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Abstract: Microbiome dysbiosis is increasingly being recognized as implicated in immune-mediated
disorders including multiple sclerosis (MS). The microbiome is modulated by genetic and envi-
ronmental factors including lifestyle, diet, and drug intake. This study aimed to characterize the
MS-associated gut microbiome in the Israeli populations and to identify associations with demo-
graphic, dietary, and clinical features. The microbiota from 57 treatment-naive patients with MS
(PwMS) and 43 age- and gender-matched healthy controls (HCs) was sequenced and abundance
compared. Associations between differential microbes with demographic or clinical characteristics,
as well as diet and nutrient intake, were assessed. While there was no difference in α- or β-diversity
of the microbiome, we identified 40 microbes from different taxonomic levels that differ in abundance
between PwMS and HCs, including Barnesiella, Collinsella, Egerthella, Mitsuokella, Olsenella Romboutsia,
and Succinivibrio, all enhanced in PwMS, while several members of Lacnospira were reduced. Addi-
tional MS-differential microbes specific to ethnicity were identified. Several MS-specific microbial
patterns were associated with gender, vitamin D level, Mediterranean diet, nutrient intake, or dis-
ability status. Thus, PwMS have altered microbiota composition, with distinctive patterns related
to geographic locations and population. Microbiome dysbiosis seem to be implicated in disease
progression, gender-related differences, and vitamin D-mediated immunological effects recognized
in MS. Dietary interventions may be beneficial in restoring a “healthy microbiota” as part of applying
comprehensive personalized therapeutic strategies for PwMS.

Keywords: diet; dysbiosis; EDSS; ethnicity; gender; microbiome; multiple sclerosis; nutrient intake

1. Introduction

The disease etiology of multiple sclerosis (MS) appears to include interactions between
genetics, lifestyle, and environmental risk factors, which may also affect disease activ-
ity and progression. The main demographic and environmental factors associated with
MS include obesity, Epstein–Barr virus infection, vitamin D deficiency, and smoking [1].
Recent accumulating data suggest that the gut microbiome may also contribute to MS’s
pathogenesis and clinical phenotype. The gut microbiome plays a major role in health
and disease and is involved in the development and activation of the human immune
system, protection from infectious pathogens, food digestion, energy homeostasis, vitamin
production, and intestine barrier integrity [2,3]. Furthermore, the microbiome is part of a
cross-talk between the gut and the brain; the gut–brain axis, facilitated though bidirectional
pathways, including microbial-secreted metabolites and neurotransmitters; afferent and
efferent nerves; and the hypothalamic–pituitary–adrenal axis [3,4].

The link between gut dysbiosis and autoimmunity may include molecular mimicry
between microbe-antigens and host auto-antigens, bystander inflammatory T cell activa-
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tion, and imbalance between regulatory and effector T cells in an inflammatory milieu [5,6].
In an animal model of spontaneous experimental autoimmune encephalomyelitis (EAE), a
model of relapsing–remitting MS, mice housed in a germ-free environment were refrac-
tory from EAE but developed disease when recolonized with conventional commensal
microbiota [7]. Moreover, germ-free mice colonized with fecal samples from MS patients
developed a higher incidence of EAE and reduced proportions of regulatory T cells (Tregs)
than mice colonized with fecal samples from healthy individuals, indicative that the MS
gut microbiome contains factors that promote disease [8,9].

The gut microbiome is influenced by numerous factors including host genetics, age,
geographical location, medications, lifestyle, and diet [10], and characterization of a disease-
associated microbiome is, therefore, challenging. Although several studies have described
an MS-associated microbiome, these have showed relatively low repetition and only few
commonalities across studies. The Israeli population is comprised of relatively defined
endogamous ethnicities, with cultural and traditional eating habits, mostly associated
with a Mediterranean diet. We aimed, in this study, to characterize the MS-associated gut
microbiome in the Israeli populations, including solely treatment-naïve patients, and to
identify associations between the microbiome and nutritional data, vitamin D serum level,
and disease state.

2. Results
2.1. Subject Demographics

We recruited 57 treatment-naïve, relapsing–remitting MS (RRMS) patients and 43 HCs
belonging to the two major ethnicities in Israel: 63 Jewish and 37 Arab participants (Table 1).
There was no statistically significant difference between PwMS and HCs in age, BMI, or
proportions of gender, smoking, vegetarian, or ethnicity. PwMS had a relatively short dis-
ease duration (2.6 ± 0.6 months, median 0.1 month) and accordingly low EDSS (Expanded
Disability Status Scale) (1.6 ± 0.1, [range 0–4]), with an annual relapse rate of 0.85 ± 0.07,
reflecting the proximity to disease onset and diagnosis, which is likely to involve at least
one recent clinical episode of disease activity (Table 1).

Table 1. Demographic and clinical data of participants.

MS (N = 57) Healthy Controls
(N = 43) p-Value

Age 33.6 ± 1.4 38.1 ± 1.8 0.06

Female (%) 70.2 58.1 0.2

BMI (kg/m2) 25.4 ± 0.6 24.7 ± 0.5 0.6

Smoking (%) 35.1 25.6 0.3

Vegetarian N (%) 1 (1.8) 1 (2.3) 0.8

Ethnicity N (%)
0.06Jewish 31 (54.4) 32 (74.4)

Arab 26 (45.6) 11 (25.6)

MDS 6.95 ± 0.3 7.33 ± 0.4 0.4

MDS N (%)

0.6
Low (≤6) 27 (47.4) 18 (41.9)
Intermediate (7–11) 27 (47.4) 22 (51.2)
High (≥12) 3 (5.3) 3 (7.0)

Vitamin D (ng/mL) 44.5 ± 3.7

Disease Duration (months) 2.6 ± 0.6

EDSS mean ± SE 1.56 ± 0.14

Annual relapse rate mean ± SE 0.85 ± 0.07
Abbreviation: BMI—body mass index, EDSS—expanded disability status scale, MDS—Mediterranean diet score,
SE—standard error.
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2.2. General Microbiome Composition

In total, 1295 OTUs were available for analysis after filtration. The general microbiome
composition was similar between PwMS and HCs (shown in Figure 1A for the class level).
There was no significant difference between the groups in either α-diversity (Shannon
index) or β-diversity (Bray–Curtis dissimilarity) (Figure 1B,C). There was also no difference
in α- or β-diversity when analyzing all samples according to gender, age (3 age-groups),
ethnicity (Jews and Arabs), smoking status, and adherence to a Mediterranean diet (MDS
low, 1–6 points; intermediate, 7–11 points; high adherence, 12–17 points) (Figure S1). β-
diversity differed according to BMI (four groups: underweight (<18.5), healthy weight
(18.5–24.9), overweight (25–29.9), and obesity (>30)) (p = 0.031), which is well known to
affect microbiome composition [11,12] (Figure S1), and thus was adjusted for intra-group
microbiome assessments where relevant.
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Figure 1. General microbiome composition. (A): Relative composition at the class level. (B): Alpha-
diversity between MS and HC calculated by Shannon index at the OTU level. (C): Beta-diversity
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2.3. Differentially Abundant Taxa

With several tools available for testing differential abundance in the microbiome and
little consensus regarding the best practice, we adopted a cautious approach as recom-
mended [13], and employed four different methods to identify the most consistently altered
taxa across tests. Moreover, we used as default a low filtration approach to include taxa with
low counts, e.g., OTUs with ≥4 counts in ≥10% of samples. Since statistical adjustment for
multiple hypothesis testing (by false discovery rate, FDR) may increase the non-discovery
rate of differential taxa with small effect size, we performed, as a complement, similar
differential analyses after a medium filter of ≥4 counts in at least 20% of samples + ≥20%
variance, and a strict filter of ≥5 counts in at least 50% of samples + ≥20% variance. Taxa
with differential relative abundance identified by at least two out of three tools (DESeq2,
MetagenomeSeq, and EdgeR) at FDR < 0.1, or taxa discriminating between PwMS and HCs
according to LEfSe at p-value < 0.5 and LDA > 1.8 are listed in Table 2, and representative
graphs are presented in Figure 2A,B. Forty taxa with differential abundance between PwMS
and HCs were identified, including two orders, five families, 23 genera, and 10 species
(Table 2). Of these, 25 taxa were differentially abundant in at least two out of three of the
differential abundance methods; 21 taxa discriminated between MS and HC according to
LEfSe (linear discriminant analysis effective size method), while 8 taxa were significant in
both at least two out of three differential abundance methods as well as by LEfSe. The latter
included the unspecified family gut metagenome, the genera gut metagenome, Mitsuokella,
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Negativibacillus, Olsenella, Ruminococcaceae UCG-013, and the species Ruminococcus gnavus
CC55 001C and uncultured Clostridium sp. 1; those taxa must be regarded as the most robust
differential taxa, significant across three or four different tests.

Table 2. Differential abundant taxa between PwMS and HCs.

Differentially Abundant Taxa
EdgeR DeSeq2 Metag.Seq LefSe Highest

FDR FC FDR FC FDR p-Value LDA in

Order

Aeromonadales 0.059 4.7 0.002 26.1 ns ns - MS

Enterobacteriales ns - ns - ns 0.007 −4.1 HC

Family

Clostridium_sp__K4410_MGS_306 0.019 0.31 ns - 0.022 ns - HC

Enterobacteriaceae ns - ns - ns 0.007 −4.1 HC

gut_metagenome 1.10−7 0.18 ns - 1.10−5 0.018 −3.4 HC

Peptostreptococcaceae ns - ns - ns 0.048 * 4.3 * MS

Succinivibrionaceae 0.055 4.5 0.002 42.8 ns ns - MS

Genus

Azospirillum_sp__47_25 3.39−7 0.16 ns - 0.021 ns - HC

Barnesiella ns - ns - ns 0.034 3.1 MS

Collinsella ns - ns - 0.096 0.045 * 4.5 * MS

Eggerthella ns - ns - ns 0.014 1.8 MS

Enterobacter 0.013 3.5 ns - ns 0.020 3.4 MS

Escherichia_Shigella 0.003
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Table 2. Cont.

Differentially Abundant Taxa
EdgeR DeSeq2 Metag.Seq LefSe Highest

FDR FC FDR FC FDR p-Value LDA in

Species

Bacteroides_timonensis ns - ns - ns 0.019 −2.4 HC

Bifidobacterium_animalis 0.011 0.44 ns - 0.002 ns - HC

Bifidobacterium_sp__MC_10 0.092 1.8 ns - 0.003 ns - MS

Clostridium_sp__K4410_MGS_306 0.001 0.24 ns - 0.037 ns - HC

Escherichia_coli ns - 0.043 2.9 ns 0.024 −3.9 HC

Negativibacillus_massiliensis 0.0003 3.6 ns - 8.01−5 ns - MS
Ruminococcus_gnavus_CC55_001C 0.099 2.6 0.0003 18.4 0.071 0.009 3.5 MS
Streptococcus_thermophilus_TH1435 ns - ns - ns 0.028 −3.6 HC

uncultured_Bacteroidetes_bacterium 0.001 2.5 0.032 3.6 0.016 ns - MS

uncultured_Clostridium_sp_1 0.085 0.6 0.053
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Ruminiclostridium_5 ns - ns - ns 0.049 −3.8 HC 

Ruminococcaceae_UCG_013 0.055 0.60 0.099 0.60 ns 0.011 −3.9 HC 

Ruminococcus_gnavus_group ns - 4.77−7 7.5 ns 0.019 3.5 MS 

Sellimonas 0.006 3.3 ns - 0.050 ns - MS 

Succinivibrio 0.008 6.8 0.009 57.0 0.060 ns - MS 

Tyzzerella_4 1.59−7 0.12 ns - 0.088 ns - HC 

Species 

Bacteroides_timonensis ns - ns - ns 0.019 −2.4 HC 

Bifidobacterium_animalis 0.011 0.44 ns - 0.002 ns - HC 

0.6 ns 0.013 −3.9 HC

Taxa with differential relative abundance in at least two out of three tests (DESeq2, MetagenomeSeq, and EdgeR)
at FDR < 0.1 or identified as taxa discriminating between PwMS and HCs by LEfSe at p-value < 0.5 and LDA > 1.8.
* Identified after filtration of ≥4 reads in ≥20% of samples and ≥10% variance.
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Olsenella 0.050 2.5 ns - 0.023 0.031 3.6 MS 
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Romboutsia ns - ns - ns 0.017 4.3 MS 
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Bacteroides_timonensis ns - ns - ns 0.019 −2.4 HC 

Bifidobacterium_animalis 0.011 0.44 ns - 0.002 ns - HC 

Identified after filtration of
≥5 reads in ≥50% of samples and ≥20% variance. Abbreviations: FC—fold change, FDR—false discovery rate,
HCs—healthy controls, LDA—linear discriminant analysis, ns—not significant.
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Figure 2. Differential abundant taxa between PwMS and HCs. (A)—Representative graphs of taxa
with significant difference in relative abundance, as determined by at least two out of three tools
(DESeq2, MetagenomeSeq, and EdgeR) at different taxonomic levels (FDR < 0.1). Each black dot
represents the relative abundance of a participant sample. (B)—Linear discriminant analysis (LDA)
score of significant different taxa as determined by LDA effect size (LefSE) between PwMS and HCs
at different taxonomic levels (p < 0.05). (C)—Venn diagram presenting the overlap of differentially
abundant taxa identified in the analysis of all samples, Jewish participants or Arab participants.
HC—healthy control, MS—multiple sclerosis.
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Since the microbiome is affected, among other factors, by populations, and our cohort
included participants from the two major ethnic populations in Israel (Jewish and Arab),
a sub-analysis was performed separately for each ethnicity. In total, 21 differentially
abundant taxa were identified uniquely in the Jewish cohort, 17 were identified uniquely
in the Arab cohort, while 17 taxa overlapped between the full cohort and the Jewish cohort
and 10 overlapped between the full cohort and the Arab cohort, likely reflecting the larger
size of the Jewish cohort. Fourteen taxa were only significant in the full cohort, while one
differential taxa was shared between all analyses: the genus Mitsuokella. (Table S1A,B,
Figure 2C).

2.4. Associations between MS-Differentially Abundant Microbiota and Clinical Factors

To identify correlations between abundance of the 40 MS-differentially abundant
taxa and clinical presentation, we divided patients according to their EDSS at sample
collection. Since patients were newly diagnosed, EDSS was in all cases ≤ 4. Patients were
divided into two or four groups of EDSS. Despite the low EDSS, we identified five taxa
enriched in PwMS—which significantly correlated positively with EDSS—of which three
remained significant when controlled for BMI: the order Aeromonodales (p = 0.031,r = 0.29),
the family Succinivibrionaceae (p = 0.031, r = 0.29), and the genus Succinivibrio (p = 0.034,
r = 0.28). The genera Olsenella and Lachnospiracea correlated significantly when unadjusted
for BMI (p = 0.029, r = 0.29; p = 0.046, r = 0.27, respectively). One species, Bacteroides
timonensis, reduced in PwMS, also correlated with EDSS, after BMI adjustment (p = 0.029,
r = 0.29) (Figure 3A).

Next, we examined whether the 40 MS-differentially abundant taxa correlated with
vitamin D serum levels of the patients. Patients were divided into groups based upon the
World Medical Association (WMA) criteria [14]: group1: <50 nMol/L, insufficiency; group2:
50–75 nMol/L, mild deficiency; group3: 75–100 nMol/L, sufficient vitamin D. Six taxa
correlated significantly with vitamin D, after correction of BMI: three MS-enriched taxa from
the same taxonomic branch, namely, the genus Succinivibrio (p = 0.047, r = −0.29), the family
Succinivibrionaceae (p = 0.047. r = −0.29), and the order Aeromonadales (p = 0.050, r = −0.29)
correlated negatively with vitamin D, while two MS-reduced taxa correlated positively with
vitamin D, namely, the unspecified family Gut metagenome (p = 0.039, r = 0.3) and genus
Gut metagenome (p = 0.039, r = 0.3), suggestive that achievement of a sufficient vitamin D
level may contribute to modulate altered microbiota levels towards a healthy microbiome
(Figure 3B). Additionally, the MS-enriched genus Barnesiella correlated positively with
vitamin D, while the MS-enriched genus Mitsoukella correlated negatively with vitamin D,
when unadjusted for BMI (p = 0.026, r = −0.322).

2.5. Differential Abundant Taxa and Gender

With the higher prevalence of MS in women than in men [15], we analyzed whether the
abundance of the differential taxi differed between genders. Out of the 40 MS-differential
taxa, 14 differed significantly in relative abundance between females and males. Of these,
seven taxa enriched in PwMS were more abundant in females, namely, the genera Sell-
imonas (FDR = 0.002), Ruminococcus_gnavus_group (FDR = 0.010), Merdibacter (FDR = 0.032),
Succinivibrio (FDR = 1.25 × 10−6), Eggerthella (FDR = 0.003), and the species Bifidobac-
terium_sp__MC_10 (FDR = 0.0009) and Ruminococcus_gnavus_CC55_001C (FDR = 0.026),
whereas three taxa reduced in PwMS were more abundant in males, namely, the genera
Lachnospiraceae_ NK4A136_group (FDR = 0.02), Peptococcus (FDR = 0.052), and Azospirillum
sp. 47-25 (FDR = 0.007 (the latter not presented due to very low count)) (Figure 3C). Since
there was no significant difference in the female/male ratio between the MS and the healthy
cohort in our study, the finding of 10 taxa with significant correlations both with an MS
and with a female phenotype suggests a possible causative association between (female)
gender, microbiota, and MS.
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Figure 3. Associations between MS-differentially abundant microbiota, EDSS, vitamin D, and
gender. (A)—Representative graphs of MS-differentially abundant taxa, which significantly correlates
with EDSS (Spearman correlation, adjusted for BMI). (B)—Representative graphs of MS-differentially
abundant taxa, which significantly correlates with serum vitamin D level shown as continuous or di-
vided into 3 groups: <50 nMol/L—vitamin D insufficiency, 50–75 nMol/L—vitamin D mild deficiency,
>75 nMol/L—vitamin D sufficient (Spearman correlation, adjusted for BMI). (C)—Representative
graphs of MS-differentially abundant taxa enriched in PwMS (I) or reduced in PwMS (II), which
differ significantly between females and males. Figure presents FDR calculated from EdgeR, * FDR
from DeSeq2. Each black dot represents the relative abundance of a participant sample.
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2.6. Differential Abundant Taxa and Dietary Data

Dietary information from participants included a Mediterranean diet score (MDS), an
indicator of adherence to a Mediterranean diet, and the mean daily intake of energy as
well as of 74 various nutrients, as analyzed from an FFQ, using questionnaires specifically
adapted to the Israeli population. The MDS questionnaire provides a score from 0 to
17 points according to the reported intake of specified food. Participants were divided into
three groups: low, intermediate, and high Mediterranean diet adherence. Most participants
had intermediate or low adherence to a Mediterranean diet (94.7% of PwMS, 93.1% of
controls) with no significant difference between cohorts (Table 1, Figure 4A). There was also
no difference in MDS between the two major ethnicities (Jewish versus Arab, p = 0.67), or
between PwMS and HCs in a sub-analysis within each of the two ethnicities (Jewish, p = 0.39
and Arab, p = 0.47, respectively). Analysis of the microbiome composition according to
MDS categories showed no difference in α-diversity or β-diversity (Figure 4B). Next, we
analyzed whether MDS was associated with the abundance of the 40 taxa that differed
between PwMS and HCs. Two taxa enriched in PwMS correlated negatively with MDS,
namely, the Peptostreptococcaceae family (p = 0.035, r = −0.21) and the Romboutsia genus
(p = 0.018, r = −0.24) belonging to the same family, while two taxa reduced in MS, the
genus Ruminococcaceae UCG-013 (p = 0.036, r = 0.21) and the species Bifidobacterium Animalis
(p = 0.015, rho = 0.24), correlated positively with MDS (Figure 4C). This suggests that
improving adherence to a Mediterranean diet may potentially contribute to “repair” altered
abundance of specific microbiota in MS.
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Figure 4. Correlations between MS-differentially abundant microbiota and dietary data. (A)—The
distribution of adherence to a Mediterranean diet (MDS) in PwMS and HCs (Kruskal–Wallis test).
(B)—Alpha-diversity Shannon index and beta-diversity Bray–Curtis dissimilarity according to high,
low, or intermediate MDS (OTU level). (C)—Representative graphs of differentially abundant taxa,
enriched in PwMS (I) or reduced in PwMS (II) which significantly correlates with MDS (Spearman
correlation). MDS shown as continuous or divided into 3 groups (MDS low (1–6 points), intermediate
(7–11 points), high (2–17 points). MDS—Mediterranean diet score.

Analysis of the FFQ provides data on the estimated daily intake of 74 nutrients and
energy. There was no difference in energy or nutrient intake between PwMS and HCs,
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besides alcohol intake, which was lower in PwMS (p = 0.032) (Table S2). Sub-analyses in
Jewish or Arab participants separately or in female and male participants separately did
not reveal additional differences in nutrient intake between PwMS and HCs (p = 0.039
in females, p > 0.05 for all other nutrients in females or males and in Jewish or Arab
participants). Out of the 40 identified MS-differential taxa, significant correlations were
found between the abundance of 25 taxa and 44 nutrients (Table S3). These included mostly
vitamins and unsaturated fatty acids, but also amino acids, minerals, carbohydrates, lipids,
saturated fatty acids, etc. Several correlations indicate that modification of the daily intake
of specific nutrients could have a beneficial influence on the abundance of taxa altered in
PwMS. For example, increased intake of various vitamins including vitamin B12, vitamin K,
vitamin E, carotene, vitamin A, choline, and folate correlated negatively with the abundance
of several microbiota enriched in PwMS, such as the genera Eggerthella, Flavonifractor,
Negativibacillus and Mitsuoke, while vitamin C, D, and riboflavin (vitamin B2) correlated
positively with genus Lachnospiraceae UCG-004, which was reduced in PwMS. Increased
intake of minerals such as magnesium, copper, and manganese correlated negatively
with the abundance of microbiota such as those of the Peptostreptococcaceae family or the
genera Romboutsia, Flavonifractor, or Negativibacillus, all enriched in PwMS, while increased
intake of the amino acid cysteine correlated positively with genus Lachnospiraceae UCG-004,
which was reduced in PwMS. Higher intake of polyunsaturated fat, omega-3, omega-6,
and omega-9 fatty acids, or Docosapentaenoic acid (DPA) correlated negatively with the
abundance of PwMS-enriched microbiota such as the genera Eggerthella, Flavonifractor, or
Mitsuokella. In contrast, trans fatty acids, saturated fat, and saturated fatty acids correlated
positively with taxa enriched in PwMS, such as the species Ruminococcus gnavus CC55_001C,
and correlated negatively with the abundance of taxa reduced in MS, such as those of the
genus Ruminococcaceae UCG-013 or the species uncultured Clostridium spp. and Bacteroides
timonensis. A summary of 15 significant correlations, which support the concept that
modifications of nutrient intake may “repair” altered abundance of specific taxa in PwMS,
is presented in Table S4. Based upon these findings, in Figure 5, we present suggested
dietary changes with the potential of beneficially modulating dysbiosis in PwMS and
restoring a healthy microbiome. These are preliminary suggestions of focus for further
research and exploration, presented with caution, since, in some cases, these nutrients also
correlated oppositely with other altered microbiota, opposing “a repair” of dysbiosis.
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2.7. Functional Pathways

In order to explore the functional differences between the microbiome of PwMS and
HCs, we used the Tax4Fun2 package in MicrobiomeAnalyst, which predicts functional pro-
files based upon the Kyota Encyclopedia of Genes and Genomes (KEGG) database [16,17].
The 1295 identified OTUs were transformed into 6277 KEGG orthologies (KOs), which were
uploaded into the Shotgun Data Profiling module in MicrobiomeAnalyst for enrichment
analysis and metabolic network mapping. Figure 6A shows the composition of KEGG
metabolism pathways in both cohorts, the most abundant being amino acid metabolism,
biosynthesis of other secondary metabolites, and carbohydrate metabolism. Differential
abundance analysis (Kruskal–Wallis) revealed 485 KOs that differed between PwMS and
HCs at FDR < 0.1, and these mapped significantly to nine KEGG pathway network maps,
the highly significant top hit being biosynthesis of amino acids (FDR = 1.55−19), while
other pathways included 2-Oxocarboxylic acid metabolism, Peptidoglycan biosynthesis,
Pyrimidine metabolism, Alanine, aspartate, and glutamate metabolism, etc. (FDR < 0.05)
(Table S5). Sixteen KOs, all enriched in PwMS compared to HCs, were identified as
significant differential indicators between groups by LEfSe, but with a low effect size
(LDA 0.5–1), (Figure 6B).
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3. Discussion

The gut microbiota is affected by both genetic and environmental factors, thus, it
may differ among populations. Most currently available reports on the microbiome in
MS come from studies in the US, Europe, China, or Japan, with relatively low consistency
in the identified microbiome profile across studies [18–25]. We aimed, in this study, to
characterize the MS-associated microbiome in the Israeli population. The Israeli population
is estimated at 9,656,000 residents (1.2023), comprised of 73.6% Jews, 21.1% Arabs, and
5.3% others [26]. The major Israeli populations, defined by their ancestral religious affilia-
tion, mostly maintain endogamy within their communities; thus, they are considered to
have relatively homogeneous genetic backgrounds [27–29]. We assessed differences in the
microbiome in newly diagnosed, treatment-naïve PwMS compared to matched controls,
eliminating confounding factors such as effects of disease modifying therapies (DMTs),
disease duration, and progression. The overall microbiome composition was similar, with
no difference in α-diversity or β-diversity, in line with most previous reports [6,30]. Anal-
ysis at the phylum to species level identified 40 taxa at different taxonomic levels, which
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significantly differed in relative abundance between PwMS and HCs, with 21 taxa enriched
and 19 taxa reduced in PwMS. These taxa were identified adopting a cautious approach of
using multiple available statistical methods, in order to identify taxa that are most robust
across methods and, thus, are most likely to have biological relevance [13]. Some of the
identified MS-differential taxa confirm reports from other geographical locations. The
enrichment of Eggerthella in MS was also reported in a Japanese [24] and in a US study [20],
while enrichment of Flavonifractor was also demonstrated by a Chinese [31] and a German
group [32]. The enrichment of Olsenella supports a report from a Belgium study [33], while
it was reduced in RRMS in a US study [34]. The enrichment of the Peptostreptococcaceae
family and the related genus Romboutsia was reported, by a Chinese group, to be associated
with five autoimmune diseases including MS [35]. The increase in Collinsella in PwMS
confirms results from an Italian study [36], whereas, in contrast, Collinsella was reduced in
MS patients in two US studies [22,23]. Bifidobacterium animalis, reduced in PwMS in our
study, is a probiotic, which reduced the duration of clinical symptoms in EAE [37]. An
unidentified species of the genus Lachnospiraceae NK4A136, a butyrate producer reduced
in our MS cohort, reduced clinical relapses and MRI activity in a US study of pediatric
MS [38]. In contrast, Barnesiella, enriched here in PwMS, was reduced in MS in two US
studies [20,22], and Tyzzerella 4, reduced in our study, was increased in pediatric RRMS
patients in a Canada–USA study [19]. Conflicts in identified differential taxa between
studies can be a consequence of variations in methodology for DNA extraction, sequencing
platforms, and statistical analysis. Differences in populations and geographic locations
affect the microbiome and may also account for the relatively low consistency of findings
across studies [10,39,40] as well as inclusions of patients receiving various DMTs, each
with a profound effect on the microbiome [34,41], in contrast to treatment-naïve patients,
as in our study. Additionally, our patients were recruited close to disease diagnosis, thus
minimizing alterations that reflect disease progression and duration, accumulating comor-
bidities, etc. A single prior publication on the microbiome in Israeli PwMS conducted
metagenomic sequencing and reported 23 species with differential abundance between MS
and healthy participants [42], none of which overlapped the detected differential taxa in
our study. There are several possible explanations for the lack of similarity: (1) their patient
cohort was heterogeneous regarding disease types (clinically isolated syndrome, relapsing,
progressive MS), patients in remission or during relapse, and treated with various DMTs;
(2) they used rectal swab samples; (3) we used the 16S sequencing method, which has
restricted ability to identify OTU at the level of species [43].

The sub-analyses performed according to ethnicity revealed differentially abundant
taxa in PwMS unique for either the Jewish or the Arab participants, in addition to taxa
overlapping the analysis of all samples, a finding that may possibly explain ethnicity-related
clinical MS phenotypes among Israeli populations, as previously reported [29]. The genus
Mitsuokella was enriched in PwMS in all analyses and was robust across the statistical tests.
This microbe has not previously been reported in MS studies, but enrichment was found
in autism spectrum disorder [44], prediabetic patients [45], and Behçet’s syndrome [46].
Among the taxa uniquely identified in the Jewish participants were the genera Prevotella 9,
reduced in PwMS, and Bilophila, enriched in PwMS. Bilophila was previously found to be
three times more abundant in children with MS [18]. Reduced abundance of Prevotella in
PwMS has been reported in studies from Japan [24], US [23], and Italy [47] and Prevotella was
enriched in patients on DMT compared to untreated patients [22]. Prevotella is a butyrate-
producing genus, associated with anti-inflammatory properties, induction of Tregs, and
intake of high-fiber diets [22], and the reduction in Prevotella in PwMS has been associated
with high disease activity and increased levels of intestinal Th17 cells [47]. The identification
of ethnicity-specific differential abundant taxa in PwMS indicates that population-specific
microbiota patterns, affected by genetic and environmental factors, may influence a disease-
associated microbiome and that ethnicity/populations should be considered in microbiome
studies. We and others reported in previous studies that the prevalence rate (PR) in Israeli
populations was lower in Arabs than in Jews [27,48]. Moreover, the PR was lower in
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Israeli Arabs and Jewish immigrants from Arab countries (Asia/Africa) than in native-
born Jews of the same origin, which had a PR similar to European/American-origin Jews,
suggesting environmental and lifestyle factors, rather than genetic factors, influence PR.
Since environmental exposures such as climate and sun exposure are similar for all Israeli
populations, due to residence within a small geographical location [49], other factors like
diet, specific nutrient intake, and gut microbiota could possibly underlie the differences in
PR. Whether the MS-differential microbes found specifically in the Jewish or the Arab cohort
in this study may be related to the differential PR of MS between Arabs and Jews in Israel,
and whether specific ethnicity-related nutrient intake correlates with these differences,
remains to be explored. A study addressing the contribution of three ethnic groups in
the US (Caucasian Americans, Hispanic Americans, and African Americans) to the MS
microbiome also found no difference in α- or β-diversity. Differential abundant taxa
between PwMS and controls were identified uniquely per ethnicity or shared between two,
while only one taxa was shared between all three ethnicities [25].

Despite the short disease duration, we found three MS-enriched taxa from the same
taxonomic branch, which correlated positively with EDSS both before and after controlling
for BMI, while another two MS-enriched taxa correlated significantly only without BMI
adjustment. In a US study, the abundance of four microbes, including Collinsella aerofaciens
belonging to the genus Collinsella enriched in PwMS in our study, correlated positively with
EDSS, while another microbe correlated negatively [12]. Another US group found correla-
tions between several Clostridium species and EDSS in RRMS and PPMS patients, while
butyrate producers such as the Ruminococcus species correlated negatively with EDSS [34].
These results imply that specific microbes may be associated with disease activity, progres-
sion, and degree of disability in MS. In pediatric RRMS patients, Fusobacteria depletion,
enrichment of Firmicutes, and presence of Euryarchaeota (Archaea) were associated with a
shorter time to relapse [50]. Eleven taxa belonging to Firmacutes were enriched in PwMS
in our study. In pediatric-onset MS patients, five microbes were associated with disease
activity, including two butyrate producers, an unidentified species in the Lachnospiraceae
NK4A136 group, and Ruminococcaceae, all of which were protective, while an unspeci-
fied member of Coriobacteriales was associated with increased risk of disease activity [38].
Interestingly, Olsenella, which correlated positively with EDSS in our study, belongs to
Coriobacteriales, supporting an association with disease activity, while the Lachnospiraceae
NK4A136 group was reduced in our PwMS, supporting the finding that depletion of this
microbe may contribute to disease activity.

Higher levels of vitamin D are associated with reduced risk of MS and clinical activ-
ity, and optimization of vitamin D levels by supplementation is commonly integrated in
MS clinical practice [51–53]. Vitamin D has important anti-inflammatory and metabolic
functions [51,52,54] and affects gastrointestinal motility by promoting intestinal calcium
absorption and the integrity of the intestinal barrier, and vitamin D deficiency may lead to
dysbiosis of the gut microbiota [55,56]. We identified three taxa enriched in PwMS, includ-
ing those of the Succinivibrionaceae family, associated with pathogenesis of inflammatory
diseases [46,57], which correlated negatively with vitamin D levels of the patients, while
two unspecified gut metagenome taxa reduced in PwMS correlated positively with vitamin
D. Thus, part of the beneficial effect of optimizing vitamin D levels in PwMS, may include
the “repair” of altered taxa.

Gender differences in MS include a wide spectrum of aspects such as increased disease
susceptibility and differences in disease progression and activity [58]. Women are more
susceptible to MS than men, in an increasing ratio of ~3.5:1 [59]. This difference might
be caused by gonadal hormones, where estrogens promote cell-mediated and humoral
immunity, while androgens suppress immunity [60–62]; more robust immune responses
in women than in men [60,61,63]; genetic differences such as the X chromosome [60,64];
and differences in exposure to environmental factors and lifestyle [59]. An interesting
finding of the present study was that seven taxa enriched in PwMS were more abundant in
females, whereas three taxa reduced in MS patients were more abundant in males. Gender
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differences of some of these microbiota have been reported in non-MS studies, including
Bifidobacterium spp. [65], Bifidobacterium [66], and Ruminococcus [66,67], all with higher
abundance in females. Since the female/male proportions were similar in PwMS and HCs
in this study, our results contribute to the assumption that the microbiome may be involved
in the well-known gender difference in MS, an idea supported by observations in animal
models of autoimmunity [68]. In EAE, estrogen protects from disease onset and progression,
prevents EAE-associated dysbiosis of the microbiota, and promotes abundance of microbes
associated with induction of regulatory cells [69]. In a mice model of type 1 diabetes
(T1D), which is not a sex-biased disease, transfer of male microbiota to female recipient
mice resulted in altered metabolic profile, elevated testosterone levels, and protection from
T1D [70]. How hormones, the immune system, and microbiota interact and contribute to
gender differences in MS should be further investigated.

Diet has a profound effect on the structure and function of the microbiome, and
persistent dietary changes can rapidly alter the microbiome composition [56,71]. The
Mediterranean diet is associated with high intake of vegetables, fruits, legumes, whole
grains and dairy products, moderate intake of red wine, use of unsaturated fats such as
olive oil, and limited red meat consumption [72]. In our study, the vast majority of the
participants scored a low or intermediate adherence to a Mediterranean diet, in line with a
previous study in Israel [73], with no difference between PwMS and HCs, including within
each ethnicity group. However, we found negative correlations between MDS and the
abundance of two taxa enriched in PwMS, while positive correlations were found with two
taxa reduced in PwMS. The Mediterranean diet impacts the gut microbiota and metabolites,
for example, through increases in beneficial short-chain fatty acids (SCFAs, e.g., acetic,
propionic, and butyric acids produced by fermentation of indigestible carbohydrates like di-
etary fibers) [72,74]. SCFAs promote anti-inflammatory responses and enhance the integrity
of the intestine epithelial barrier and the blood–brain barrier [39,75,76]. Blood levels of the
major SCFAs are decreased in PwMS [77], and, in a case-control study, supplement of propi-
onic acid increased Tregs, reduced Th1 and Th17 cells, relapse rate, and brain atrophy, and
stabilized disability progression [32]. Butyrate-producing bacteria were depleted in PwMS
in several studies [78]. Prevotella among Bacteroidetes and Lachnospira among the Firmicutes
are major contributors to fermentation of carbohydrates and increased SCFA production,
especially butyrate [74,78]. Interestingly, we found reduced abundance of two members of
Lacnospira in PwMS, namely, Lachnospiraceae_UCG004 and Lachnospiraceae_NK4A136_group,
as well as reduced abundance of Prevotella in PwMS in the Jewish cohort. A rehabilitation
program for PwMS, including dietary recommendations based upon the Mediterranean
diet, promoted several modifications on the microbiota—including depletion of Collinsella,
Eggerthella, and Ruminococcus, all enriched in PwMS in the present study—and an increase
in butyrate-producing microbes [36]. In an Italian study, MDS correlated with disability
scores including EDSS [79], a Mediterranean diet was associated in a Turkish study with
lower fatigue severity [80], and, in a US study, a Mediterranean dietary intervention reduced
fatigue and EDSS [81]. These results suggest that nutritional adjustment and improved
adherence to a Mediterranean diet may beneficially rehabilitate the abundance of altered
microbes in PwMS and potentially reduce disease activity. We also identified correlations
between specific nutrient intake and abundance of MS-differential taxa and, accordingly,
outlined nutritional recommendations that may potentially promote the restoration of a
“healthy” microbiome, supporting the conclusion that personalized dietary recommen-
dations may be beneficial as an integrated part of MS therapy [71]. A clinical trial on
omega-3 and omega-6 supplement on clinical outcome in PwMS showed a positive trend
in favor of patients treated with omega-3 [82]. A high-vegetable/low-protein diet reduced
relapse rate and EDSS and increased butyrate-producing bacterium Lachnospiraceae, Treg
differentiation, and TGFβ and IL-10 production in PwMS [83]. Other dietary regimes with
potential benefits in MS may include intermittent fasting, ketogenic diet, plant-based diet,
and Mediterranean diet, as elaborated above [39]. Among the recommended nutritional ad-
justments, vitamin A promotes anti-inflammatory effects [39], and serum retinol inversely
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correlated with MRI outcomes in PwMS [84]. Increased consumption of vitamin A may
also contribute to the benefits of optimizing vitamin D, which, through the complex retinoid
X receptor-retinoic acid/vitamin D receptor, inhibits proinflammatory NF-κB [56]. The
amino acid cysteine is an essential building block for sulphur-containing compounds like
glutathione, an antioxidant with a major role in counteracting oxidative damage in the
CNS [2] and deficient in the brain of PwMS [85]. Our data indicate benefits from increased
cysteine intake, which correlated negatively with MS-enriched Eggerthella, a microbe as-
sociated with cysteine degradation [86]. Dietary fiber intake, as recommended, correlates
negatively with the abundance of Collinsella [87], enriched in PwMS in our study, a microbe
associated with increased proinflammatory IL-17 and intestine permeability [88,89], and
dietary fibers also increase SCFA production, as detailed above [75]. Moreover, our data
suggest that reducing intake of saturated trans fatty acids may increase abundance of three
taxa reduced in PwMS, belonging to butyrate producers Ruminococcaceae, Bacteroidetes, and
Clostridium [2,19]. Beneficial effects of the recommended nutritional adjustments depend
upon quantity and relative ratio.

We identified KOs and KEGG pathways that differed between patients and HCs,
indicating changes in the metabolic function of microbiota in PwMS. The top enriched
pathway was biosynthesis of amino acids, supporting a previous report of enriched path-
ways involving aromatic amino acids biosynthesis in pediatric MS, associated with disease
worsening [38], while another study found abnormalities in aromatic amino acid metabo-
lites in association with disability in PwMS [90]. Possible amino acid pathways may
include cysteine metabolism and accompanying glutathione level [2], as described above.
Moreover, tryptophan metabolism and accompanying levels of indole-based compounds
promote anti-inflammatory effects [3,91], and tryptophan supplementation reduces EAE
severity [92]. The enrichment of the peptidoglycan biosynthesis pathway is interesting,
since peptidoglycan, a major component of the Gram-positive bacterial cell wall with
proinflammatory properties, was found in antigen-presenting cells in the brains of PwMS,
and peptidoglycan-specific antibodies or plasma cells were found in the CSF and brain
in PwMS [93]. Biomarker analysis (LEfSe) revealed 16 KOs, all enriched in MS, of which
7 KOs were related to ABC (ATP-binding cassette) transporters, which transport substrates
across cellular membranes, and 6 KOs were related to two-component systems, regulatory
mechanisms of stimuli, and response to environmental conditions. Enrichments of ABC
transporter pathways in PwMS confirms two previous reports [21,23], and administration
of probiotic LBS supplements was associated with reduction in KEGG ABC transporters
pathways in MS [21].

The strengths of this study are the inclusion of restrictedly treatment-naïve patients
with short disease duration and a cohort belonging to a small geographic area with relatively
defined populations, reducing interindividual variations. The limitations of this study
include the constrained sample size—like most published studies in MS, self-reported
questionnaires on dietary data—which may have limited accuracy, and limited taxonomic
resolution of the 16S rRNA amplicon sequencing method. Our comparative study is
observational, associative, and exploratory, but findings serve as potential candidates for
further research and validation as well as for functional analyses to establish causal and
prognostic effects [94].

4. Materials and Methods
4.1. Recruitment of Participant and Sample Collection

A total of 57 treatment-naïve patients diagnosed with definite MS—according to the
latest McDonald criteria [95]—of the relapsing–remitting subtype (RRMS) and 43 healthy
controls (HC), matched for age and gender, were recruited at the MS center, Carmel
Medical Center, Israel, following a protocol approved by the Institutional Review Board
(0034-13-CMC, 26 December 2013), and all participants provided written informed consent.
Inclusion criteria were age 18–67 years, without antibiotics/probiotics/corticosteroids
treatment within the last month, and no irritable bowel disease (IBD), other autoimmune
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disease, or history of gastric/bowel surgery. Healthy participants had no known relative
with MS up to 2nd degree. Fecal samples were obtained using a stool preservative tube
(Norgen Biotek, Thorold, ON, Canada), frozen immediately at arrival at clinic, and kept
at −80◦ until DNA extraction. All participants completed a food frequency questionnaire
(FFQ) and a Mediterranean diet score (MDS) questionnaire. Demographic and clinical data
were recorded. The FFQs were analyzed at the Department of Public Health, Faculty of
Health Sciences, Ben-Gurion University of the Negev, Israel, for daily intake of energy and
74 various nutrients [96]. The MDS is a 17-item Mediterranean diet adherence screener,
adapted to the Israeli population [97].

4.2. Microbial DNA Extration

Microbial DNA was extracted using the QIAamp® PowerFecal® Pro DNA kit (Qiagen,
Tegelen, The Netherlands), according to manufacturer’s protocol. DNA 16S rRNA sequenc-
ing was performed at Hy Laboratories Ltd. (Rehovot, Israel). The V3V4 region of the 16S
rRNA gene was amplified using primers from The Earth Microbiome Project. Access Array
primers for Illumina (Fluidigm, San Francisco, CA, USA) were used to add adaptor and
index sequences, and the reactions cleaned using Kapa Pure beads (Kapa, Roche, Basel,
Switzerland). The concentration of each library was measured by Qubit (Life Technologies,
Waltham, MA, USA) using the Denovix ds DNA HS assay (Deonvix, Wilmington, DE, USA)
and samples pooled. The pooled library was sequenced on Illumina Miseq using a Miseq
v2 Kit (Illumina, Eindhoven, The Netherlands) to generate 2 × 250 PE reads at a depth
of 100,000 reads/sample. Reads were trimmed for adaptor sequences and quality; paired
reads were merged and subjected to OTU de novo picking against the SILVA database at
>97% sequence similarity using the CLC-bio software version 12.0.3 (Qiagen, Tegelen, The
Netherlands). An amount of 12,176 OTUs were identified.

4.3. Statistical Analysis

Statistical analysis of microbiome data was performed with the MicrobiomeAnalyst
web tool, version 1.0 (Xia Lab, McGill University, Montréal, QC, Canada), using the Marker
Data Profiling Module (MDP), according to published protocols [16,98,99]. OTUs were
filtered to include only features with ≥4 counts in at least 10% of samples. Testing for
differences in α-diversity was performed using the Shannon alpha index (Mann–Whitney
U test), comparing OTU richness and evenness, while β-diversity was calculated using
the Bray–Curtis dissimilarity (PERMANOVA) test comparing the similarity and distance
between samples on data normalized by total sum scaling (TSS). Differential analysis of
individual taxa between PwMS and HCs was performed using the packages “DESeq2”
(normalization by relative log expression (RLE), “EdgeR” (normalization by trimmed mean
of M-values (TMM) and “MetagenomeSeq” (normalization by cumulative sum scaling
(CSS). Taxa with significant differential relative abundance between PwMS and HCs in
at least 2 out of 3 of the statistical methods at an adjusted p-value (corrected for multiple
testing using the Benjamini–Hochberg false discovery rate FDR) < 0.1 were considered as
differentially abundant taxa. The relative tolerant FDR was chosen given the exploratory
nature of this study. Additionally, the linear discriminant analysis effective size (LEfSe)
tool was used (on TSS normalized data) to determine features discriminating between
PwMS and HCs, with p-value < 0.05, and effect size linear discriminant analysis (LDA)
score > 1.8 as criteria.

Differences in gender, age, ethnicity, MDS, BMI, proportion of smokers and vegetarians,
and the average intake of 75 nutrients between PwMS and HCs were assessed by the
Mann–Whitney U test or Kruskal–Wallis test for continuous or ordinal variables and by
Fischer’s exact test for nominal, categorical variables, using IBM SPSS statistics (v28),
at p-value < 0.05.

Spearman correlations between the relative abundance of MS-differential taxa, nor-
malized by TSS, and clinical or environmental data (dietary data (MDS or daily nutrient
intake), disease severity (EDSS), or level of vitamin D) were calculated using IBM SPSS
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statistics (v28) at p-value < 0.05. Differences in relative abundance of MS-differential taxa
between genders was assessed by the EdgeR and DeSeq2 packages in MicrobiomeAnalyst
at FDR < 0.1.

4.4. Functional Analysis

The Tax4Fun2 package [17] under the Marker Data Profiling Module in the Micro-
biomeAnalyst web tool was used to predict functional profiling of the corresponding
microbiota, applied to filtered OTUs (1295), scaled by TSS, and transformed into 6277 Ky-
oto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs). The relative KO
abundance table was uploaded into the Shotgun Data Profiling (SDP) module for enrich-
ment analysis and metabolic network mapping. KOs were filtered for ≥4 in at least 10% of
samples, and remaining 5472 KOs were scaled by CSS. Enrichment analysis of functional
associations of KEGG pathways was calculated at FDR < 0.1. Differentially functional
pathways between PwMS and HCs were identified using the Kruskal–Wallis rank test, at
FDR < 0.1, and significant KOs mapped to enriched networks at FDR < 0.05. LEfSe was
performed on KOs to detect metabolic functions that best distinguished between groups
at FDR < 0.1.

5. Conclusion

We have identified alterations in the microbiome in PwMS among Israeli diverse
populations, including ethnicity-specific alterations, emphasizing that an MS-associated
microbiome is in part population-specific. We have revealed MS-differential microbes that
correlate with gender, vitamin D levels, Mediterranean diet score, specific nutrient intake,
and MS-related disability and have mapped related functional pathways. Our results sup-
port the perception that microbiome modulation, through dietary interventions, probiotics,
fecal transplant, etc., could be potentially beneficial as part of integrative personalized care
in MS.
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