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Abstract: In the face of escalating environmental challenges, understanding the intricate relationship
between plant metabolites, pollution stress, and climatic conditions is of paramount importance. This
study aimed to conduct a comprehensive analysis of metabolic variations generated through 1H and
13C NMR measurements in evergreen needles collected from different regions with varying pollution
levels. Multivariate analyses were employed to identify specific metabolites responsive to pollution
stress and climatic factors. Air pollution indicators were assessed through ANOVA and Pearson corre-
lation analyses. Our results revealed significant metabolic changes attributed to geographical origin,
establishing these conifer species as potential indicators for both air pollution and climatic conditions.
High levels of air pollution correlated with increased glucose and decreased levels of formic acid and
choline. Principal component analysis (PCA) unveiled a clear species separation, largely influenced
by succinic acid and threonine. Discriminant analysis (DA) confirmed these findings, highlighting the
positive correlation of glucose with pollution grade. Beyond pollution assessment, these metabolic
variations could have ecological implications, impacting interactions and ecological functions. Our
study underscores the dynamic interplay between conifer metabolism, environmental stressors, and
ecological systems. These findings not only advance environmental monitoring practices but also
pave the way for holistic research encompassing ecological and physiological dimensions, shedding
light on the multifaceted roles of metabolites in conifer responses to environmental challenges.

Keywords: metabolomics; bioindicators; air pollution; NMR; multivariate statistical analysis

1. Introduction

Air pollution is a delicate and concerning problem for our present and future society
mainly due to rapid industrialization and urbanization. These factors directly affect human
health and the entire ecosystem with prolonged exposure. The first impact of pollutants on
plants is visual, resembles the effects of drought stress, and is expressed in slow growth and
surface appearance [1–3]. The mechanism of pollutant accumulation in plants is different
and consists in particulate retention, stomatal gas exchange, and surface ion exchange [4].
The absorption capacity or rate of contaminants depends on the plant species and can be
strongly influenced by physical and chemical factors, such as solubility, hydrophobicity,
vapor pressure, particle size, metal oxidation state, and environmental temperature and
humidity [1,4,5]. Therefore, various studies have explored the potential use of trees as
sensors for air monitoring, exploiting their large surface area that allows them to capture
certain pollutants through their bark, leaves, or needles [2,3,5–7]. Fungi, lichens, and
mosses have also attracted attention in pollution assessment, but they present a serious
drawback due to the difficult differentiation of similar species [5,6]. Conifers possess a
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particular advantage over deciduous trees because of their evergreen nature, which allows
them to accumulate and store airborne pollutants for several years. This accumulation
history makes it possible to establish long-term air pollution levels in certain areas by
separating needles that vary from 1 to 3 years on the same branch [4,7]. Persistent organic
pollutants have poor water solubility, and the ability of lipidic tissues to accumulate low
vapor pressure allows the wax layer to retain pollutants from the atmosphere for an
extended period [7]. Additionally, due to their lipophilic characteristics, hydrocarbons
accumulate in plants, but the most common studies involving isotopes, metals, ammonia,
and nitrogen have focused on inorganic air pollutants [6]. Beside physiological changes,
plants can adapt to climatic conditions and pollution changes through structural and
morphological modifications, using internal resources that lead to stress reduction [3,8].
These adaptive responses often involve changes in leaf surface properties, root architecture,
and secondary metabolite production. For example, some plants may develop thicker
cuticles or altered stomatal density to minimize pollutant entry, while others may produce
specialized metabolites that aid pollutant detoxification [9]. Understanding these diverse
adaptation mechanisms is critical for assessing the resilience of plant species to ongoing
environmental challenges.

Therefore, a better understanding of metabolite variations or physiological adjust-
ments as adverse responses to pollution stress in conifers from different areas (e.g., indus-
trial, urban, rural) can provide important information about pollutants at the environmental
level. These plants have great potential to be used in the future as biomonitors due to
their ability to assimilate contaminants over a long period of time, reflecting environmental
conditions and stress phenomena. The metabolites that can be identified in plants differ in
terms of structure, compound families, and concentrations. A comprehensive analysis of
these metabolites can offer insight into the specific pollutants present in the environment
and their potential impact on ecosystems [10]. Integrating data obtained from plant biomon-
itors with other environmental monitoring techniques can improve our understanding of
pollution sources and pathways, leading to more effective strategies for pollution control
and environmental protection.

In this way, environmental conditions and plant physiology can arise through the
formation of certain compounds or a change in their concentration that already exist. Stable
isotopes analysis has been widely used to determine climatic conditions and geographic
origins [10] via the chemical, physical, and biological processes that affect isotope fraction-
ation. In addition, researchers have used methods such as DNA barcoding and genetic
sequencing to study the genetic diversity and population structure of plants in response
to environmental stressors [11,12]. These molecular approaches offer valuable insights
into how plant species adapt and evolve under different pollution scenarios. A solvent
extraction method followed by HPLC with fluorescence detection has been applied to
determine the content of polycyclic aromatic hydrocarbons (PAHs) in leaves, needles, and
grass, demonstrating their ability to accumulate the contaminants in tissues and thereby
reflecting the impact of anthropogenic activities [13,14]. Furthermore, multivariate statisti-
cal analysis based on matrix-assisted laser desorption-mass spectrometry (MALDI-MS),
surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-
MS), gas chromatography-mass spectrometry (GC-MS), and data from nuclear magnetic
resonance (NMR) have been used in several studies to compare and identify differences in
chemical or metabolite compositions. These specific differences may be related to origin,
soil quality, growth conditions, or other parameters such as the age, sex, and mating status
of the plants [15–19]. Therefore, the use of conifer needles for air pollution monitoring can
be a cost-effective and reliable solution, especially in hard-to-reach areas where energy con-
nections or dedicated monitoring analyzers are not practicable. Additionally, the response
of conifers to air contaminants may provide advanced warning signs of rising air pollution
levels. Furthermore, the integration of advanced remote-sensing technologies, such as
hyperspectral imaging and drone-based monitoring, can complement plant-based biomon-
itors for comprehensive air pollution assessments over larger geographical areas [20,21].
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Moreover, by combining plant biomonitors with real-time data from atmospheric sensors
and weather stations, environmental authorities can develop more effective strategies for
pollution control and timely response to pollution events [22]. Harnessing the potential of
these innovative techniques will further improve our understanding of air quality dynamics
and contribute to the protection of both human health and ecosystems.

Most of the related studies have focused on determining different contaminant levels
in plant tissues, but the relationship between plant metabolites and the impact of pollu-
tion remains poorly understood. Therefore, the aim of this study was to strengthen and
complement the existing assumptions found in the literature by identifying correlations
between metabolites in spruce or fir trees and pollution levels in specific areas where they
grow using 1H NMR profiling and multivariate statistical analysis.

2. Results and Discussion
1H 1D and 1H–13C 2D HSQC (heteronuclear single quantum coherence) NMR spectra

were acquired to identify the metabolites in needle-extract samples for further studies
regarding their correlations with pollution level. Figure 1 shows a typical 600 MHz proton
NMR spectrum with water suppression and the corresponding 1H–13C 2D HSQC NMR
spectrum. We were able to identify several metabolites in different chemical shift regions.
In the high field or aliphatic region (δ 0.5–3.0 ppm), we identified signals corresponding
to threonine, alanine, GABA (γ-aminobutyric acid), and acetic and succinic acids. In the
carbohydrate region (δ 3.0–5.5 ppm), signals of α-glucose, β-glucose, fructose, and sucrose
are prominent. Additionally, the low field or aromatic region (δ 5.5–9.0 ppm) exhibits signals
indicative of shikimic and formic acids. The identified metabolites and their corresponding
chemical shifts and multiplicities are summarized in Table 1. The presence of amino acids
in needle extracts was expected given their important contribution to protein biosynthesis
and their essential roles in tree growth and development, intracellular pH regulation,
metabolic energy generation, and protection from abiotic/biotic stress [23–25]. Sucrose,
α- and β-glucose, and fructose were identified as the dominant sugars. The detection of
these sugars within the conifer needles serves as a biochemical indicator affirming the
developmental maturity of the examined samples. These sugars hold crucial significance
as primary substrates involved in the process of photosynthesis, wherein they contribute to
the synthesis of energy-rich molecules and carbon assimilation. This carbon and energy,
in turn, play essential roles in sustaining various physiological processes throughout the
coniferous organism, including the metabolic demands of root systems and the vigorous
growth of nascent needles. In the same region, choline was also identified at a chemical
shift of 3.21 ppm, which has an important role in maintaining the structural integrity of
plants and is involved in various metabolic processes [23]. The signal associated with
formic acid is found at a chemical shift of 8.48 ppm. Formic acid, along with acetic acid, is
produced in needles during plant metabolism as a result of the decarboxylation of glycolic
acid during photorespiration and oxidation of formaldehyde in needles or leaves [26–28].
There are many reports on formic acid emissions from forests to the atmosphere, especially
during the growing season of trees. These emissions are of ecological significance because
formic acid can act as a signaling compound between plants, participating in plant–plant
interactions and defense responses against herbivores [12,26,29,30]. Similarly, acetic acid
is formed after the hydrolysis of acetyl-CoA [31] and decarboxylation of acetaldehyde in
leaves or needles [32]. As in the case of formic acid, acetic acid is released in a gaseous form
into the atmosphere by leaves or needles [26]. Acetic acid emissions from vegetation affect
atmospheric chemistry and contribute to the formation of secondary organic aerosols that
influence air quality and cloud formation. Additionally, acetic acid may play a role in plant
signaling and defense against pathogens.
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Figure 1. 1H–13C 2D HSQC NMR spectrum with a partially assigned 600 MHz 1H 1D NMR spectrum
of needle extract (300.0 ± 0.1 K, methanol-D4, pH 3, 20 mM TSP).

Table 1. Assigned 1H and 13C NMR chemical shifts, multiplicities, and J coupling constants of
metabolites in needle extracts.

Compound 1H δ (ppm) * Multiplicity ** J (Hz) Group 13C δ (ppm) *

Amino acids

Threonine 1.33 d 7.2 CH3 19.8

4.04 m - CH n.d. ***

Alanine
1.49 d 7.2 CH3 17.2

3.70 m - CH n.d.

GABA

2.32 t 7.1 CH2(NH2) 35.5

1.91 m - CH2 25.2

3.00 t 7.3 CH2(COOH) 40.5

Carbohydrates

Fructose

3.92 CH 69.5

C 98.0

C 101.7

C 104.4

β-glucose

4.56 d 8.0 CH(O) 97.6

3.19 dd 8.0; 9.3 CH 75.8

3.43 t 9.3 CH 77.5

3.31 dd 7.9; 9.3 CH 71.2

3.37 m - CH 77.6

3.87, 3.69 m - CH2 62.4
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Table 1. Cont.

Compound 1H δ (ppm) * Multiplicity ** J (Hz) Group 13C δ (ppm) *

α-glucose

5.17 d 3.9 CH(O) 93.6

3.45 dd 3.9; 9.5 CH 73.3

3.62 t 9.5 CH 74.4

3.34 m - CH 71.3

3.82 m - CH 72.9

3.81, 3.72 m - CH2 62.3

Sucrose
5.41 d 3.8 CH 93.5

4.16 d 8.6 CH 78.4

Organic acids

Succinic acid 2.52 s - CH2 26.6

Shikimic acid

6.49 m - CH(=) 131.8

- C 137.3

4.35 m - CH 67.8

3.95 m - CH 68.3

3.61 dd 4.4; 8.8 CH 73.8

2.78, 2.19 m - CH2 34.1

Formic acid 8.48 s - CH 169.1

Other

Choline 3.21 s - CH3 54.9

* TSP signal (δ1H = 0.00 ppm) and methanol (δ13C = 49.15 ppm) are used as references. ** Signal multiplicity;
s—single; d—doublet; dd—doublet of doublets; t—triplet; m—multiplet; *** n.d.—not detected.

Identification of the listed metabolites in spruce and fir needle extracts provides
valuable insights into the metabolic processes and environmental stress responses in these
conifers. The role of these compounds as potential biomarkers of pollution levels and their
involvement in plant interactions and atmospheric processes highlights the importance
of such studies in understanding the ecological consequences of air pollution on forest
ecosystems. In order to observe the variations of metabolic signals and to establish their
correlation with pollution, the obtained data were further submitted to statistical analysis.

One-way ANOVA analyses of variance (p < 0.05) with pairwise post hoc comparison
using Tukey’s test were employed to determine the significance of differences in the
metabolites present in needle extracts collected from four different regions with varying
pollution levels. According to Table 2, the metabolites with the highest concentration in all
regions were, in descending order, shikimic acid, β-glucose, succinic acid, α-glucose, and
fructose. Among them, the major component, shikimic acid, accounted for between 26%
and 39% of the total metabolite content in needle extracts. Several metabolic changes have
been observed in response to pollution stress. The ANOVA results indicated an increasing
trend of β-glucose and α-glucose levels in needle extracts due to pollution, as well as a
slow decrease in formic acid and choline levels, which was more visible between region 1
(unpolluted) and region 4 (polluted). These findings are consistent with previous research
highlighting the role of glucose as a stress-responsive metabolite, potentially related to
plant adaptive mechanisms under pollution-induced stress [33,34]. A decrease in formic
acid and choline, compounds involved in structural integrity and metabolic processes [35],
may indicate a disturbance in these vital functions under the influence of pollution.
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Table 2. Metabolite concentration mean in needles collected from the 4 regions exposed to different
levels of pollution.

Formic
Acid

Shikimic
Acid Sucrose α-

Glucose
β-

Glucose Fructose Choline GABA Succinic
Acid Alanine Threonine

Region 4 0.820 b 33.834 ab 1.326 a 13.676 a 21.588 a 6.940 a 3.171 a 2.157 a 12.732 a 2.430 a 1.327 a
Region 3 0.888 b 26.460 b 1.611 a 13.069 a 20.670 a 12.674 a 3.786 a 1.619 a 16.255 a 1.739 a 1.444 a
Region 1 2.591 a 35.932 a 0.586 a 11.551 a 18.493 a 8.247 a 5.643 a 1.948 a 12.308 a 1.860 a 0.902 a
Region 2 0.956 b 38.954 a 0.365 a 13.010 a 20.425 a 7.476 a 3.986 a 1.671 a 10.248 a 1.919 a 1.220 a

Pr > F <0.0001 0.036 0.207 0.262 0.279 0.147 0.225 0.792 0.690 0.746 0.745
Significant Yes Yes No No No No No No No No No

Different letters in each row of the same variant are significantly different at the 0.05 level according to ANOVA
by Tukey’s test. Statistical analysis was conducted using one-way ANOVA with pairwise post hoc comparisons
and Tukey’s test. The color-coding system enhances the interpretability of the data and provides a clear visual
indicator of metabolites with low (blue color) to high (red color) mean variation.

In the first three regions, there was a trend for increased threonine levels with higher
pollution levels. Threonine is known to be involved in nitrogen metabolism and stress
responses, acting as a precursor for multiple downstream pathways, including the biosyn-
thesis of secondary metabolites involved in defense against stressors [36]. Furthermore,
polluted regions showed a gross difference from the less polluted regions based on succinic
and shikimic acid values. Elevated levels of succinic acid, a key component of the tricar-
boxylic acid cycle, may indicate changes in energy metabolism and cellular respiration
under pollution stress. Shikimic acid, a precursor for the synthesis of aromatic amino
acids and secondary metabolites, may potentially indicate shifts in the plant’s allocation of
resources toward defense responses against pollutants. While these trends were observed
in our data, they were not generally related with pollution, and it is important to note that
further research is needed in order to establish the significance and mechanisms behind
these observations. However, variations in the amounts of GABA, succinic acid, and alanine
showed no clear differences in response to pollution, making it challenging to establish
any correlations.

To facilitate clear visualization, all data obtained for the aliphatic, carbohydrate, and
aromatic regions of the 1H NMR spectrum were subjected to Pearson analysis and repre-
sented as a heatmap in Figure 2. This heatmap was used to assess variation in metabolite
concentrations among needle extract samples from the collected areas. As expected, the
relationship between precipitation and annual mean minimum and maximum temperature
was the strongest. Higher altitudes typically experience more intense precipitation and
lower temperatures. Regarding metabolites, a significant and negative correlation was
observed between formic acid and climatic conditions, with a positive correlation with
elevation. Choline also exhibited a similar pattern, highlighting its sensitivity to both
climatic and elevation factors. These findings are consistent with previous research that
noted the interplay between environmental conditions and metabolite levels, suggesting
that formic acid and choline may serve as potential indicators of the combined effects of
climate and altitude on conifer metabolism [37]. It should be noted that there was a strong
positive correlation between α- and β-glucose and climatic conditions. Glucose showed
accumulation in needles and a negative correlation with altitude, possibly reflecting its
role as an energy source in response to favorable climatic conditions. The relationship
between glucose accumulation and climate is consistent with an adaptive strategy of trees
to optimize energy storage during periods of favorable growth conditions. In contrast,
weaker or absent correlations were observed for metabolites belonging to the amino acid
class, suggesting that their levels may be less affected by climatic or elevation gradients.
Additionally, the lack of a clear correlation for sucrose and fructose, despite other carbohy-
drates showing different patterns, indicates the complexity of the carbohydrate metabolism
in conifers and the potential involvement of specific regulatory mechanisms in response to
environmental cues.
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Figure 2. Pearson correlation heatmap revealing metabolite concentration variations in needle extracts
across regions.

Principal component analysis (PCA) was used to manage the extensive dataset and
reduce its dimensionality. This analytical technique helped to identify spectral variations in
regions subject to different degrees of pollution. The resulting PCA model was constructed
using five components, including F1, F2, F3, F4, and F5, which contributed 30.21%, 18.47%,
13.27%, 9.91%, and 8.83%, respectively, to the total variance. The score plot depicted in
Figure 3 was derived from the first two principal components, collectively explaining 48.67%
of the total variance. Notably, a visual assessment of the score plot revealed a discernible
trend corresponding to the pollution levels. The distribution pattern observed in the score
plot highlights the potential of PCA to be a powerful tool for distinguishing pollution-
related metabolic variations. Separating samples of different pollution levels along the
F1 axis suggests a gradation of the pollution impact. Moreover, the clear separation of
samples from region 1 with negative F1 values from those of regions 2, 3, and 4 with
positive F1 values underscores the robustness of the PCA model in capturing underlying
trends. PCA-derived insights provide valuable preliminary evidence of the interplay
between metabolite profiles and pollution levels, offering a foundation for subsequent
in-depth analyses. Furthermore, altitude emerges as a significant variable influencing the
separation of region 1 from the other regions: at higher altitudes, pollution sources are
absent. The main component responsible for this separation, F1, exhibited correlations
with shikimic acid, choline, and formic acid. It should be noted that the variation of these
variables appeared to depend on the pollution level, suggesting a potential link between the
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elevated regions and individual metabolic responses to pollution stress. The second major
component, F2, accounting for 18.47% of the total variance, demonstrated correlations with
GABA, sucrose, fructose, α- and β-glucose, threonine, and succinic acid. This intricate
network of correlations underscores the multifaceted nature of metabolic adaptations In
conifers in response to environmental pressures. Interestingly, PCA analysis also detected
discernible differences in metabolite composition based on tree species, with all fir samples
aligning with negative values on the F2 axis. The separation of species is due, in particular,
to succinic acid and threonine, both of which exhibited positive values along the F2 and F1
axes, respectively. This suggests that the observed metabolic distinctions between spruce
and fir may be due, at least partially, to succinic acid and threonine levels. These findings
shed light on the potential biochemical underpinnings of species-specific responses to
pollution and environmental stress.
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Figure 3. PCA score plot of the samples collected from four regions and the correlation between
signals and metabolites responsible for pollution differentiation.

Intriguingly, as the PCA model captures the cumulative effects of multiple variables,
the combined impact of elevation and species on conifer metabolism becomes more evident.
By dissecting the complex interplay between metabolite profiles, altitude, and species type,
the PCA approach presents a valuable framework for unraveling the intricate mechanisms
by which environmental factors shape plant metabolism. These insights not only contribute
to our fundamental understanding of plant responses to changing environments but also
offer a basis for developing targeted strategies for the conservation and management of
coniferous ecosystems.

For a more detailed and comprehensive examination, aiming to validate the insights
gained from the explorative PCA analysis and to discover new correlations, the same
dataset was subjected to discriminant analysis (DA). This approach involved classifying
the samples based on varying pollution levels, thereby offering a finer distinction be-
tween them. As it can be seen from Figure 4, the first and second discriminant functions
explained 98.26% and 1.25% of the total variance, respectively. The DA model encompass-
ing all metabolites effectively categorized the samples based on their respective regions
of origin. This classification underscored the significant quantitative changes in needle
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metabolites attributed to pollution levels, clearly elucidated by the first discriminant func-
tion (F1). Metabolic adaptations to pollution stress exhibited diverse responses, reflecting
the intricate strategies used by conifers to cope with environmental challenges. Clear
trends emerged, particularly in the increasing statistical distances observed between the
least polluted regions (mountainous)—denoted as region 1—and those regions exposed
to varying pollution levels. The separation between region 1 and the more polluted re-
gions (regions 2, 3, and 4) highlights the capacity of DA to capture even subtle variations
in metabolic profiles and their relationship to pollution gradients. Metabolites exhibit-
ing notable variations in response to F1 further emphasized these trends. Formic acid
and choline, characterized by negative coefficients, decreased in concentration with in-
creasing pollution levels, indicating their potential as markers of pollution impact. In
contrast, α- and β-glucose, with positive coefficients, exhibited increased concentrations in
response to the pollutant presence, confirming the trends observed in the PCA classifica-
tion. This reinforces the importance of these metabolites as indicators of pollution-induced
metabolic shifts.
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their pollution level and the main metabolites responsible for it.

A subtle separation between region 2, considered relatively unpolluted, and the
contaminated regions 3 and 4 was also discernible based on F1. This observation suggests
a progressive shift in metabolic profiles as pollution levels increase, further substantiating
the utility of DA in elucidating nuanced responses to pollution stress. Additionally, F2
contributed significantly to the discrimination between region 3 and region 4. High-impact
metabolites driving this separation included fructose, sucrose, and succinic acid, with each
being associated with positive coefficients. Conversely, shikimic acid, alanine, and GABA
exerted a negative influence. These findings unveil potential metabolic signatures that
differentiate regions exposed to varying pollution intensities, thereby offering insights into
the specific compounds implicated in conifer response to pollution.

The accuracy of the confusion matrix achieved in distinguishing samples from un-
polluted to polluted zones demonstrated strong performance: 100% accuracy for region
1, 84.62% for region 2, 81.82% for region 3, and 75% for region 4. Together, these results
underscore the robustness of the DA analysis in successfully capturing pollution-induced
metabolic variations and differentiating conifer samples at varying pollution levels.
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To summarize, fir and spruce needles collected from different areas with varying
pollution levels were analyzed to highlight metabolic changes within the trees. The results
clearly demonstrate that the metabolite composition of needle extracts exhibited significant
variation based on their geographical origin, reaffirming the potential of spruce and fir
as sensitive indicators for monitoring air pollution and climate conditions. These tree
species could effectively serve as passive air samplers, capturing and “recording” pollution
levels over time. Multivariate statistical analyses were employed to identify the specific
metabolites linked to pollution stress and climatic conditions. Exposure of spruce or fir
to a high level of air pollution resulted in an increase in glucose concentration and was
accompanied by a decrease in formic acid and choline levels according to ANOVA analysis.
Pearson correlation coefficients revealed both negative and positive correlations of formic
acid with climatic conditions and altitude, respectively. Conversely, α- and β-glucose
exhibited contrasting correlations. PCA enabled the differentiation between the two species,
mainly driven by variations in succinic acid and threonine. This analysis found a negative
association between shikimic acid, choline, and formic acid levels with pollution intensity.
DA analysis substantiated these findings and revealed a positive correlation between α-
and β-glucose, and the pollution grade was consistent with the ANOVA outcomes. These
results suggest a complex interplay between pollution stress and tree metabolism, offering
insights into the biochemical responses of spruce and fir to environmental challenges. The
implications of these findings extend beyond pollution assessment. The observed variation
in metabolite profiles may also have implications for ecological interactions between these
conifer species and other organisms in their environment. The potential roles of these
metabolites in defense mechanisms, nutrient cycling, and carbon allocation warrant further
investigation, opening avenues for holistic studies that encompass both ecological and
physiological dimensions.

3. Materials and Methods
3.1. Sample Identification, Collection and Preparation

1H and 13C NMR spectra and various 2D spectra (such as JRES, COSY, TOCSY, and
HSQC) were obtained to comprehensively evaluate the correlations of spruce and fir
metabolomics with air pollutants. The instrument used for sample characterization was a
Bruker Avance NEO 600 spectrometer (Biospin GmbH, Rheinstetten, Germany) equipped
with a nitrogen-cooled Prodigy cryoprobe. In addition to the methodologies used to
identify metabolites, the statistical data exploration, including PCA and DA, was es-
sential to observing the contribution of each metabolite as a possible stress marker of
pollution and to establishing the confidence level of our approach. To meet these require-
ments, needle samples were collected (using clean rubber gloves for each sample to avoid
cross-contamination) from spruces and firs growing in areas at different altitudes and
exposed to different pollution levels. Conifers were selected at the same age, approximately
40 years, and were sampled from the same southeast-oriented section at 1.5 m height in
the first part of the day. After collection, the samples were stored in polyethylene bags,
coded (according to Table 1), and brought to the laboratory for chemical extraction. Table 3
shows information about the selected research sites and their classification according to
the pollution level (ranging from low to high), which strongly depends on the type of
zone (rural, mountain park, spa, urban, and industrial). The protocol implemented for the
extraction procedure was based on different literature studies [38–41]. Twig pieces were
placed in liquid nitrogen, and needles were removed by agitation. The samples were then
ground with a ball mill (Pulverisette 6, Fritsch, Germany) and subjected to a 12 h lyophiliza-
tion process. An amount of 0.05 g of fine powder from each sample was introduced into
a 2 mL Eppendorf tube, to which 750 µL of methanol-D4 (99.80% D, VWR Chemicals,
Lutterworth, UK) and 375 µL of potassium phosphate buffer solution were added for the
extraction and after was filled with deuterium oxide (99.9%). The buffer solution also con-
tained 0.1% 3-(trimethylsilyl) propionic-2, 2, 3, 3-d4 acid sodium salt (99.9% Sigma Aldrich,
St. Louis, MO, USA) as a reference for the 1H NMR spectra at 0.00 ppm. The mixtures
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were kept in the vials for 1 h and then sonicated for 15 min without a temperature pro-
gram. Phase separation was achieved using centrifugation for 20 min, and the supernatant
was transferred to a 5 mm NMR tube for analysis after filtration with a PTFE membrane
(0.45 µm, Millipore, Burlington, Massachusetts, USA). Sampling for the pollution stress
response study was performed four times, and special attention was paid to the uniformity
to avoid interference in the metabolomic NMR analysis.

Table 3. Geographic origin and habitat characterization of selected conifers.

Site Code Geographical
Coordinates

Altitude
(m) Species Tmax (◦C) Tmin (◦C) Pan (mm) Pollution Level/Sampling

Area Type

Mihaesti S_1 45.043233,
24.248252 236 Spruce 16.8 7.0 65.5 Low-medium, rural,

Region 2

Govora S_2 45.072151,
24.205248 270 Spruce 16.3 6.8 65.5 Low-medium, rural,

Region 2

Govora S_3 45.072818,
24.195674 282 Fir 16.3 6.8 65.5 Low-medium, rural,

Region 2

Govora S_4 45.075123,
24.192590 299 Fir 16.3 6.8 65.5 Low-medium, rural,

Region 2

Baile
Govora S_5 45.081617,

24.177123 329 Spruce 16.0 6.2 65.5 Low-medium, balneo resort,
Region 2

Baile
Govora S_6 45.082184,

24.168034 392 Spruce 16.0 6.2 65.5 Low-medium, balneo resort,
Region 2

Baile
Govora S_7 45.078622,

24.184012 307 Spruce 16.0 6.2 65.5 Low-medium, balneo resort,
Region 2

Baile
Govora S_8 45.076675,

24.188106 300 Spruce 16.0 6.2 65.5 Low-medium, balneo resort,
Region 2

Govora S_9 45.086692,
24.218175 272 Fir 16.3 6.8 65.5 Medium, rural, Region 3

Ocnele
Mari S_10 45.08831,

24.29659 266 Spruce 16.3 6.6 65.5 Low-Medium, rural,
Region 2

Ocnele
Mari S_11 45.086189,

24.302747 264 Spruce 16.3 6.6 65.5 Medium, rural, Region 3

Ocnele
Mari S_12 45.081915,

24.309449 259 Spruce 16.3 6.6 65.5 Medium, rural, Region 3

Ocnele
Mari S_13 45.078993,

24.311667 250 Spruce 16.3 6.6 65.5 Medium, rural, Region 3

Troian S_14 45.072444,
24.330117 246 Spruce 16.8 7.0 65.5 Medium, rural, Region 3

Vladesti S_15 45.119613,
24.305616 292 Spruce 16.3 6.8 65.5 Medium, rural, Region 3

Vladesti S_16 45.112791,
24.323620 278 Fir 16.3 6.8 65.5 Medium, rural, Region 3

Vladesti S_17 45.113277,
24.322721 278 Spruce 16.3 6.8 65.5 Medium, rural, Region 3

Vladesti S_18 45.127225,
24.271221 313 Fir 16.3 6.8 65.5 Medium, rural, Region 3

Pausesti
Maglasi S_19 45.140121,

24.246315 338 Spruce 15.0 7.6 59.2 Medium, rural, Region 3
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Table 3. Cont.

Site Code Geographical
Coordinates

Altitude
(m) Species Tmax (◦C) Tmin (◦C) Pan (mm) Pollution Level/Sampling

Area Type

Olanesti S_20 45.172527,
24.257951 378 Spruce 15.0 7.6 59.2 Low-medium, rural,

Region 2

Baile
Olanesti S_21 45.203455,

24.241029 434 Spruce 14.0 6.6 59.2 Low-medium, balneo resort,
Region 2

Baile
Olanesti S_22 45.206098,

24.237576 422 Spruce 14.0 6.6 59.2 Low-medium, balneo resort,
Region 2

Pausesti
Maglasi S_23 45.152544,

24.248061 356 Spruce 15.0 7.6 59.2 Medium, rural, Region 3

Ramnicu
Valcea S_24 45.106805,

24.363972 253 Spruce 16.8 7 65.5 High, urban, Region 4

Ramnicu
Valcea S_25 45.109167,

24.363379 260 Spruce 16.8 7 65.5 High, urban, Region 4

Raureni S_26 45.03541,
24.28569 220 Spruce 16.8 7.1 65.5 High, industrial, Region 4

Raureni S_27 45.03541,
24.28569 220 Spruce 16.8 7.1 65.5 High, industrial, Region 4

Cozia
National

Park
S_28 45.29020,

24.41727 654 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_29 45.29296,

24.41088 723 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_30 45.29834,

24.40141 850 Fir 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_31 45.30348,

24.39652 855 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_32 45.30817,

24.38673 907 Fir 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_33 45.31366,

24.37694 950 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_34 45.31998,

24.37551 1036 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_35 45.32211,

24.37143 1110 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_36 45.32744,

24.37021 1160 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_37 45.32851,

24.36409 1180 Fir 7.8 0.4 59.2 Low, mountain, Region 1
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Table 3. Cont.

Site Code Geographical
Coordinates

Altitude
(m) Species Tmax (◦C) Tmin (◦C) Pan (mm) Pollution Level/Sampling

Area Type

Cozia
National

Park
S_38 45.32898,

24.35904 1311 Fir 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_39 45.32631,

24.35373 1310 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_40 45.32079,

24.33799 1554 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Cozia
National

Park
S_41 45.32382,

24.34144 1488 Spruce 7.8 0.4 59.2 Low, mountain, Region 1

Malaia S_42 45.35751,
24.01593 521 Spruce 14.6 7.3 64.0 Low-medium, rural,

Region 2

Voineasa S_43 45.42373,
23.96654 745 Spruce 12.3 5.3 64.0 Low, mountain resort,

Region 1

Voineasa S_44 45.41644,
23.96439 671 Spruce 12.3 5.3 64.0 Low, mountain resort,

Region 1

Tmax—mean annual maximum temperature; Tmin—mean annual minimum temperature; Pan—mean
annual precipitation.

3.2. 1D and 2D NMR Spectroscopy

The measurements were performed at a temperature of 300.0 ± 0.1 K. 1H NMR
spectra were acquired with water signal suppression. The following parameters were
applied: noesygppr1d, 128 scans, 16 dummy scans, 4 s acquisition time, 2 s relaxation
delay, 64K FID size data points, and 13.66 ppm spectral width. For 13C NMR experi-
ments (zgdc), the following parameters were employed: 30° pulse, 4K scans, 16 dummy
scans, 1.05 s relaxation delay, 32K data points, and 236.63 ppm spectral width. All spec-
tra were phased, baseline-corrected, and referenced to the TSP signal at 0 ppm for 1H
NMR spectra and the methanol signal at 49.15 ppm for 13C NMR spectra. The chemical
shifts of the signals, along with their multiplicity allowing the identification of metabo-
lites, were revealed in the NMR spectra using one-dimensional (1D) and two-dimensional
(2D) experiments, including homonuclear 1H-1H correlation spectroscopy (COSY), to-
tal correlation spectroscopy (TOCSY), and J-resolved (JRES) and heteronuclear 1H-13C
single-quantum coherence (HSQC) spectral analysis. The COSY (cosygpmfqfpr) spectral
width was set to 11.90 ppm, with a 2 s relaxation delay, 4K × 256 increments, 16 dummy
scans, and 2 scans for data acquisition. The parameters used in TOCSY experiments
(dipsi2esgpphzs) were spectral width 11.90 ppm, relaxation delay 2 s, 2K × 256 increments,
2 scans, and 16 dummy scans. JRES (jresgpprqf ) spectra were obtained with a spectral width
of 11.90 ppm for F1 and 66.00 Hz for F2, a relaxation delay of 2 s, 8K × 64 increments,
16 dummy scans, and 4 scans. For the HSQC (hsqcedetgpsisp2.2) investigations, the pa-
rameters used were achieved with a relaxation delay of 1.5 s, 2K/200 data points in the
direct/indirect dimension, 32 dummy scans, 8 scans, and a spectral width of 11.90 ppm for
proton and 180 ppm for carbon dimensions.

3.3. Metabolite Identification and Quantification

After the NMR spectra were collected and manual phasing and baseline correction
were performed, the metabolites were unambiguously identified via 1D and 2D NMR
spectra. Furthermore, to ensure reliable identification of metabolites, various literature
studies were consulted to compare the spectra with those in previously published re-
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search [19,23,42,43]. Metabolite intensity values were subsequently registered in a Mi-
crosoft Excel spreadsheet for multivariate statistical analysis, and each one was reported as
percentage of the total signals that were taken into consideration.

3.4. Statistical Analysis

The potential correlation of air pollution with some metabolite variations in spruce or
fir needle extracts from NMR data was evaluated by a combination of established analytical
tools, including analysis of variance (ANOVA), principal components analysis (PCA),
and discriminant analysis (DA). The statistical analysis helped overcome the challenges
posed by multiple 1H NMR spectra signals, allowing for the contribution of the molecules
responsible for key differences to be highlighted.

First, ANOVA analysis was performed to examine the trends of metabolites in four
different regions with respect to pollution. Additionally, Pearson correlation was applied
to identify the correlation coefficient and to strengthen the similarities in terms of metabo-
lite presence. To further identify components that can be used as pollution markers, we
conducted PCA followed by DA to examine the data more closely using Addinsoft XL-
STAT software version 2014.5.03 (Addinsoft Inc., New York, NY, USA). These statistical
approaches helped to understand the relationships between metabolites and pollution
levels and to identify potential pollution biomarkers and their significance in the overall
metabolic profile.

4. Conclusions

The present study highlights the dynamic nature of conifer metabolism in response
to pollution stress and climatic conditions. Using advanced analytical techniques and
statistical analyses, a comprehensive understanding of the intricate relationships between
metabolites, environment, and species behavior has been elucidated. These findings
not only contribute to environmental monitoring practices but also stimulate broader re-
search exploring the ecological and functional consequences of these metabolic adaptations
in conifers.
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7. Klánová, J.; Čupr, P.; Baráková, D.; Šeda, Z.; Anděl, P.; Holoubek, I. Can Pine Needles Indicate Trends in the Air Pollution Levels
at Remote Sites? Environ. Pollut. 2009, 157, 3248–3254. [CrossRef]

8. Rai, P.K. Biodiversity of Roadside Plants and Their Response to Air Pollution in an Indo-Burma Hotspot Region: Implications for
Urban Ecosystem Restoration. J. Asia-Pac. Biodivers. 2016, 9, 47–55. [CrossRef]

9. Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar Heavy Metal Uptake, Toxicity and Detoxification in
Plants: A Comparison of Foliar and Root Metal Uptake. J. Hazard. Mater. 2017, 325, 36–58. [CrossRef]

10. Anderson, K.A.; Smith, B.W. Effect of Season and Variety on the Differentiation of Geographic Growing Origin of Pistachios by
Stable Isotope Profiling. J. Agric. Food Chem. 2006, 54, 1747–1752. [CrossRef]

11. Armenise, L.; Simeone, M.C.; Piredda, R.; Schirone, B. Validation of DNA Barcoding as an Efficient Tool for Taxon Identification
and Detection of Species Diversity in Italian Conifers. Eur. J. For. Res. 2012, 131, 1337–1353. [CrossRef]

12. Stavrakou, T.; Müller, J.-F.; Peeters, J.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; De Mazière, M.;
Vigouroux, C.; et al. Satellite Evidence for a Large Source of Formic Acid from Boreal and Tropical Forests. Nat. Geosci. 2012, 5,
26–30. [CrossRef]

13. Mukhopadhyay, S.; Dutta, R.; Das, P. A Critical Review on Plant Biomonitors for Determination of Polycyclic Aromatic
Hydrocarbons (PAHs) in Air through Solvent Extraction Techniques. Chemosphere 2020, 251, 126441. [CrossRef] [PubMed]

14. Geana, E.I.; Ciucure, C.T.; Sandru, C.; Botoran, O.R.; Ionete, R.E. Coniferous Bark, Needles and Cones as Bioindicators of Air
Pollution in Urban Areas with Intense Road Traffic. In Proceedings of the Book of Abstracts of the 21st International Conference
“Life Sciences for Sustainable Development”; University og Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj
Napoca, Romania, 15 September 2022.

15. Winning, H.; Larsen, F.H.; Bro, R.; Engelsen, S.B. Quantitative Analysis of NMR Spectra with Chemometrics. J. Magn. Reson. 2008,
190, 26–32. [CrossRef] [PubMed]

16. Olate, V.; Soto, A.; Schmeda-Hirschmann, G. Seasonal Variation and Resin Composition in the Andean Tree Austrocedrus Chilensis.
Molecules 2014, 19, 6489–6503. [CrossRef] [PubMed]

17. Lambert, J.B.; Kozminski, M.A.; Santiago-Blay, J.A. Distinctions among Conifer Exudates by Proton Magnetic Resonance
Spectroscopy. J. Nat. Prod. 2007, 70, 1283–1294. [CrossRef]

18. Longobardi, F.; Ventrella, A.; Napoli, C.; Humpfer, E.; Schütz, B.; Schäfer, H.; Kontominas, M.G.; Sacco, A. Classification of Olive
Oils According to Geographical Origin by Using 1H NMR Fingerprinting Combined with Multivariate Analysis. Food Chem.
2012, 130, 177–183. [CrossRef]

19. Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative Metabolite Profiling and Fingerprinting of Medicinal Licorice Roots Using
a Multiplex Approach of GC–MS, LC–MS and 1D NMR Techniques. Phytochem. 2012, 76, 60–72. [CrossRef]

20. Lassalle, G.; Fabre, S.; Credoz, A.; Hédacq, R.; Dubucq, D.; Elger, A. Mapping Leaf Metal Content over Industrial Brownfields
Using Airborne Hyperspectral Imaging and Optimized Vegetation Indices. Sci. Rep. 2021, 11, 2. [CrossRef]

21. Caggiano, R.; Speranza, A.; Imbrenda, V.; Afflitto, N.; Sabia, S. A Holistic Approach Based on Biomonitoring Techniques and
Satellite Observations for Air Pollution Assessment and Health Risk Impact of Atmospheric Trace Elements in a Semi-Rural Area
of Southern Italy (High Sauro Valley). Atmosphere 2022, 13, 1501. [CrossRef]

22. Wägele, J.W.; Bodesheim, P.; Bourlat, S.J.; Denzler, J.; Diepenbroek, M.; Fonseca, V.; Frommolt, K.-H.; Geiger, M.F.; Gemeinholzer,
B.; Glöckner, F.O.; et al. Towards a Multisensor Station for Automated Biodiversity Monitoring. Basic Appl. Ecol. 2022, 59, 105–138.
[CrossRef]

https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
https://doi.org/10.1016/j.ecoenv.2016.03.012
https://www.ncbi.nlm.nih.gov/pubmed/27011112
https://doi.org/10.1016/j.chemosphere.2013.04.050
https://www.ncbi.nlm.nih.gov/pubmed/23714151
https://doi.org/10.1016/j.envpol.2014.02.017
https://www.ncbi.nlm.nih.gov/pubmed/24631972
https://doi.org/10.1016/j.envpol.2009.05.030
https://doi.org/10.1016/j.japb.2015.10.011
https://doi.org/10.1016/j.jhazmat.2016.11.063
https://doi.org/10.1021/jf052928m
https://doi.org/10.1007/s10342-012-0602-0
https://doi.org/10.1038/ngeo1354
https://doi.org/10.1016/j.chemosphere.2020.126441
https://www.ncbi.nlm.nih.gov/pubmed/32443242
https://doi.org/10.1016/j.jmr.2007.10.005
https://www.ncbi.nlm.nih.gov/pubmed/18029207
https://doi.org/10.3390/molecules19056489
https://www.ncbi.nlm.nih.gov/pubmed/24853713
https://doi.org/10.1021/np0701982
https://doi.org/10.1016/j.foodchem.2011.06.045
https://doi.org/10.1016/j.phytochem.2011.12.010
https://doi.org/10.1038/s41598-020-79439-z
https://doi.org/10.3390/atmos13091501
https://doi.org/10.1016/j.baae.2022.01.003


Int. J. Mol. Sci. 2023, 24, 14986 16 of 16

23. Melgarejo, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Hernández, F.; Martínez-Font, R.; Lidón, V.; García-Sánchez, F.; Legua, P.
Metabolomic Profile of Citrus limon Leaves (‘Verna’ Variety) by 1H-NMR and Multivariate Analysis Technique. Agronomy 2022,
12, 1060. [CrossRef]

24. Hildebrandt, T.M. Synthesis versus Degradation: Directions of Amino Acid Metabolism during Arabidopsis Abiotic Stress
Response. Plant. Mol. Biol. 2018, 98, 121–135. [CrossRef] [PubMed]

25. Galili, G.; Amir, R.; Fernie, A.R. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. Annu. Rev. Plant
Biol. 2016, 67, 153–178. [CrossRef] [PubMed]

26. Mochizuki, T.; Tani, A. Emissions of Gaseous Formic and Acetic Acids from Major Tree Species in Japan. Atmos. Environ. 2021,
247, 118149. [CrossRef]

27. Grodzinski, B. A Study of Formate Production and Oxidation in Leaf Peroxisomes during Photorespiration. Plant Physiol. 1979,
63, 289–293. [CrossRef] [PubMed]

28. Jardine, K.; Fernandes de Souza, V.; Oikawa, P.; Higuchi, N.; Bill, M.; Porras, R.; Niinemets, Ü.; Chambers, J. Integration of C1 and
C2 Metabolism in Trees. Int. J. Mol. Sci. 2017, 18, 2045. [CrossRef]

29. Fulgham, S.R.; Brophy, P.; Link, M.; Ortega, J.; Pollack, I.; Farmer, D.K. Seasonal Flux Measurements over a Colorado Pine Forest
Demonstrate a Persistent Source of Organic Acids. ACS Earth Space Chem. 2019, 3, 2017–2032. [CrossRef]

30. Khare, P.; Kumar, N.; Kumari, K.M.; Srivastava, S.S. Atmospheric Formic and Acetic Acids: An Overview. Rev. Geophys. 1999, 37,
227–248. [CrossRef]

31. Liedvogel, B.; Stumpf, P.K. Origin of Acetate in Spinach Leaf Cell. Plant Physiol. 1982, 69, 897–903. [CrossRef]
32. Jardine, K.J.; Sommer, E.D.; Saleska, S.R.; Huxman, T.E.; Harley, P.C.; Abrell, L. Gas Phase Measurements of Pyruvic Acid and Its

Volatile Metabolites. Environ. Sci. Technol. 2010, 44, 2454–2460. [CrossRef]
33. Li, C.; Liu, Y.; Tian, J.; Zhu, Y.; Fan, J. Changes in Sucrose Metabolism in Maize Varieties with Different Cadmium Sensitivities

under Cadmium Stress. PLoS ONE 2020, 15, e0243835. [CrossRef]
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