal chela-
tion emerges as a promising therapeutic target [90–92].

Studies in animal PD models have shown that iron chelation reduces and stops
the pathological accumulation of α-synuclein [98] and decreases oxidative stress [99,100]
when administered focally, intranasally, and even orally. In addition, some sophisticated
translational studies (Table 1) demonstrated that iron chelation therapy decreases labile iron
and oxidative stress in vitro and in vivo, ending with a pilot clinical study that reported
symptomatic improvement in PD patients [101].

These promising results justify using iron chelating agents in clinical trials. In these
studies, deferiprone (DFP) doses of 20 mg/kg/day and 30 mg/kg/day were well-tolerated
by patients. In addition, decreasing iron levels in the dentate and caudate nuclei were
detected by MRI, with a consequent improvement in the Unified Parkinson Disease Rating
Scale (UPDRS) scores [102]. These improvements were observed more markedly in patients
with low CP activity [103]. However, these promising results were not reproduced when a
more extensive study was carried out in patients without dopaminergic treatment, where
the disability increased over 36 weeks, suggesting that iron accumulation is only an early
temporary compensatory mechanism to increase dopamine synthesis; however, in the long
term, it worsens cell death [104].

Despite this, the initial results are still promising. Nevertheless, doubt remains regard-
ing the effect of long-term iron chelation at the systemic level, as it could affect the circulat-
ing white blood cell number and iron homeostasis in cerebral glial cells, which is essential
for processes such as myelin production by oligodendrocytes [105,106]. This controversy
confronts us with the challenge of finding ways to modulate iron, not affecting other cells.
Interestingly, lactoferrin, a cationic iron-binding glycoprotein, can cross the blood–brain
barrier through transferrin receptor 1-mediated transcytosis on the surface of the brain
capillary endothelial cells [107]. Lactoferrin protected from dopaminergic neuronal loss in a
PD model induced with the neurotoxins MPP+ (1-methyl-4-phenylpyridinium) /MPTP (1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine) by upregulation of brain-derived neurotrophic
factor (BDNF), hypoxia-inducible factor 1α (HIF-1α), along with extracellular regulated
protein kinases (ERK) and cAMP response element-binding protein (CREB) activation,
and decreased phosphorylation of c-Jun N-terminal kinase (JNK) and P38 kinase [108].
Moreover, pretreatment with human lactoferrin positively affected the nigrostriatal system
recovery after acute exposure to MPTP [109]. These results propose a new strategy for the
regulation of cerebral iron homeostasis.
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Table 1. Summary of deferiprone iron chelation effect on PD clinical trials.

Study Design Clinical Trial
Subjects

Male:Female
(m:f)

Outcomes Reference

Randomized,
double-blinded,

placebo-controlled
clinical trial

Phase 2

22 subjects:
•8 placebo
(m:f) 3:5
•7 DFP 20 mg/kg/day
(m:f) 4:3
•7 DFP 30 mg/kg/day
(m:f) 5:2

Brain iron chelation by DFP
therapy was well-tolerated; there

was an associated reduced dentate
and caudate nucleus iron content
with a trend for improvement in
motor-UPDRS scores and quality
of life, not statistical significance.

[102]

Randomized,
placebo-controlled

clinical trial
Phase 1

40 subjects:
•21 early start
DFP 30 mg/kg/day
(m:f) 12:9
•19 delayed start
DFP 30 mg/kg/day
(m:f) 13:6

Most DFP-treated patients
displayed clinical and radiological
improvements. Those with lower
CP activity appeared to respond

better to iron chelation.

[103]

Randomized,
double-blind,

placebo-controlled,
parallel-group,

single-center trial

Phase 2

40 subjects:
•21 early start
DFP 30 mg/kg/day
(m:f) 12:9
•19 delayed start
DFP 30 mg/kg/day
(m:f) 13:6

SN iron levels and UPDRS motor
scores were reduced in patients

with higher CP-ferroxidase activity
in serum and CSF.

[101,110]

A multicentric,
parallel-group,

placebo-controlled,
randomized clinical

trial

Phase 2

372 subjects:
•186 placebo
•186 DFP
30 mg/kg/day

DFP without dopaminergic
treatment worsened the handicap
at the PD diagnosis time compared
with placebo over 36 weeks. This
finding provides evidence that the

iron accumulation in the
nigrostriatal pathway is a

powerful short-term compensatory
mechanism for increasing

dopamine synthesis but possibly
at the expense of long-term

worsening iron-related cell death.

[104]

4.2. Copper

Copper is a trace element that constitutes 70 parts per million of the Earth’s crust.
However, it is an essential micronutrient found in small amounts in tissues and cells, with
a high concentration in the kidney, liver, and brain [111].

This metal functions as an essential cofactor and is required for structural and catalytic
proprieties of more than 30 necessary enzymes; among them are ceruloplasmin, cytochrome
oxidase, lysine oxidase, dopamine-hydroxylase, ascorbate oxidase, tyrosinase, and Cu/Zn
SOD [112]. In living organisms, copper is mainly found oxidized (Cu2+) and reduced
(Cu+) [113].

After the liver, the brain is the organ that accumulates the most significant amount of
copper, reaching contents between 2.9 to 10 µg/g wet weight [114], and it is distributed
differently in each region. The regions with the highest concentrations of copper are the
substantia nigra, cerebellum, hippocampus, and hypothalamus [115]. Copper plays a
crucial role in essential processes in CNS, such as brain development [116], antioxidant
defense, synaptic transmission [117], and acting as an enzyme cofactor with oxidoreductase
activity [112].

Notwithstanding, like any redox-active metal, copper becomes toxic when its intra-
cellular accumulation is excessive, facilitating the formation of ROS and apoptotic pro-
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cesses [118] (Figure 4). When the cell is exposed to oxidative stress or copper, DNA damage
and p53 expression are induced [119,120]. Furthermore, p53 undergoes oligomerization
and phosphorylation to be translocated into the nucleus to induce genes such as BAX
(BCL2 Associated X) and PUMA (p53 upregulated modulator of apoptosis) and subsequent
release of cytochrome C into the cytosol to initiate apoptosis [121,122]. Therefore, copper
plays a vital role in many diseases, such as Menkes disease, where copper is abnormally
low in the brain. Conversely, in Wilson’s disease, the damage is caused by an excess of
copper stored in brain tissue. Moreover, some neurodegenerative disorders such as AD,
amyotrophic lateral sclerosis (ALS), prion disease, and PD have been linked to copper
dyshomeostasis [123]. Increased copper levels have been reported in the cerebrospinal fluid
and blood of PD patients [124,125]. However, a recent meta-analysis reported decreased
copper levels in the substantia nigra of PD patients compared to healthy age-matched
subjects [126]. Nevertheless, it has been demonstrated that chronic occupational exposure
to copper increases the risk of developing PD [127–129].
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Figure 4. Copper-mediated neuronal cell death. Copper can be found in its oxidized (Cu2+) and
reduced (Cu+) forms within the cells. The oxidized form of copper is bound to proteins, and when
reduced by a reductase enzyme, it enters the cell through the transporters CTR1 and CTR2. Once
inside and in high concentration, it induces DNA damage and p53 expression. p53 undergoes
oligomerization/phosphorylation and is translocated into the nucleus to induce BAX and PUMA,
with the consequent release of cytochrome C into the cytosol to initiate apoptosis. p53-dependent
and independent apoptosis is triggered, where insulin-like growth factor binding protein-6 (IGFBP-6)
and PIG proteins (prooxidant proteins), among other players, are involved.
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Copper toxicity affects the basal ganglia and frontal cortex inducing Parkinson-like
symptoms and cognitive deficits. The mechanism of copper-mediated toxicity includes
cell cycle arrest via the upregulation of p21 (Cyclin Dependent Kinase Inhibitor 1A),
reprimo (involved in regulating p53-dependent G2 arrest of the cell cycle and coded by
RPRM gene), stathmin (microtubule destabilizing protein coded by STMN1 gene), and
Tp53INP1 (Tumor Protein P53 Inducible Nuclear Protein 1). Additionally, stat-3 (Signal
Transducer and Activator of Transcription 3), hsp70 (Heat Shock Protein 70), and hsp27
(Heat Shock Protein 27) are increased in an attempt to survive. Finally, p53-dependent and
independent apoptosis are triggered, where IGFBP-6 (insulin-like growth factor binding
protein-6), glutathione peroxidase, BCL-2, RB-1, PUMA, and several members of the
redox-active PIG family of proteins, play a role [130]. Moreover, copper binding to α-
synuclein increases oxidative stress and α-synuclein phosphorylation and accelerates
the protein aggregation process [34,131,132]. In the neuroblastoma cell line SK-N-SH
with dopaminergic phenotype, copper transporter protein 1 (Ctr1) overexpression led to
intracellular glutathione depletion and potentiated the caspase-3-dependent-cell death
induced by copper, indicating that copper’s toxicity is due to alterations in its intracellular
homeostasis. In addition, copper-induced oxidative stress was primarily localized in
the cytosol, and Nrf2 was upregulated to mediate an antioxidant response. In addition,
copper increased protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent
autophagy as a protective mechanism [133]. The release of redox-active copper ions from
copper-binding proteins and its binding to thiol or amine groups of cysteinyl and histidinyl
residues of globular proteins, including enzymes, may result in conformational changes
leading to its inactivation [134,135].

Paradoxically, some clinical trials report decreased circulating copper levels in PD
patients compared to healthy controls [136], which may occur, because by binding to
ceruloplasmin, copper stimulates ferroxidase activity and participates in iron homeostasis.
Therefore, low levels of copper can indirectly generate toxicity by altering iron concentra-
tions [137].

Preclinical in vivo PD models showed that the chelation of heavy metals such as copper
improved motor and non-motor deficits after MPTP intoxication [138], which has also been
reproduced in other models of neurodegenerative diseases such as AD [139]. However,
there is no evidence of any effects of copper chelators in PD patients in clinical trials.

Since the strong chelation of metals can have systemic effects, alternative therapies
targeting metal dyshomeostasis are critical. Recently, metal-protein attenuating compounds
(MPACs) have emerged as promising therapeutic strategies. MPACs are moderate chelators
that disrupt specific, abnormal metal-protein interactions [140] (Table 2). Under physi-
ological conditions, MPACs bind to metal ions with a high affinity by competing with
the metal-binding proteins to avoid their oligomerization and prevent the formation of
metal-catalyzed ROS [141].

A novel ligand, 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone
(X1INH), attenuated abnormal copper+/copper2+-α-synuclein interactions and affected pro-
tein aggregation in a cellular model of synucleinopathy where inclusions were smaller and
less compact [142]. Moreover, a moderate metal-binding compound, 8-hydroxyquinoline-2-
carboxaldehyde isonicotinoyl hydrazine (INHHQ), was non-toxic to human neuroglioma
H4 cells and was able to disrupt anomalous copper-α-synuclein interactions, probably by
sequestering the metal ions. Importantly, INHHQ crosses the BBB and can be detected
in rats’ brains as late as 24 h after its IP administration. After 48 h, brain clearance is
complete, but INHHQ remains in the liver even 72 h after acute exposure. [143]. The effect
of D-penicillamine, a relatively specific copper chelator, was assessed in the MPTP-induced
PD mice model, showing a modest effect in preventing MPTP-induced striatal dopamine
depletion [144,145]. In contrast, another study in the MPTP model detected a decrease
in copper content in the striatum and midbrain, suggesting that its neurotoxicity is inde-
pendent of copper [146]. Clioquinol (CQ, 5-chloro-7-iodo-8-quinolinol) can bind to the
metal ions Fe3+, Cu2+, and Zn2+, which is why it plays a critical role in PD. Likewise, CQ
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remarkably improved the motor and non-motor deficits based on reduced iron content
and ROS level in the SN [138]. HPCIH, HPCFur (pyridine-2-carboxaldehyde isonicotinoyl
hydrazone, pyridine-2-car-boxaldehyde 2-furoyl hydrazone) has the ability to bind to Cu2+,
which is why it has been linked to neurodegenerative diseases derived from misfolded
prion proteins. HPCFur has a protective effect on methionine and histidine oxidation,
which is related to physiological and pathological aging [147]. Therefore, physiopathologi-
cally relevant PD models reproducing the disease as in humans are urgent as the current
models may not reproduce all characteristics of the disease and may lead to it through
different mechanisms.

Table 2. Summary of metal-protein attenuating compounds (MPACs) effects on neurodegenerative
diseases.

Metal-Protein Attenuating
Compound Metal Ions Binding Neurodegenerative

Disease Outcomes Reference

X1INH
1-methyl-1H-imidazole-2-

carboxaldehyde
isonicotinoyl hydrazone

Cu+

Cu2+ Parkinson’s disease

X1INH increased the number
of smaller, less compact

inclusions in a
well-established model of

α-Syn aggregation.

[142]

INHHQ
8-hydroxyquinoline-2-

carboxaldehyde
isonicotinoyl hydrazone

INHHQ

Cu2+ Zn2+ Alzheimer’s disease,
Parkinson’s disease

INHHQ can disrupt, in vitro,
anomalous copper-α-Syn

interactions through a
mechanism probably
involving metal ions

sequestering.

[141]

Clioquinol (CQ)
5-chloro-7-iodo-8-quinolinol Fe3+, Cu2+ Zn2+ Parkinson’s disease

CQ remarkably improved
the motor and non-motor
deficits based on reduced

iron content and ROS level in
the SN.

[138]

HPCIH, HPCFur
pyridine-2-carboxaldehyde

isonicotinoyl hydrazone
pyridine-2-car-boxaldehyde

2-furoyl hydrazone

Cu2+ Misfolded prion
protein

HPCFur has a protective
effect on methionine and

histidine oxidation, which is
related to physiological and

pathological aging.

[147]

5. Concluding Remarks

Nearly 40% of our proteins need a biometal as a cofactor to fulfill their function.
Therefore, it is crucial to understand the transition metals’ role in health and disease
because their dyshomeostasis (deficiency or overloading) is closely related to different
disorders and mainly to neurodegeneration. Research in this field has found that biometals
are tightly regulated because a narrow unbalance provokes diseases such as PD. Therefore,
understanding the complexity of the interaction between transition metals and proteins can
shed light on possible neurodegeneration biomarkers for preventing neuronal cell death.
Hopefully, neurodegeneration may be achieved by either supplementing transition metals
when there is a deficiency or using chelating agents to avoid metal overload that induces
neuronal cell death in PD.

The lack of success of metal-chelating agents in PD clinical trials is partly due to the
lack of suitable models for its preclinical testing. So far, there is no animal model combining
chronic exposure to metal ions emulating environmental and occupational exposure and
aging, which may reflect how humans develop PD, as it is a multifactor disorder. PD
animal models, like many others, are short-term, which has enormously contributed to
our understanding of the mechanism implicated. However, it is time to combine the aging
process with other risk factors, including environmental and occupational exposure, to
develop more accurate PD animal models so that their translation into clinical trials leads
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to a higher probability of success. Why have we not used long-term models? The answer is
simple; the main limitation is the time, followed by the increased resources required to feed,
treat, and take care of mice. However, this approach may be fundamental to improving our
chances of success in clinical trials.
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