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Abstract: Sesame is a promising oilseed crop that produces specific lignans of clinical importance.
Hence, a molecular description of the regulatory mechanisms of lignan biosynthesis is essential for
crop improvement. Here, we resequence 410 sesame accessions and identify 5.38 and 1.16 million
SNPs (single nucleotide polymorphisms) and InDels, respectively. Population genomic analyses
reveal that sesame has evolved a geographic pattern categorized into northern (NC), middle (MC),
and southern (SC) groups, with potential origin in the southern region and subsequent introduction to
the other regions. Selective sweeps analysis uncovers 120 and 75 significant selected genomic regions
in MC and NC groups, respectively. By screening these genomic regions, we unveiled 184 common
genes positively selected in these subpopulations for exploitation in sesame improvement. Genome-
wide association study identifies 17 and 72 SNP loci for sesamin and sesamolin variation, respectively,
and 11 candidate causative genes. The major pleiotropic SNPC/A locus for lignans variation is located
in the exon of the gene SiNST1. Further analyses revealed that this locus was positively selected in
higher lignan content sesame accessions, and the “C” allele is favorable for a higher accumulation of
lignans. Overexpression of SiNST1C in sesame hairy roots significantly up-regulated the expression
of SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most of the monolignol biosynthetic genes.
Consequently, the lignans content was significantly increased, and the lignin content was slightly
increased. Our findings provide insights into lignans and lignin regulation in sesame and will
facilitate molecular breeding of elite varieties and marker-traits association studies.

Keywords: sesame; genome resequencing; lignan; genomic signatures; NST1; GWAS

1. Introduction

Sesame (Sesamum indicum L., 2n = 26) is a member of the Pedaliaceae family and one
of the most important oilseed and industrial crops worldwide. It is primarily cultivated in
subtropical and tropical regions in Asia, Africa, Latin America, and Central America [1].
Sesame seeds are promising sources of nutritional components and nutraceuticals for
food and pharmacological industries [2,3]. It contains specific lignans, including sesamin,
sesamolin, sesaminol, sesamol, etc., that have shown diverse physiological abilities such
as anti-cancers, antioxidative, anti-diabetes, anti-inflammatory, anti-hypertensive, anti-
proliferative, anti-melanogenesis, anti-depression and memory loss, anti-osteonecrosis,
and anti-osteoporosis [4–9]. Although it is documented that sesame is the one of the most
ancient oilseed crops known to humans, its origins are still a subject of debate, and its
progenitor also is not determined [1,10–12]. Yu et al. [13] found that the domestication of
sesame in China and India might have occurred independently. Other reports indicate
that sesame was introduced in China in 2200 BC during the Han dynasty [14]. China is
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one of the leading countries in terms of sesame production and consumption (www.fao.
org/statistics/en/, accessed on 22 November 2021) and has collected and preserved over
7000 accessions in its germplasms [15]. However, sesame’s domestication, population
structure, and genetic diversity remain largely unknown.

The release of the sesame reference genome via de novo assembly has allowed genomic
studies on sesame biology [12]. The sesame reference genome quality has been improved via
the resequencing of 430 recombinant inbred lines [16], which has provided a solid basis for
investigating the molecular mechanisms controlling critical quality and agronomic traits of
sesame such as high yield, high oil and lignans contents, seed coat color, plant architecture,
and melatonin. Significant loci and candidate causative genes underlying these traits have
been identified except for lignans variation [15,17–19]. The sesame-specific lignans seem
to have evolved from defense and accommodation to biotic stresses [20–22], suggesting
their underlying genes were positively selected during domestication and breeding [13].
Therefore, identifying adaptation-related genes may help understand sesame evolution [23].
The domestication and subsequent breeding of crops generate selective sweeps, eliminating
or reducing variation amid the nucleotides adjoining a mutation in DNA [24,25]. Although
large-scale genetic variations among diverse accessions of sesame have been reported [15],
the detected genomic differentiation between the subpopulations was very low (FST = 0.02),
and it was impossible to unravel regions under selective sweeps for exploitation in the
crop improvement.

Lignans are a diversified group of phytochemicals that play essential roles in plants’
interactions and adaptations to environmental conditions [26,27]. They are biosynthesized
from phenylalanine via the phenylpropanoid pathway and mostly share the same precur-
sors with lignin [26,28,29]. Most naturally occurring lignans are derived from the oxidative
coupling of E-coniferyl alcohol moieties [26,28,30]. In sesame, the biosynthetic genes of
the major lignans, sesamin and sesamolin have been identified, and their mechanisms of
action elucidated [30,31]. Recently, two laccase (SiLAC1 and SiLAC39) and two peroxi-
dase (SiPOD52 and SiPOD63) family genes were identified as the potential pinoresinol
synthase genes [32]. However, the regulatory mechanisms of lignan biosynthesis in sesame
are largely unknown. The regulation of monolignol biosynthesis is a complex molecular
mechanism that involves diverse transcription factors and phytohormones, among which
NST1/2 detain pivotal roles [33–35]. NST1 and NST2 are master switch regulators of
secondary cell wall formation through interaction with diverse family genes, mostly Myb
transcription factors [33–35]. Therefore, deciphering the complex regulatory network of
lignan biosynthesis in sesame is of particular interest for biotechnological applications.

Whole-genome resequencing and population genomic analyses have considerably
enhanced the understanding of crops’ genetic variation and domestication history and
facilitated marker-traits association studies [36–38]. In the present study, we resequenced a
worldwide collection of sesame, including 316 accessions from various geographical regions
in China and 94 accessions from twenty-eight countries. We investigated the population
structure and genetic diversity and revealed key candidate genes under selective sweeps in
subpopulations. In addition, the master regulatory gene of lignan and lignin biosynthesis
was discovered based on a genome-wide association study (GWAS) and gene expression
analyses and validated in sesame hairy roots.

2. Results
2.1. Genome-Wide Variation and Population Structure

We resequenced 410 sesame germplasm samples, including 316 collected from south-
ern, middle, and northern China and 94 collected from 28 countries worldwide representing
various geographical regions (Table S1). The population included 329 landraces and 81 mod-
ern cultivars. The resequencing generated a total of 3.533 Tb of raw data, with an average
of 8.617 Mb per accession (Table S2). The average sequencing depth was 24.93×, and the
genome coverage 96.08%. The GC content varied from 36.41 to 40.98% (Table S2). After
mapping against the sesame reference genome, we obtained a final set of 5,385,583 single-
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nucleotide polymorphisms (SNPs) and 1,163,197 insertion-deletion (InDels). The SNPs and
InDels are distributed unequally on the 13 chromosomes of the sesame genome (Figure 1a).
Figures of 70.45, 10.70, and 4.45% of the SNPs were located in intergenic, intronic, and
exonic regions, respectively (Figure 1c). Among the SNPs identified in coding sequences,
45.58% were synonymous SNPs and 52.79% non-synonymous SNPs (Figure 1b). The non-
synonymous to synonymous SNPs ratio and the transition/transversion (Ts/Tv) ratio were
1.15 and 1.907, respectively (Table S3).

The SNP-based phylogenetic analysis classified the 410 sesame accessions into three
major monophyletic clades which correlated with their geographical distribution (Figure 1d;
Table S1). Group I (61 accessions), II (92 accessions), and III (257 accessions) included all
the accessions from southern, northern, and central regions, respectively. Therefore, they
were labeled SC (southern cluster, located south of 24◦ N latitude), NC (northern cluster,
located north of 32–34◦ N latitude), and MC (central or middle cluster, located between
SC and NC), respectively, to further identify selective sweeps. The landraces and modern
cultivars exhibited admixture and were not separated on the phylogenetic tree (Figure 1d;
Table S1). The principal component analysis (Figure 1e) and population structure analysis
with different K-means levels (Figures 1f and S1) results were identical to the phylogenetic
analysis results (Figures 1f and S1).

2.2. Genetic Diversity in Sesame Genomes

To explore genetic divergence among the sesame subpopulations, we performed a
pairwise population differentiation (FST) across the genome between each group (Figure 2a).
The FST value (FST = 0.068) between MC and NC groups is the smallest. The FST value
between the SC and MC groups (FST = 0.156) was not too much different from that between
the SC and NC groups (FST = 0.159). These results are consistent with the population
structure and indicate that the MC and NC group populations have the closest distance
and might evolve from the southern subpopulation. We then examined the genetic di-
versity by computing each group’s nucleotide diversity (π). As we expected, the genetic
diversity of the SC subpopulation (π = 1.62 × 10−3) is higher than that of the MC group
(π = 1.07 × 10−3) and the NC group (π = 1.09 × 10−3) (Figure 2a). In addition, we explored
Tajima’s D values in each group and found a decrease in the average value from southern
to northern regions (Figure 2c). We further investigated the linkage disequilibrium (LD)
based on r2 in the different groups (Figure 2b and Table S4). We found that the distance,
when dropped to half of the maximum value, is 89.3 kb for the entire sesame population,
which is slightly higher than that reported previously [15]. Finally, we investigated the
directions of the gene flow between the subpopulations. The results indicated a “south to
middle and north migration model” (Figure 2d,e).

2.3. Genomic Selected Signals in MC and NC Groups

To identify potential candidate genes for exploitation in sesame improvement, we
searched for candidate selective genomic regions in MC and NC subpopulations using SC
as a background population and adopting the criteria of log2(π ratio) > 2.5 and FST > 0.45
(Figure 3a and Figure S3a). We identified 120 and 75 putative selective sweep regions
comprising 968 and 571 genes for MC and NC groups, respectively (Tables S5 and S6).
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Figure 1. Population structure of sesame accessions in this study. (a) Chromosomal distribution of 
the genomic variants. From the outer to the inner are chromosomes, gene density, SNP density, 
InDels density, and nucleotide diversity. (b,c) Classification of the SNPs. (d) Phylogenetic tree of all 
accessions inferred from whole-genome SNPs filtered by linkage disequilibrium (LD) r2 < 0.05; The 
three major groups (Southern cluster, SC; Northern cluster, NC; and middle or central cluster MC) 
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Figure 1. Population structure of sesame accessions in this study. (a) Chromosomal distribution
of the genomic variants. From the outer to the inner are chromosomes, gene density, SNP density,
InDels density, and nucleotide diversity. (b,c) Classification of the SNPs. (d) Phylogenetic tree of all
accessions inferred from whole-genome SNPs filtered by linkage disequilibrium (LD) r2 < 0.05; The
three major groups (Southern cluster, SC; Northern cluster, NC; and middle or central cluster MC)
are colored in purple, light blue, and blue, respectively. (e) Principal component analysis (PCA) plot
for all the sesame accessions; dot colors correspond to the phylogenetic tree grouping. (f) Population
stratification based on STRUCTURE for K = 3. Each color represents one ancestral population. Each
accession is represented by a bar, and the length of each colored segment in the bar represents the
proportion contributed by that ancestral population.
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Figure 2. Genetic diversity and gene flow among the subpopulations. (a) The diversity (π) and
genetic distance (FST) across the groups, where green, light blue, and blue colors indicate SC, NC,
and MC, respectively; the radius of pie: genetic diversity; and dashed line length: FST value between
two groups. SC, NC, and MC represent the subpopulations from the genetic diversity analysis.
(b) Linkage disequilibrium (LD) differences between subpopulations. (c) Distribution of Tajima’s
D values. The white line indicates the mean. (d) Most frequently found maximum-likelihood trees
for gene flow among the subpopulations by Treemix. (e) The residual fit values obtained from the
maximum likelihood tree (d). The plot was constructed using the normalized residual covariances by
dividing the residual covariance value between each pair of populations by the standard deviation
between all sample pairs. On the right is the color ruler.
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Figure 3. Selective sweeps and functional characterization of positively selected genes in MC group.
(a) Selection signatures in MC subpopulation. Each red dot indicates a positive selectivegenomic
region. (b) KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis and enrichment results of
genes detected under selective genomic regions in MC subpopulation. The color ruler and p-values
are shown on the right.
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Gene ontology (GO) enrichment analysis for genes selected in the MC subpopu-
lation were mostly related to “structural molecule activity” (GO:0005198), “iron-sulfur
cluster binding” (GO:0051536), “metal cluster binding” (GO:0051540), and “protein fold-
ing” (GO:0006457) (Figure S2). For the selected genes in NC, the GO terms “transferase
activity, transferring phosphorus-containing groups” (GO:0016772), “hydrolase activity,
acting on glycosyl bonds” (GO:0016798), “hydrolase activity, hydrolyzing O-glycosyl
compounds” (GO:0004553), and “carbohydrate metabolic process” (GO:0005975) were pre-
dominant (Figure S3b). KEGG enrichment analysis assigned the MC-selected genes mainly
to carbon metabolism, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis
(Figure 3b). Meanwhile, the NC-selected genes were primarily assigned to ribosome, car-
bon metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, and purine
and pyruvate metabolism (Figure S3c). We then constructed a Venn diagram among the
two sets of selected genes and identified 184 genes (Figure S4). These genes encode diverse
enzymes essential for plant development (Table S7).

2.4. Genome-Wide Associations for Lignans Variation in Sesame

Sesame contains two major and clinically important lignans, sesamin and sesamolin.
To dissect the genetic basis of lignans variation in sesame, we cultivated all the 410 acces-
sions in six different environments in Guangxi (GX, 2014), Wuhan (WH, 2014 and 2018),
Hunan (HN, 2014), Shandong (SD, 2018), and Zhumadian (ZM, 2019). Seed samples from
each location were analyzed by HPLC (high-performance liquid chromatography). The
summary of the phenotypic data is presented in Table S8. In general, the sesamin and
sesamolin contents varied from 0.06 to 10.65 mg/g and 0.05 to 4.77 mg/g, respectively. The
coefficient of variation of sesamin ranged from 33.92 to 45.18%, while that of sesamolin
ranged from 21.41 to 28.88%. The frequency distribution of the two traits and their cor-
relations across the six environments are shown in Figure S5. As sesamin and sesamolin
contents showed considerable variation, we fitted their values in the six environments to
obtain a BLUP (best linear unbiased predictor) value, using a linear mixed model in the
lme4 R package. To examine the influence of genetic variation on sesamin and sesamolin
contents, we compared their respective values in the subpopulations (Figure 4a,b). We
found no significant difference in the sesamolin content of the three groups (Figure 4b).
However, the sesamin content in MC and SC was significantly (p < 0.001) higher than
in NC (Figure 4a). We further investigated the population differentiation (FST) between
high-sesamin (HS, value > 6 mg/g) and low-sesamin (LS, value < 1 mg/g) accessions.
The FST analysis revealed significant divergent genomic regions comprising 2119 genes
(Figure 4c; Tables S9 and S10). These genes were mainly related to metabolic processes,
especially oxidoreductase activities and cellular processes (Table S10 and Figure S6). We
searched for candidate selective regions for HS and LS content. We identified 41 and
65 putative selective genomic regions harboring 363 and 343 genes for HS and LS content,
respectively (Tables S11–S14). KEGG annotation and enrichment analysis assigned the HS
accessions selective genes mainly to plant-pathogen interaction, peroxisome, pentose and
glucuronate interconversions, mRNA surveillance pathway, glycerolipid metabolism, and
carbon metabolism (Figure S7a). While the LS accessions selective genes were principally
assigned to metabolic pathways and biosynthesis of secondary metabolites (Figure S7b).
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Figure 4. Genome-wide association for sesamin and sesamolin variation. (a,b) Boxplot of sesamin
and sesamolin contents variation among the subpopulations, respectively. MC, NC, and MC indicate
the different subpopulations. (c) Candidate selective genomic regions in high-sesamin content sesame
accessions. FST stands for genetic differentiation. (d,e) Manhattan and QQ plots for GWAS analysis for
sesamin and sesamolin, respectively. The dashed blue line indicates the threshold −log10(p) = 6. (f) LD
(linkage disequilibrium) heat map around SiNST1 (SINPZ110015). The dotted line from subfigures e and
d to f show the position of SiNST1 on the sesame genome. (g,h) Mining of favorable allele for sesamin
and sesamolin contents, respectively; accessions with “C” allele, 362 and “A” allele, 34. (i) Phylogenetic
analysis of SiNST1 and NST1 from other species. *** p < 0.001; **** p < 0.0001, t-test.
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We performed a GWAS on the two traits via the MLM (mixed linear model) imple-
mented in the EMMAX (Efficient Mixed-Model Association eXpedited) software. The re-
sults showed that the model was adequate for analyzing these important traits (Figure 4d,e).
In total, 17 and 72 significant SNP loci (threshold −log(p) value > 6) were identified for
sesamin and sesamolin, respectively (Table S15). Interestingly, most of the loci locate at
our previously detected QTL positions of the two lignans [39]. The major association
signal (Chr11-142842) was pleiotropic for the two traits (Figure 4d,e) and is located in the
exon of the gene SINPZ1100015 (SiNST1/SIN_1005755), which encodes an NAC domain-
containing protein 43. It is homologous to the Arabidopsis NST1, which is a master regulator
of secondary cell wall deposition through the control of monolignol biosynthesis [33–35].
SiNST1 has shown significant associations with variations in oil, seed coat thickness, and
phytosterol contents in sesame [15,40]. In addition, we screened for candidate genes within
the LD windows of the other associated loci. By combining gene function annotation and
expression patterns in two contrasting sesamin content varieties, we selected ten additional
candidate causative genes for lignans variation in sesame (Figure S8 and Table S16).

Interestingly, the locus of SiNST1 exhibited significant divergence between HS and LS
sesame accessions (Figure 4c and Table S10). The results of the regional association (LD)
analysis of SiNST1 ± 10 kb corroborate with the GWAS analysis (Figure 4f). SiNST1 is
primarily expressed in sesame seeds and capsules (Figure S9A). The non-synonymous SNP
locus (Chr11-142842) consists of “C” allele change into “A” conducting amino acid change
from Thr (threonine) to Lys (lysine). Superior allele analysis showed that the common allele
“C” significantly increased (p < 0.0001) the sesamin and sesamolin contents than the variant
allele “A” (Figure 4g,h). qRT-PCR analysis also showed that the “C” allele is favorable for
lignans biosynthesis during seed development (Figure S9B). In sesame accessions with
the “C” allele, SiNST1 is highly expressed at the key stages (10 to 20 DPA) of sesamin and
sesamolin biosynthesis [12,30,41]. While in sesame accessions with the “A” allele, SiNST1
is mostly expressed at the early stages of seed development. Further, we searched for
the coding sequence (CDS) of homologs of SiNST1 in other crops via NCBI. The CDS of
SiNST1 consists of 376 amino acids (aa). Phylogenetic analysis clearly separated NST1
from monocots and dicots. On the phylogenetic tree, SiNST1 clustered closely to NST1 in
Solanum tuberosum and S. lycopersicum (Figure 4i).

2.5. SiNST1 Is a Master Regulator of Lignans and Lignin Biosynthesis in Sesame

Since NST1 is reported as a master regulator of lignans and lignin biosynthesis in
plants by interacting with hormonal signals and MYB transcription factors, we explored the
cis-acting elements in the promoter region of SiNST1 and PSS (piperitol/sesamin synthase).
The results showed that SiNST1 contains mainly MYB binding, light responsiveness, and
hormone-related elements (Table S17). PSS primarily contains MYB recognition elements
and MeJA (methyl jasmonate) responsive elements (Table S18). We further performed
a WGCNA (weighted gene correlation analysis) using the expression values (FPKM) of
SiNST1, the 287 sesame MYB genes (SiMYBs) [42], and the 25 predicted CYP81Q1 genes [12],
including PSS. As shown in Figure 5a, these genes were classified into four subgroups:
blue; brown; grey; and turquoise modules. The blue module exhibited the highest positive
correlation (r = 0.31) with sesamin and included SiNST1 (Figure 5b). SiNST1 appeared as
the hub gene in this module and showed co-expression relationships with 85 SiMYBs and
four CYP81Q1-related genes (Table S19). We found no direct interaction between SiNST1
and PSS. PSS was classified into the turquoise module, which also exhibited a positive
correlation (r = 0.19) with sesamin content (Figure 5b). The top ten genes in this module
included seven MYBs and three CYP81Q1 genes (Table S20).



Int. J. Mol. Sci. 2023, 24, 1055 9 of 19
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. WGCNA results of SiNST1, SiMYBs, and predicted CYP81Q1-related genes in developing 
sesame seeds. (a) Classification of the analyzed genes in four modules represented by the blue, 
brown, grey, and turquoise colors. The genes with higher weight values have the most extended 
height on the dendrogram. (b) Heatmap of the correlation of WGCNA modules with sesamin con-
tent. The ordinate and abscissa indicate modules and the trait (sesamin), respectively. The green or 
red colors indicate the correlation coefficients (the top number in each cell). On the right is the color 
ruler. The bottom numbers (numbers in brackets) indicate the p-values. 

To validate the potential function of SiNST1, we overexpressed SiNST1C in sesame 
hairy roots (Figure S10). The SiNST1C-overexpressing (OE) sesame hairy roots exhibited a 
significant increase (P < 0.01) in the content of sesamin and sesamolin (Figure 6e). As 
lignans and lignin share the same biosynthetic pathway, we also evaluated the lignin con-
tent in the sesame hairy roots. The results indicated a slight increase in the lignin content 
of OE compared to the control, but the difference was not significant (Figure 6d). To ac-
quire insights into the regulatory mechanism of SiNST1, we investigated via qRT-PCR the 
expression levels of sesame monolignols biosynthetic genes, co-expressed SiMYBs pre-
dicted to involve lignin or phenylpropanoid biosynthesis, and PSS. The results showed 
that the SiNST1 overexpression significantly influenced the expression of monolignol bi-
osynthetic genes (Figure 6a). The expression levels of SiPAL (phenylalanine ammonia-
lyase), SiC4H (cinnamate 4-hydroxylase), SiC3H (coumarate 3-hydroxylase), SiCCR (cin-
namoyl-CoA reductase), SiCOMT (caffeic acid 3-O-methyltransferase), and SiCCaAOMT 
(caffeoyl-CoA O-methyltransferase), were significantly increased. Among the investi-
gated MYB genes, SiMYB58, SiMYB209, SiMYB134, and SiMYB276 exhibited a significant 
increase in their expression levels in OE (Figure 6b). The expression level of PSS in OE 
was also significantly increased (Figure 6c). 

Figure 5. WGCNA results of SiNST1, SiMYBs, and predicted CYP81Q1-related genes in developing
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indicate the correlation coefficients (the top number in each cell). On the right is the color ruler. The
bottom numbers (numbers in brackets) indicate the p-values.

To validate the potential function of SiNST1, we overexpressed SiNST1C in sesame
hairy roots (Figure S10). The SiNST1C-overexpressing (OE) sesame hairy roots exhibited
a significant increase (p < 0.01) in the content of sesamin and sesamolin (Figure 6e). As
lignans and lignin share the same biosynthetic pathway, we also evaluated the lignin
content in the sesame hairy roots. The results indicated a slight increase in the lignin
content of OE compared to the control, but the difference was not significant (Figure 6d). To
acquire insights into the regulatory mechanism of SiNST1, we investigated via qRT-PCR the
expression levels of sesame monolignols biosynthetic genes, co-expressed SiMYBs predicted
to involve lignin or phenylpropanoid biosynthesis, and PSS. The results showed that the
SiNST1 overexpression significantly influenced the expression of monolignol biosynthetic
genes (Figure 6a). The expression levels of SiPAL (phenylalanine ammonia-lyase), SiC4H
(cinnamate 4-hydroxylase), SiC3H (coumarate 3-hydroxylase), SiCCR (cinnamoyl-CoA
reductase), SiCOMT (caffeic acid 3-O-methyltransferase), and SiCCaAOMT (caffeoyl-CoA
O-methyltransferase), were significantly increased. Among the investigated MYB genes,
SiMYB58, SiMYB209, SiMYB134, and SiMYB276 exhibited a significant increase in their
expression levels in OE (Figure 6b). The expression level of PSS in OE was also significantly
increased (Figure 6c).
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3. Discussion

We provide comprehensive large-scale genome-wide polymorphism data in sesame, one
of the most ancient oilseed crops with high economic, cultural, nutritional, and therapeutical
values worldwide, especially in East Asia. The 410 sesame accessions resequencing data pro-
vide insights into the population structure and high throughput markers (5.38 and 1.16 million
SNPs and InDels, respectively) for genotype selection and association studies to unveil key
regulatory genes and dissect complex molecular mechanisms underlying agronomical and
quality traits. The non-synonymous to synonymous SNPs ratio was 1.15, which is smaller
than in soybean (Glycine max L., 1.61) [38], castor (Ricinus communis L., 1.39) [43], Tartary
buckwheat (Fagopyrum tataricum L., 1.69) [44], and chickpea (Cicer arietinum L., 1.20) [45].
The transition/transversion (Ts/Tv) ratio of 1.907 for sesame is smaller than that for Tar-
tary buckwheat (2.175) [44] but higher than that for maize (Zea mays L., 1.02) [46], tomato
(Solanum lycopersicum L., 1.75) [47], and black gram (Vigna mungo L., 1.58) [48].

The domestication and evolution histories of sesame are unclear and are expected
to be explored after the whole-genome sequencing of wild sesame plants [1]. Here, our
investigations (phylogenetic and PCA analyses) show that sesame accessions were geo-
graphically different and exhibited a pattern of SC, MC, and NC. The landraces and modern
cultivars exhibited admixture, which is consistent with the previous report by Wei et al. [15].
The population differentiation (FST), genetic diversity, and gene flow analyses indicated
that the SC subpopulation is the oldest sesame population, and the MC and NC clades
emanated from the SC group. The genetic distance (FST) between NC and MC groups was
very low compared to their respective genetic distance with the SC group. The MC and
NC subpopulations have relatively low genetic diversity (π) compared with the SC group.
These results suggest that the SC subpopulation might be relatively close to wild sesame
species. Moreover, the variation in genetic diversity suggests different intensities of genes
selection during geographical differentiation. We identified 184 common genes under
significant selective genomic regions in MC and NC groups. These genes encode diverse
enzymes essential for plant development and may represent target genes for improving
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sesame quality traits and environmental adaptation. However, these potential environmen-
tal adaptation-related genome markers and candidate genes need to be confirmed via a
Genome-Environment Association (GEA) and subsequently validated through functional
genomics studies [49,50]. Otherwise, as the studied population contained majority acces-
sions from China, our findings could imply that sesame introduction and domestication
in China commenced in a locality in southern China and later extended to middle and
northern China. Supportively, similar domestication events have been reported in soybean
and Chinese castor [38,43]. This extensive genomic variation and substantiation of genetic
differentiation amid regional subpopulations will favorize structured association mapping
and the design of breeding programs that will seize the entire diversity in sesame [51–53].

Sesame lignans have become compounds of considerable scientific research interest
due to their biological properties and huge importance [54–57]. Accordingly, the main cur-
rent objective in sesame breeding is to create elite varieties containing high oil and lignans.
The genetic variants governing natural variation in oil content and composition have been
explored [15,58,59]. Selective sweeps analysis identified 363 positive selected genes in high-
sesamin content sesame accessions. Functional analysis assigned these genes mostly in
plant-pathogen interaction, peroxisome, pentose and glucuronate interconversions, mRNA
surveillance pathway, glycerolipid metabolism, and carbon metabolism. These findings
indicate that sesamin and sesamolin might be primarily involved in sesame biotic stress tol-
erance mechanisms. We found that the sesamin and sesamolin contents varied considerably
among the six environments, and the content of sesamin significantly decreased from SC to
NC. These results show genetic selection, domestication, and environmental conditions
have significant impacts on sesame agronomic traits. We mainly focused on association
analysis for sesamin and sesamolin variation and identified significantly associated loci and
major candidate effect genes. The genetic polymorphism within the exonic region of the
gene SiNST1 may contribute substantially to lignan variation in sesame. Favorable allele
mining provides important resources for marker-assisted selection. SiNST1 encodes for an
NAC domain-containing protein 43 and was positively selected in the high-sesamin content
sesame accessions. Its homolog AtNST1 in Arabidopsis is a master switches transcriptional
regulator of SCW (secondary cell wall) formation by interacting with some MYB genes and
hormonal signals [33–35]. Phylogenetic analysis clearly separated NST1 from monocots
and dicots, indicating the gene might play different functions in the two categories of
Angiosperm. On the phylogenetic tree, SiNST1 clustered within dicots closely to NST1 in
Solanum tuberosum and S. lycopersicum, indicating it might fulfill similar functions in sesame.
Cis-acting elements analysis revealed that the promoter region of SiNST1 mainly contains
MYB binding, light responsiveness, and hormone-recognizing elements. These results
suggest that SiNST1 might regulate sesamin and sesamolin biosynthesis through inter-
plays with MYB genes and phytohormones as per its homologous. Consistency, WGCNA
revealed that SiNST1 might interact with diverse SiMYBs in developing sesame seeds,
confirming it might regulate diverse developmental processes in sesame. However, no
direct interaction between SiNST1 and PSS was noticed. SiNST1 is also significantly as-
sociated with seed coat thickness, phytosterol content, and oil content in sesame [15,40].
The non-synonymous SNP locus in SiNST1 consists of “C” allele change into “A” resulting
in an amino acid change from Thr (threonine) to Lys (lysine). Sesame accession with the
“C” allele accumulated significantly higher sesamin and sesamolin compared to accessions
with the “A” allele. Supportively, gene expression analysis showed that SiNST1C is mainly
expressed during lignan biosynthesis stages of 10 to 20 DPA, while SiNST1A is primarily
expressed at seed coat development stages (early stages) [12,15,30]. These findings show
that SiNST1C is a potential target for improving nutrient content in sesame, while SiNST1A

may favorize seed coat thickness [15]. Together, our findings suggest that the thicker the
sesame seed, the less oil and lignan may it contain. However, it should be noted that only
35 accessions with the “A” allele were contained in the studied population. Therefore, a
future study is required to analyze the impact of nucleotide variability of SiNST1 on sesame
seed quality traits.
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Since an efficient genetic transformation method for the sesame plant is not yet es-
tablished, we overexpressed SiNST1C in sesame hairy roots to investigate its regulatory
mechanisms. The overexpression of SiNST1C significantly induced the expression of
SiMYB58, SiMYB209, SiMYB134, SiMYB276, and most monolignol biosynthetic genes.
Consequently, the SiNST1C -overexpressing sesame hairy roots exhibited an increase in
lignan and lignin contents. However, the increase in the lignin content was not signifi-
cant. These findings indicate that SiNST1 plays a master switches function in regulating
SCW formation and lignan biosynthesis in sesame by interacting with these four SiMYBs.
Moreover, we identified ten other candidate genes for sesamin and sesamolin variation and
seven SiMYBs that showed significant co-expression correlation with PSS in the turquoise
module. These seven SiMYBs might be the key regulator of PSS expression. Therefore,
further functional characterization of SiNST1 and these genes in developing sesame seeds
via subsequent knockout and overexpression is required when a genetic transformation
protocol will be established to dissect this complex molecular regulatory network for
biotechnological applications. Lignans and lignin are principally biosynthesized from the
oxidative coupling of E-coniferyl alcohol, a critical reaction catalyzed by dirigent proteins
(DIRs) [26,28,60,61]. Therefore, genome-wide characterization of the DIR gene family and
identification of SiDIRs that may promote lignan accumulation in sesame are required for
targeted balancing of the oxidation coupling in favor of lignan biosynthesis. In addition,
identifying key quality-related candidate genes in wild sesame accessions will offer sup-
plementary resources for sesame improvement. For instance, Wang et al. have found that
the gene CYP92B14 promotes high sesamolin accumulation in wild allotetraploid sesame
(S. schinzianum) [62]. This gene has to be functionally characterized for exploitation in
genomic-assisted breeding of high sesamin and sesamolin content sesame varieties.

4. Materials and Methods
4.1. Plant Materials and Genome Sequencing

The 410 sesame accessions (329 landraces and 81 modern cultivars) were given by the
National Mid-term Gene Bank, Oil crops Research Institute, Chinese Academy of Agricul-
tural Sciences (OCRI, CAAS), Wuhan, China. The population is composed of 316 accessions
from diverse geographical regions in China and 94 accessions from twenty-eight other
countries (Table S1). Related to the type of variety, there were 329 and 81 landraces (local
varieties) and modern cultivars (improved via breeding), respectively. Each accession
sample was maintained via cultivation and self-pollination for over three generations
prior to sequencing and phenotypes evaluation. A representative plant of each accession
was chosen for the genome sequencing. Genomic DNA was extracted from leaves at the
seedling stage via the CTAB method [63] and following the manufacturer’s instructions.
The sequencing library was constructed from high-quality DNA with an insert size of
~350 bp. The paired-end sequencing of each accession library was carried out on the
Illumina HiSeqTM/MiSeqTM platform (Novogene Co., Ltd., Beijing, China).

4.2. Sequence Alignment, Variants Detection, and SNP Annotation

All the paired-end reads were mapped onto the sesame reference genome (version
2.0) [16] using the BWA (Burrows-Wheeler Aligner) software [64] with default parameters in
order to locate the position of each read on the sesame genome. Next, we filtered out the low-
quality (MQ < 20) reads with the SAMtools (v1.1) [65] program. We sorted and discarded
PCR duplicates to construct a bam file index using Picard Tools (http://broadinstitute.
github.io/picard/; v1.118, accessed on 2 March 2021). Finally, we called the genome
variants (SNPs and InDels) with GATK (Genome Analysis Toolkit) [66], as described by
Fan et al. [43]. To evaluate the quality of the identified SNPs, we randomly selected fifteen
sesame accessions and repeated the whole-genome sequencing. The consistency of the
results was approximately 99.8%.

The SNP annotation was conducted according to the sesame reference genome with
ANNOVAR [67]. First, the SNPs were classified into upstream or downstream regions,

http://broadinstitute.github.io/picard/
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intronic, exonic, intergenic, and splicing sites. Further, SNPs located in the exonic areas
were grouped into synonymous and non-synonymous SNPs.

4.3. Population Genetic Analyses

The effective, high-quality SNPs were sorted using the criteria of Min depth ≥ 8x, MAF
(Minor allele frequency) ≥0.05, and missing rate ≤0.2. Phylogenetic, PCA, structure, and
LD analyses allow the examination of the evolutionary history or relationship between indi-
viduals of a population and characterize the population stratification and genetic variation.
We constructed the approximate maximum-likelihood tree using the general time-reversible
model in the TreeBeST (http://treesoft.sourceforge.net/treebest.shtml, accessed on 12 June
2021) software [68]. The population structure analysis was conducted in the Admixture
program [69] with various K values. PCA (principal component analysis) was performed
in the GCTA software [70]. The dataset used to conduct the PCA was screened for quality
using the criteria of scaffold length >100 kb and (QUAL in the VCF file) <2000. Linkage
disequilibrium (LD) decay analysis was performed in the PopLDdecay software [71].

To gain insight into the genetic diversity of the sesame population, we computed
the genetic distance (FST) and nucleotide diversity (π) using VCFtools [72] with a 10 kb
nonoverlapping window slid across each scaffold. The FST between clades was evaluated
using the average value of all 10 kb sliding windows. The selective sweeps of geographical
differentiation of SC subpopulation against other groups were revealed by considering
both the FST value (FST > 0.45) and the π ratio (log2(π ratio) > 2.5) in each sliding window,
with a 5% cutoff [43]. The intergroup gene flow analysis was performed in Treemix [73],
using a composite-likelihood approach. We defined the root via the root parameter and
tested for many migration events to select the most frequent ones with significant (p < 0.05)
gene flow.

4.4. Gene Ontology (GO) and KEGG Analyses

The gene annotation was conducted with PFAM terms using InterProScan 5 (http:
//www.ebi.ac.uk/Tools/pfa/iprscan5/, accessed on 19 September 2020) as per Hazzouri
et al. [52]. Functional annotation and categorization of genes were achieved through gene
ontology (GO) and KEGG analyses. The GO terms and the KEGG (Kyoto Encyclopedia of
Genes and Genomes) analyses were carried out using AutoFact [74] and the Automated
Annotation Server (KAAS; http://www.genome.jp/tools/kaas/, accessed on 9 August
2021), respectively. The ggplot2 package in R was used to sort the significant terms
(p-value < 0.05) [75].

4.5. Phenotyping

The two primary lignans in sesame, sesamin and sesamolin, were investigated in six
environmental conditions located in China, including Guangxi (GX, 2014), Wuhan (WH,
2014 and 2018), Hunan (HN, 2014), Shandong (SD, 2018), and Zhumadian (ZM, 2019).
Wuhan belongs to the Yangtze river valley (southern China) with a warm and temperate
climate. Zhumadian belongs to the Huang-Huai river valley (northern China) with a humid
subtropical climate. Hunan and Guangxi are located at southern China with a subtropical
humid monsoon and tropical monsoon climates, respectively. Shandong has a temperate
monsoon climate. HPLC analysis of the sesamin and sesamolin contents in seed samples
was carried out as previously reported [39,76]. The phenotypic data were analyzed with
GraphPad.prism V. 9.0.0121 (GraphPad Software Inc., La Jolla, CA, USA).

4.6. GWAS Analysis and Candidate Genes Identification

The association analysis was carried out with the EMMAX (Efficient Mixed-Model
Association eXpedited) program via the mixed linear model (MLM) [77], in order to uncover
genetic markers that drive lignan variation in sesame. The significant association threshold
was set at −log10p > 6. The Manhattan and QQ plots were constructed in R using the
package “qq-man” [78]. The candidate genes in LD windows (±89 Kb) were selected

http://treesoft.sourceforge.net/treebest.shtml
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through the integration of gene function annotation, non-synonymous SNPs, and gene
expression analysis. Finally, we performed pairwise LD correlation analysis to confirm
the major significant associated locus. The pairwise LD correlations analysis of the major
candidate causative gene was carried out with LDBLockShow software [79].

4.7. Cis-Acting Elements and Phylogeny Analyses

Cis-acting elements prediction in the 2000 bp upstream promoter region of the tar-
geted genes was achieved with PLANTCARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/, accessed on 21 November 2021), in order to predict their respective potential
functions. The protein sequence of SiNST1 homolog in Glycine max (XM_003548125), Arabidop-
sis thaliana (NM_130243), Brassica napus (XM_013895547), Triticum aestivum (XM_044585881),
Oryza sativa (XM_015793488), Sorghum bicolor (XM_002436372), Zea mays (XM_008650556),
Arachis hypogaea (XM_025776021), Gossypium hirsutum (XM_016853342), Vitis vinifera
(XM_002279509), Solanum lycopersicum (XM_004248375), and S. tuberosum (XM_015310959)
were downloaded by blast from NCBI. These species were selected to represent monocots
and dicots and based on previous studies [33–35]. The alignment and the phylogenetic
analysis were performed with the MEGA X software [80].

4.8. WGCNA Analysis

Weighted gene co-expression network analysis (WGCNA) is a system biology method
widely used to reveal correlation patterns among genes and identify candidate genes
for specific agronomic traits. The WGCNA was conducted using the expression values
(FPKM) of SiMYBs [42], predicted CYP81Q1 genes [12], and SiNST1. The expression values
were extracted from available RNA-seq data of two sesame accessions (Zhongzhi16 and
ZZM2748) with contrasting lignans content. The co-expression analysis was performed
with the WGCNA package in R (version 4.0.2) [81].

4.9. Hairy Roots Transformation and Culture

The coding sequence of SiNST1 was cloned (primers: F-AGAAGAGGGCTGGGTGGTT
and R-GGATGACGAGTTGGGGCTAT) from Zhongfengzhi1 (harboring the favorable al-
lele “C” at the locus Chr11-142842) and inserted into the pCAMBIA 1301S vector. The
recombinant vector pCAMBIA 1301S-SiNST1 was transformed to Escherichia coli DH5α
(Weidi Biotechnology, Shanghai, China). After confirming that the transformation sequence
was correct, a suitable amount of plasmid DNA was extracted from the previously trans-
formed E. coli and transferred to Agrobacterium rhizogenes K599 for subsequent generating
transgenic sesame hairy roots following previously described methods [82,83] with some
modifications. Sesame sterile seedlings at two weeks old were wounded and used for the
Agrobacterium infection for 10 min. Next, co-culture in the dark on MS solid medium for
48 h at 25 ◦C, followed by explants washing by MS liquid medium (containing 300 mg/mL
cefotaxime) and sterile water. Then the explants were cultured on MS solid medium con-
taining 200 mg/L timentin in a growth chamber to induce the hairy roots. The induced
single sesame hairy root lines were discarded from explants after two weeks and grown
on MS solid medium containing 200 mg/L timentin for detoxification. The positively
transgenic lines were screened via PCR and grown on MS solid medium for two weeks
under a 16/8 h light/dark photoperiod at 28 ◦C. Hairy roots were harvested, washed, and
dried for sesamin, sesamolin, and lignin evaluation.

4.10. Lignans and Lignin Contents Analyses in the Sesame Hairy Roots

The extraction method of sesamin and sesamolin from the hairy roots was different.
First, 0.3 g of crushed hairy roots was extracted with 5 mL absolute ethanol by shaking
for 2 h. After centrifugation at 5000× g for 5 min, the supernatant was collected, and the
ethanol was evaporated completely at 60 ◦C. Then, the residue was dissolved in 1 mL
ethanol 80% by vortexing for 2 to 3 min. Finally, the extract was filtered and subjected to

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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HPLC analysis. The lignin (acid-soluble) content was evaluated as per Wu et al. via the
Klason method [84].

4.11. qRT-PCR Analysis

Total RNA from the hairy root samples was extracted with the EASYspin Plus plant RNA
Kit (Aidlab, Beijing, China) and, thereafter, reverse transcribed using the HIScript II first-strand
cDNA synthesis Kit (Vazyme Biotechnology, Nanjing, China) following the manufacturer’s
instructions. The qRT-PCR was carried out with ChamQ™ SYBR1 qPCR Master Mix (Vazyme
Biotech, Nanjing, China) on LightCycler480 (Roche, Switzerland) real-time PCR system. The
histone H3.3 gene (SINPZ1301428) was used as an internal control to normalize the transcript
levels [85]. Each gene was analyzed using three biological replicates under the same conditions.
The expression levels of the genes were analyzed using the 2−∆∆CT method [86]. The primers
were designed with Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/, accessed on 18 February
2022) and are listed in Additional file 1: Table S21.

4.12. Statistical Analysis

GraphPad Prism v9.0.0121 (GraphPad 159 Software Inc., La Jolla, CA, USA) was used
for statistical analysis and graphs’ construction. Statistical differences were performed by
independent t-test at p < 0.05.

5. Conclusions

Overall, this study upgraded knowledge of genetic polymorphism in sesame through
whole-genome resequencing of 410 worldwide accessions. Population structure and genetic
diversity analyses classified sesame population into different geographic patterns, consis-
tent with reported potential domestication of the crop from the southern to the middle
and northern regions. The key selected genes in MC and NC subgroups were identified
for exploitation in sesame improvement. Genotype and environmental conditions have
significant impacts on lignan variation in sesame. We identified key loci and 11 candidate
genes governing the major sesame lignans (sesamin and sesamolin) variation. Of them,
SiNST1 is the major underlying gene via a non-synonymous SNP (C/A). The “C” allele
may favorize lignan and other quality traits accumulation, while the “A” may promote
seed coat thickness. Functional characterization in sesame hairy roots revealed that SiNST1
might function in synergetic action with SiMYB58, SiMYB209, SiMYB134, and SiMYB276 to
control monolignol biosynthetic gene expression at transcriptional levels. Our results may
considerably contribute to sesame quality improvement via genomic-assisted breeding.
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