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Abstract: Soybean stem elongation and thickening are related to cell wall composition. Plant mor-
phogenesis can be influenced by blue light, which can regulate cell wall structure and composition,
and affect stem growth and development. Here, using proteomics and metabolomics, differentially
expressed proteins and metabolites of hypocotyls grown in the dark and under blue light were
studied to clarify the effects of blue light on the cell wall structure and carbohydrate metabolism
pathway of soybean hypocotyls. Results showed that 1120 differential proteins were upregulated and
797 differential proteins were downregulated under blue light treatment, while 63 differential metabo-
lites were upregulated and 36 differential metabolites were downregulated. Blue light promoted the
establishment of cell wall structure and composition by regulating the expression of both the enzymes
and metabolites related to cell wall structural composition and nonstructural carbohydrates. Thus,
under blue light, the cross-sectional area of the hypocotyl and xylem were larger, the longitudinal
length of pith cells was smaller, elongation of the soybean hypocotyl was inhibited, and diameter
was increased.
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1. Introduction

Crop lodging is positively correlated with plant height, internodal length, and stem
diameter [1–3]. Stem elongation and thickening of crops are associated with cell wall
relaxation and material composition [4,5]. Lignin, cellulose, hemicellulose, and pectin
are important structural substances of the cell wall that can affect cell wall relaxation and
mechanical strength [6–8]. In buckwheat, lignin content is closely related to lodging resis-
tance, and a higher level of lignin can result in better lodging resistance [9]. Xue et al. [10]
believed that the content of cellulose and hemicellulose in stems decreased with high
planting density, and the mechanical strength of maize stems also decreased. Liu et al. [11]
also believed that, under intercropping conditions, the content of cellulose and lignin in
soybean stems decreased and the stem lodging rate increased. Pectin polysaccharides help
to enhance the mechanical strength of the cell wall [12]. The stiffness of pea cotyledons,
whose cell walls are rich in galactose, is also significantly enhanced by pectin polysaccha-
rides [13]. Nonstructural carbohydrates, such as sucrose, can promote the formation of
cellulose [14,15], thereby increasing stem elasticity and lodging resistance [16]. Ishimaru
et al. [17] showed that higher starch content in the stems of rice varieties resulted in stronger
stems. The accumulation of carbohydrates increases the stem strength of soybean, while
the degradation of nonstructural carbohydrates weakens the stem strength and reduces
the lodging resistance index of soybean [5,18]. Shading can lead to the rapid consumption
of starch and sucrose in soybean stem tips, significantly reduce the cellulose content in
stems, increase the plant height of soybean seedlings, and reduce the lodging resistance
of stems [19,20].
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As an important signal in plant morphogenesis, blue light can promote stem elongation
and thickening of cucumber seedlings [21,22]. However, according to some studies, blue
light can inhibit stem elongation and increase the stem diameter of soybean [23,24], pea [25],
and cucumber seedlings [26,27]. Blue light can increase the lignin and cellulose content
of Arabidopsis seedlings, promote secondary cell wall thickening [28], affect the lignin
monomer synthesis pathway, increase the lignin content of Norway spruce needles, and
inhibit stem elongation [29]. Moreover, blue light was shown to increase the sucrose and
starch contents of upland cotton and rapeseed plantlets and promote stem elongation and
thickening of upland cotton, while it inhibited stem elongation and increased the stem
diameter of rapeseed plantlets [30,31]. According to He et al. [32], blue light enhanced
sucrose transport from leaf to sink and promoted the starch synthesis of potato tuber.
Despite the fact that blue light regulates cell wall composition and carbohydrate content,
the effects of blue light on soybean cell wall structure and carbohydrate metabolic pathway
remain unclear.

The hypocotyl is very sensitive to light [21,26,27,33–35]. It is possible to identify differential
proteins, metabolites, and related pathways using proteomics and metabolomics [20,36–38].
Therefore, in this study, the Chinese soybean plant Heinong 48 was used as experimental
material, and the differential expression proteins and metabolites in soybean hypocotyl
under blue light treatment were identified and analyzed by combining Tandem mass tag
(TMT) quantitative proteomics with non-targeted metabolomics technology. The effects
of blue light on the morphological indexes, physiological characteristics, and anatomical
structure of soybean hypocotyl were clarified; and the regulation of blue light on the cell
wall structure and carbohydrate metabolism pathway of soybean hypocotyl were clarified,
thus providing a theoretical basis for light regulation on soybean stem growth.

2. Results
2.1. Effects of Blue Light on the Anatomical Structure of Soybean Hypocotyls

Table 1 shows the effects of blue light treatment on the length and diameter of soybean
hypocotyls. According to the table, blue light treatment significantly reduced hypocotyl
length by 63.08% compared with darkness. The hypocotyl diameter under blue light was
17.98% greater than that under darkness.

Table 1. Effects of blue light on hypocotyl length and diameter.

Treatments Length (cm) Diameter (mm)

Dark 16.25 ± 0.66a 2.67 ± 0.01b
BL 6.00 ± 0.00b 3.15 ± 0.12a

Values in the table are the mean ± standard error (n = 18). Different letters in the same column indicate significant
differences between treatments (p < 0.05). BL: Blue light. The same below.

Figure 1 shows the transverse sections (a) and longitudinal sections (b) taken with
a 30× optical microscope of soybean hypocotyls grown in darkness and under blue light.
The cross-sectional area of hypocotyls under blue light treatment was larger than that of
hypocotyls grown in the dark (Figure 1a, Table 2). Furthermore, with blue light treatment,
the cortical cells became larger and more regular in shape, the xylem cells increased and
became larger, and the proportion of pith area was small (Figure 1a, Table 2). It can be seen
from the longitudinal section that in the blue light treatment condition, the longitudinal
length of pith cells was smaller, the cortical cells were more regular, and the xylem area
was larger (Figure 1b, Table 2).
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Figure 1. Transverse sections (a) and longitudinal sections (b) of soybean hypocotyls under dark 
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Figure 1. Transverse sections (a) and longitudinal sections (b) of soybean hypocotyls under dark and
blue light treatment. co, cortex; xy, xylem; ph, phloem; pi, pith. Scale bar, 500 µm.

Table 2. Parameters related to anatomical structure of soybean hypocotyls under blue light.

Treatments Length of Longitudinal
Pith Cells (mm)

Area of Pith
Cell (mm2)

Cross-Sectional
Diameter (mm)

Cross-Sectional
Area (mm2)

Ratio of Pith Cell Area to
Cross-Sectional Area (%)

Dark 0.37 ± 0.01a 0.98 ± 0.05b 2.12 ± 0.01b 3.55 ± 0.08b 27.36 ± 1.13a
BL 0.34 ± 0.01b 1.53 ± 0.11a 3.09 ± 0.03a 7.32 ± 0.23a 20.71 ± 0.84b

Values in the table are the mean ± standard error. The length of longitudinally sectioned pith cells was measured
by randomly selecting 60 pith cells from 10 fields of view. Area of pith cell, cross-sectional diameter, cross-sectional
area, and the ratio of pith cell area to cross-sectional area were measured in a cross-sectional map, repeated 10 times.
Different letters in the same column indicate significant differences between treatments (p < 0.05). BL: Blue light.
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2.2. Effects of Blue Light on the Cell Wall Composition and Carbohydrate Contents of
Soybean Hypocotyls

Blue light significantly increased the contents of lignin, cellulose, hemicellulose, and
total pectin in soybean hypocotyls; which were 28.58%, 28.36%, 28.92%, and 239.72% higher
than those in darkness, respectively (Figure 2A). As shown in Figure 2B, blue light signifi-
cantly increased the contents of sucrose and starch in hypocotyls, which were 175.00% and
59.12% higher, respectively, than those in darkness.
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Figure 2. The contents of cell wall composition (A) and carbohydrate (B) of soybean hypocotyl from
plants grown in the dark and under blue light. Values in the table are the mean ± standard error
(n = 5). Different letters in the same indicator indicate significant differences between treatments
(p < 0.05).

2.3. Proteomic Analysis

TMT quantitative proteomics were used for proteomic analysis of soybean hypocotyls
under the conditions of darkness and blue light by LC–MS/MS data acquisition. A total
of 1917 differentially expressed proteins, including 1120 upregulated proteins and
797 downregulated proteins, were screened with fold change > 1.2 times (upregulation
greater than 1.2-fold or downregulation less than 0.83-fold) and a p value < 0.05 (Figure 3
and Table S1).

To understand the functional profile of the differentially expressed proteins, corre-
sponding functional annotations were performed on them through sequence alignment
(BLAST) and GO. The differentially expressed proteins were divided into three categories
based on their functional characteristics: cellular components (CC), molecular function
(MF), and biological process (BP). As shown in Figure 4, in terms of cellular compo-
nents, a majority of differentially expressed proteins were found in the chloroplast stroma,
non-membrane-bounded organelle, microtubule, supramolecular fiber, and polymeric
cytoskeletal fiber. In terms of molecular function, the differentially expressed proteins
were involved in sugar-phosphatase activity, structural constituent of cytoskeleton, cel-
lulase activity, sucrose alpha-glucosidase activity, polygalacturonase activity, xyloglucan:
xyloglucosyl transferase activity and translation elongation factor activity. In terms of
biological processes, the differentially expressed proteins were mainly related to phenyl-
propanoid metabolic process, phenylpropanoid biosynthetic process, secondary metabolite
biosynthetic process, cellulose metabolic process, cell wall organization, lignin catabolic
process, cellulose catabolic process, glucan catabolic process, metabolic process, cell wall
biogenesis, translational elongation, and glucan metabolic process. These results indicated
that treatment with blue light mainly affected the process of cell wall relaxation, synthesis
and decomposition of structural components, and carbohydrate metabolism.



Int. J. Mol. Sci. 2023, 24, 1017 5 of 15

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 15 
 

 

2.2. Effects of Blue Light on the Cell Wall Composition and Carbohydrate Contents of Soybean 
Hypocotyls 

Blue light significantly increased the contents of lignin, cellulose, hemicellulose, and 
total pectin in soybean hypocotyls; which were 28.58%, 28.36%, 28.92%, and 239.72% 
higher than those in darkness, respectively (Figure 2A). As shown in Figure 2B, blue light 
significantly increased the contents of sucrose and starch in hypocotyls, which were 
175.00% and 59.12% higher, respectively, than those in darkness. 

 
Figure 2. The contents of cell wall composition (A) and carbohydrate (B) of soybean hypocotyl from 
plants grown in the dark and under blue light. Values in the table are the mean ± standard error (n 
= 5). Different letters in the same indicator indicate significant differences between treatments (p < 
0.05). 

2.3. Proteomic Analysis 
TMT quantitative proteomics were used for proteomic analysis of soybean hypocot-

yls under the conditions of darkness and blue light by LC‒MS/MS data acquisition. A total 
of 1917 differentially expressed proteins, including 1120 upregulated proteins and 797 
downregulated proteins, were screened with fold change > 1.2 times (upregulation greater 
than 1.2-fold or downregulation less than 0.83-fold) and a p value < 0.05 (Figure 3 and 
Table S1). 
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Figure 3. The volcano plot and cluster heatmap of differentially expressed proteins. (a) Volcano
plot. The abscissa is the fold change (logarithm with base 2), and the ordinate is the significant
difference p value (logarithm with base 10). Differentially expressed proteins with red dots represent
those that have been significantly upregulated, proteins with blue dots represent those that have
been significantly downregulated, and proteins with gray dots represent those that have been not
changed. (b) Cluster heatmap. Each column represents a group of samples (the abscissa is the sample
information), each row represents a significantly differentially expressed protein, and the expression
levels of the significantly differentially expressed proteins in different samples were normalized by
the log2 method and displayed in different colors in the heatmap; where red represents significantly
upregulated proteins, blue represents significantly downregulated proteins, and gray represents no
protein quantification information.

2.4. Metabolome Analysis

To understand the response of soybean hypocotyl metabolites to blue light, ultra-high-
performance liquid chromatography-tandem time-of-flight mass spectrometry (UHPLC-Q-
TOF MS) was used to analyze the metabolome of soybean hypocotyls under the conditions
of darkness and blue light. The differential metabolites were screened according to the
criteria OPLS-DA VIP > 1 and p value < 0.05, and a total of 99 metabolites were detected,
among which 63 were upregulated and 36 were downregulated (Table S2).

Figure 5 shows the bubble diagram of the pathways with differential metabolite
enrichment. As seen from the figure, differential metabolites were mainly involved
in metabolic pathways, amino acid and carbohydrate metabolism, and biosynthesis of
secondary metabolites.
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Figure 4. GO annotation statistics of differentially expressed proteins. The abscissa represents GO
Level 2 annotation information, including cellular components, molecular functions, and biological
processes; which are distinguished by blue, red, and orange, respectively. The ordinate represents the
p value of each functional category (taking the negative common logarithm, i.e., −log10 p value).
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Figure 5. Bubble diagram of the pathways with differential metabolite enrichment. As shown in the
bubble diagram, each bubble represents a metabolic pathway (the top 20 metabolic pathways with the
highest abundance were selected based on the p value). The abscissa and bubble size represent the extent
of the pathway’s influence. The larger the bubble is, the greater the influence. In enrichment analysis, the
ordinate and color of bubbles represent the p value (negative common logarithm, namely,−log10 p value).
The deeper the color is, the smaller the p value, and the more obvious the enrichment degree.
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2.5. Integrated Proteome and Metabolome Analysis

To integrate the pathway data, differential proteins and metabolites were simultane-
ously projected into the KEGG pathway. Overall, 54 metabolic pathways changed (Table S3).
Figure 6 shows the first 10 KEGG pathways implicated in the proteins and metabolites
that were identified in this experiment. Differential proteins and metabolites were mainly
enriched in phenylpropanoid biosynthesis, glycolysis/gluconeogenesis, glyoxylate and
dicarboxylate metabolism, and carbon fixation in photosynthetic organisms, etc. Compared
with darkness, the differential proteins and metabolites under blue light treatment were
mainly related to phenylpropanoid biosynthesis and carbohydrate metabolism.
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3. Discussion
3.1. Effects of Blue Light on Structural Carbohydrate Metabolism

Cell wall relaxation and carbohydrate supply are vital to plant cell elongation and
expansion [39,40]. Cellulose, hemicellulose, and pectin are the main structural carbohy-
drates in the plant cell wall, and can improve the mechanical strength of maize stems [10].
Cellulose synthase is related to cell wall cellulose synthesis in Populus trichocarpa [41].
Cellulose synthase mutants can lead to reduced cellulose synthesis in Arabidopsis [42].
This study found that the expression of cellulose synthase was upregulated under blue
light treatment (Figure 7), and cellulose content was increased (Figure 2). Xyloglucan
is an important component of hemicellulose in the cell wall. Endoglucanase (EGase) is
involved in the hydrolysis of xyloglucan [43], affecting the cell wall relaxation of Arabidopsis
thaliana [44] and promoting the elongation of cotton fiber cells by breaking the endo-1,4-β
bond of cellulose-xylan [45]. The effect of xyloglucan endotransglucosylase/hydrolase
(XTH) of the xyloglucan-cellulose network on cell wall relaxation of onion (Allium cepa)
bulb scales has been studied previously [46]. The upregulation of XTH expression can
promote relaxation of the cell wall of soybean stems, affect internode elongation [36], and
promote elongation growth of petioles in Arabidopsis [47]. β-xylosidase plays a key role
in hemicellulose degradation [48]. In this study, the expression levels of endoglucanase,
XTHs and β-D-xylosidase were all downregulated under blue light treatment (Figure 7),
indicating that blue light can inhibit the hydrolysis of xyloglucan, reduce the activity of
XTHs, inhibit cell wall relaxation, and reduce hemicellulose degradation by inhibiting
the activity of β-D-xylosidase. Mannose is an important sugar chain of mannan and an
important component of hemicellulose [49]. According to the present study, blue light treat-
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ment reduced D-mannose (Figure 7) but increased the content of hemicellulose (Figure 2).
According to previous studies, hemicellulose is a polymer composed of many different
types of monosaccharides [50]; and the content of sugars other than mannan may increase,
which in turn enhances the content of hemicellulose. Galacturonosyltransferase (GAUT)
is mainly involved in pectin and xylan biosynthesis [51,52], while polygalacturonase (PG)
and pectinesterase (PE) are important enzymes for the degradation of plant pectin skeleton
structure [53,54]. Sterling et al. [55] suggested that several GAUT1 genes encoding GAUT
in Arabidopsis were related to pectin synthesis. A study by [56] found that PG activity and
pectin degradation activity increased during the late softening stage of melon fruit. In this
study, blue light treatment led to the upregulation of GAUT, while the expression of PG and
PE was downregulated (Figure 7); indicating that blue light could increase pectin content
(Figure 2) and reduce pectin degradation. In our previous studies on the regulation of red
light on soybean hypocotyl elongation, it was found that red light promoted the expression
of enzymes related to the conversion of serine and threonine to glycine, decreased the level
of intracellular reactive oxygen species (ROS), reduced the degradation of cell wall polysac-
charides, and increased cellulose and hemicellulose content in soybean hypocotyls; thereby
inhibiting soybean hypocotyl elongation [57]. The difference in this study is that blue light
affects the cell wall structural carbohydrate metabolism process by affecting the expression
of enzymes involved in the synthesis and decomposition of cellulose, hemicellulose, and
pectin; thereby affecting the cell wall structure and accumulation of components, and thus
inhibiting soybean hypocotyl elongation.
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3.2. Effects of Blue Light on Nonstructural Carbohydrate Metabolism

Sucrose is the initial substrate for cellulose and starch synthesis. Sucrose synthase (SUS)
can degrade sucrose in cotton fiber [58], which provides a direct substrate for cellulose syn-
thesis and uridine diphosphate glucose and improves the rate of cellulose deposition [59].
β-Fructofuranosidase (sacA) can catalyze the irreversible hydrolysis of sucrose to fructose
and glucose [60]. Sucrose transport protein (SUC) affects the distribution of sucrose to other
tissues and organs. The sucrose transport of Arabidopsis SUC2 mutant plants is blocked
and plant development is hindered [61]. In this study, the expression of sucrose synthase,
acid β-fructofuranosidase, and sucrose transport protein was upregulated under blue light
(Figure 8); indicating that blue light can promote cellulose synthesis by regulating the
decomposition and transport of sucrose. Glucose-1-phosphoadenosyltransferase (glgC) is
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an important regulator of starch synthesis. Upregulation of glgC in corn, rice, and wheat
can increase the starch content in crops [62]. Phosphoglucomutase (PGM) is involved in
the conversion of sucrose and starch; and antisense inhibition of PGM activity inhibits
sucrose synthesis in potato leaves and reduces starch levels in tubers [63]. It was shown
that the expression of PGM was upregulated under blue light treatment and the contents of
sucrose and starch in hypocotyls were increased in this study (Figure 2); thus indicating
that blue light could promote the synthesis of carbohydrates, as shown by Wang et al. [64]
in cucumber leaves.
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3.3. Effects of Blue Light on Lignin Synthesis

Lignin is an important factor affecting cell wall strength, which can provide strong
mechanical support for soybean stems [65]. Lignin synthesis starts from phenylalanine
and finally polymerizes into lignin through a series of enzyme catalyses [66]. As the first
step in the biosynthesis of phenylpropanoid, phenylalanine ammonia-lyase (PAL) plays
a pivotal role [67]. The lignin content of Arabidopsis PAL gene double mutant plants was
significantly reduced [68], although blue light can upregulate the expression of the PAL
gene in the needles of Norway spruce [29]. Wang et al. [69] suggested that oat varieties
with high activity of proteins such as PAL, 4CL, and CAD have high lignin content and
strong lodging resistance. Nguyen et al. [70] believed that several genes were involved
in the accumulation of lignin in wheat stems, such as 4CL, HCT, COMT, and others. Our
previous study on red light regulation of soybean hypocotyl elongation found that red light
treatment upregulated key enzymes in the lignin synthesis pathway—including PAL, POD,
COMT, and 4CL—and promoted lignin synthesis [57]. The present study was consistent
with the red light study, which showed that PAL, 4CL, HCT, POD, and COMT were all
upregulated by blue light treatment (Figure 9). It is suggested that blue light may promote
lignin monomer polymerization, increase lignin content by regulating these key enzymes
involved in the regulation of phenylpropanoids in hypocotyls (Figure 2), enhance cell wall
firmness, and inhibit hypocotyl elongation; moreover, its regulatory mechanism is similar
to that of red light [57]. This study also found that expression levels of L-phenylalanine
and trans-cinnamate were both downregulated under blue light conditions. The analysis
showed that PAL and 4CL were upregulated during the conversion of L-phenylalanine
to trans-cinnamate and the conversion of trans-cinnamate to cinnamoyl-CoA, which may
accelerate the consumption of L-phenylalanine and trans-cinnamate.
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4. Materials and Methods
4.1. Experimental Design

We conducted the experiment in 2020 in an enclosed light chamber (120 cm× 60 cm× 180 cm
in length × width × height). The soybean variety Heinong 48 was used as experimental
material, which was bred by the Soybean Research Institute of the Heilongjiang Academy
of Agricultural Sciences. Several soybean seeds of similar size and shape were selected
and sown in three holes in a pot (9 cm diameter, 10 cm height), two seeds per hole. The
pots were eventually refilled with only one seedling each. We cultured all pots in darkness
at 25 ◦C, after sowing until hypocotyls grew approximately 5 cm above the soil surface.
Two groups, one treated with darkness and the other with monochromatic blue light, were
prepared in the test. Blue light was generated by a 12-watt LED lamp with a uniform
arrangement of bulbs. The blue LED lamp has a wavelength of 455–465 nm, and begins
to irradiate continuously for 24 h in the hypocotyl length of about 5 cm. We placed the
light source 1 cm from the seedling stem on only one side, to irradiate the hypocotyl
vertically. The photon flux density was 45 ± 0.03 µmol·m−2·s−1. During the third day
of light treatment, the soybean hypocotyl diameter and length were measured. At the
same time, the anatomical structure and material components, as well as the nonstructural
carbohydrates, proteome, and metabolism were analyzed, and 18 replicates were set for
each treatment. All of the experiments were carried out in an incubator controlled at
25 ± 1 ◦C with a relative humidity of 50 ± 5%.

4.2. Anatomical Structure Sampling and Observation

The hypocotyls of five soybean plants with the same growth in each group were cut
into small pieces (5 mm across) after three days of blue light treatment. The cut samples
were fixed in a brown bottle containing FAA fixative solution. The samples were pumped
into the bottom of the sample by a vacuum pump; dehydrated and made transparent;
and then a drop of toluidine blue was added, followed by paraffin embedding, slicing
(10 µm thickness), patching, baking, wax removal, dyeing, and sealing. Finally, in order to
observe the slices, an upright optical microscope (Nikon Eclipse E100, Tokyo, Japan) was
used; and a digital imaging system (Nikon DS-U3, Tokyo, Japan) was used to take photos
in the slices. The length of longitudinally sectioned pith cells was measured by randomly
selecting 60 pith cells from 10 fields of view. Area of pith cell, cross-sectional diameter,
cross-sectional area, and the ratio of pith cell area to cross-sectional area were measured in
a cross-sectional map, repeated 10 times.
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4.3. Determination of Cell Wall Composition and Carbohydrate Contents

The hypocotyls of five soybean plants with the same growth status were selected
for sampling following a three-day blue light treatment, wrapped in tin paper, rapidly
frozen in liquid nitrogen, and then transferred to a freezer at −80 ◦C for preservation.
An enzyme-linked immunosorbent assay (ELISA) was used to analyze lignin (Product
number ml076959), cellulose (Product number ml607720), and hemicellulose (Product
number ml077332) in 0.1 g fresh hypocotyl samples with a kit (Shanghai Enzyme-linked
Biotechnology Co., Ltd., Shanghai, China). A kit from Beijing Solarbio Science & Technology
Co., Ltd. (Beijing, China) was used to determine the contents of total pectin (Product
number BC1405), starch (Product number BC0705), and sucrose (Product number BC2465).
The above tests were performed five times for each sample.

4.4. Proteomic Analysis

After three days of light treatment, 3 g of soybean hypocotyls were taken, divided
into three portions, washed with PBS, wrapped in tinfoil, frozen in liquid nitrogen, and
then stored at −80 ◦C for proteomics analysis; this process was performed three times
per condition. Proteome analysis was performed according to the method of Wang et al. [57].
First, protein extraction, peptide digestion, and peptide quantification were carried out. The
peptides were labeled according to the instructions of the TMT labeling kit (Thermo Fisher
Scientific, Waltham, MA, USA). A high-pH reversed-phase peptide fractionation kit and
AKTA Purifier 100 were used for RP and SCX fractionation. The fractionation method and
parameter information are as described by Wang et al. [57]. LC-MS/MS data acquisition
was then performed, and each sample was separated using a Q Exactive mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) coupled to an Easy nLC (Proxeon Biosys-
tems, now Thermo Fisher Scientific, Waltham, MA, USA) [57]. A Q-Exactive mass spec-
trometer was used to analyze the samples after chromatographic separation. The specific
parameters of mass spectrometry were described by Wang et al. [57]. The MASCOT engine
(Matrix Science, London, UK; version 2.2) in Proteome Discoverer 1.4 software was used
for identifying and quantifying proteins using “Glycine_max” from the NCBI database.

4.5. Metabolomic Analysis

After three days of light treatment, 8 g of soybean hypocotyls were taken and divided
into 8 portions, washed with PBS, wrapped in tinfoil, frozen in liquid nitrogen, and then
stored at −80 ◦C for subsequent metabolomic analysis. For metabolomic analysis, eight
replicates were set, and the method of Wang et al. [57] was used. First, the hypocotyl
samples were dissolved in 1 mL precooled methanol/acetonitrile/water solution (2:2:1,
v/v/v). After vortexing, low-temperature ultrasound, centrifugation, and vacuum drying,
100 µL acetonitrile aqueous solution (acetonitrile: water = 1:1, v/v) was redissolved for mass
spectrometry analysis. The supernatant was analyzed after vortexing and centrifugation.
Next, an Agilent 1290 Infinity LC ultrahigh-performance liquid chromatography (UHPLC)
HILIC column was used for separation, and an AB Triple TOF 6600 mass spectrometer was
used to collect the primary and secondary spectra of the samples. The parameters were
as described by Wang et al. [57]. In order to minimize the effect of instrument detection
signal fluctuations, samples were analyzed continuously and based on a random process.
To monitor and evaluate the stability of the system and the reliability of the experimental
data, QC samples were added to the sample queue.

4.6. Statistical Analysis

Data analysis and graphs were performed using SPSS 21.0 and Origin 9.0 software. The
proteins with significantly different expression were screened according to the fold change
>1.2 times (upregulation by more than 1.2 fold or downregulation of less than 0.83 fold)
and p value < 0.05 (T test). The metabolites with significantly different concentrations were
screened according to the criteria of satisfying both OPLS-DA VIP > 1 and p value < 0.05 [57].
A Gene Ontology (GO) annotation was performed on the target protein set using Blast2GO.
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Based on the KEGG database information, KEGG pathway annotation and enrichment
analysis of differential metabolites were performed. A combination of KEGG annotations
and enrichment information was integrated using R software (version 3.5.1) [57].

5. Conclusions

Blue light promoted the establishment of cell wall structure and composition by
regulating enzymes and metabolites related to cell wall structural composition and non-
structural carbohydrates. Thus, with blue light, the cross-sectional area of the hypocotyl
and xylem were larger, the longitudinal length of pith cells was smaller, the elongation of
soybean hypocotyl was inhibited, and the diameter was increased.
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