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Abstract: Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-
5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-
methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced
by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions
including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed
their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented
(MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease
the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine
monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resul-
tant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea
(PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by
the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-
transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor
antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of
the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the
current state of the art, provide a convenient experimental model to study the complex relationship
between metabolites of melatonin and the control of pigmentation serving as a future and rationale
strategy for targeted therapies of melanoma-affected patients.

Keywords: melatonin; melanogenesis; kynurenic and indolic metabolites; tyrosinase; human melanoma;
G-protein-coupled membrane receptors; luzindole; molecular mechanism
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1. Introduction

In recent years, significant advances in our understanding of melanogenesis and
its control have been made as the result of studies on melanoma [1]. Recently, numer-
ous investigations described melanogenesis as a complex, multistage process involving
the synthesis of melanosomes, the transport of melanosomes to the dendrite tips of the
melanocytes, and their release. In melanoma cells and melanocytes, melanin synthesis
is regulated by a cascade of enzymatic reactions. The initial step of melanin synthesis
involves the oxidation of tyrosinase to 3,4-dihydroxyphenylalanine (DOPA) by tyrosi-
nase (TYR), the rate-limiting enzyme of melanogenesis [2]. Melanogenesis is stimulated
by various effectors, including paracrine melanogenic factors (α-melanocyte-stimulating
hormone (α-MSH), endothelin-1, and stem cell factor), cyclic adenosine monophosphate
(cAMP)-elevating agent (forskolin or cholera toxin), and ultraviolet radiation [3,4]. Also,
melanogenesis is controlled via intracellular signaling pathways such as protein kinases
(protein kinase A (PKA), protein kinase C-α (PKC-α), protein kinase C-β (PKC-β)) and
mitogen-activated protein kinase (MAPK) [4–9]. The cAMP pathway, in particular, plays
a key role in the regulation of melanogenesis through the upregulation of the key tran-
scription factor microphthalmia-associated transcription factor (MITF) and subsequent
melanogenic enzymes including pre-existing TYR protein and TYR mRNA [5,10,11]. In
addition, melanogenesis can profoundly affect the biologic behavior of melanoma cells
as well as that of the surrounding environment [12,13]. Hormonal and nutritional factors
regulate these biochemical processes, and the concentration of these factors determines the
amount of melanin production [13].

Melatonin (N-acetyl-5-methoxytryptamine, MEL) is the major biologically active
molecule secreted by the pineal gland [14,15]. Melatonin and its metabolites have been
found throughout the evolutionary spectrum, including animals, plants, microbes [16–19]
and even honey [20,21]. In mammals, the pineal gland secrets melatonin into the blood
stream, where it exerts a range of well-documented physiological functions, acting as a
neurotransmitter for hormonal and immunomodulatory actions [22,23]. In the blood, the
nighttime concentration of melatonin is in the low nanomolar range, but in other fluids and
tissues, the concentration of this indoleamine is several orders of magnitude higher than
that in the plasma [21]. Some of the physiological actions of melatonin are mediated by its
interaction with two well-characterized G-protein-coupled seven-transmembrane-domain
receptors MT1 and MT2, while other phenotypic effects are independent of these MT
receptors [24,25].

Melatonin exerts a vast array of biological functions where the cell growth inhibitory
properties have been one of better known actions. Thus, anti-proliferative activity has been
demonstrated both in vitro and in vivo in melanoma cells [26–31]. Next to melatonin, the
increasing importance of its metabolites has come into focus due to their ability to reduce
melanoma growth. Indolic, kynurenic, and classical pathways are described as the main
pathways of melatonin metabolism [32–34]. N1-acetyl-N2-formyl-5-methoxykynuramine
(AFMK) is produced from melatonin via kynurenic pathway [33,34], through interaction
with H2O2 [35,36]. Metabolites of melatonin also include 6-hydroxymelatonin (6(OH)MEL),
and 5-methoxytryptamine (5-MT) produced via the indolic pathway [37].

We have recently reported that melatonin controls melanin synthesis in both ro-
dents [38] and human melanoma cells [30]. In this report, we comparatively assessed the
impact of its metabolites on the regulation of melanogenesis and the role of MT1 and MT2
membrane receptors in this process using the conventional receptor antagonists, luzindole
and 4-P-PDOT.

2. Results
2.1. Melatonin and Its Metabolites Decrease Tyrosinase Activity and Melanin Content

Firstly, we assessed the impact of subjected compounds on tyrosinase activity using
amelanotic (A375, Sk-Mel-28) and highly pigmented (melanotic) (MNT-1) melanoma cells
(Figure 1A–F). A significant decrease in TYR was noticed in all cellular models ranging from



Int. J. Mol. Sci. 2023, 24, 14947 3 of 17

18% to 26% for 10−6 M (Figure 1A,C,E) and from 26% to 49% for a higher dose (10−3 M)
of melatonin and its metabolites (Figure 1B,D,F). Comparatively, treatment with 10−3 M
N-phenylthiourea (PTU, positive control) triggered a drop in TYR activity on average of
61% versus control cells.
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Figure 1. Tyrosinase activity decreased in melanoma cells in presence of melatonin and its metabo-
lites. Amelanotic (A375 and Sk-Mel-28) and melanotic (MNT-1) human melanoma cell lines were
incubated with MEL, AFMK, 5-MT and 6(OH)MEL for 72 h with 10−6 M (A,C,E) or 10−3 M (B,D,F)
in comparison to melanogenic inhibitor, that is, 10−3 M N-phenylthiourea (PTU, positive control)
and assessed as described in Materials and Methods. Data are presented as the mean + S.E.M. (n = 5)
and values are normalized and expressed as percentage of the control value. Statistically significant
differences are indicated as * p < 0.05, ** p < 0.01, *** p < 0.001.
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Furthermore, the evaluation of melanin content and following assessments were
performed using highly pigmented melanoma cell lines. Thus, melanotic MNT-1 melanoma
has been identified as an optimal model to investigate the mechanism of melanogenesis
itself but also the efficacy of melanogenic regulators. This selection is also in agreement
with previous reports regarding pigmentation research [39–42]. Namely, melatonin and its
metabolites distinctly decreased melanin content by 15% at a dose of 10−6 M (Figure 2A)
while a higher concentration (10−3 M) significantly deepened this response reaching the
level versus control cells of 32% (MEL), 31% (AFMK), 23% (5-MT), and 25% (6(OH)MEL)
(Figure 2B). Cells incubated with 10−3 M PTU revealed a collapse of melanin synthesis
of 53%.
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Figure 2. Melatonin and its metabolites reduced melanin content melanotic human MNT-1 melanoma
cells. Cells were treated with MEL, AFMK, 5-MT and 6(OH)MEL for 72 h with 10−6 M (A) or 10−3 M
(B) in comparison to melanogenic inhibitor, that is, 10−3 M PTU (positive control) and assessed as
described in Materials and Methods. Data are presented as the mean + S.E.M. (n = 5) and values are
normalized and expressed as percentage of the control value. Statistically significant differences are
indicated as ** p < 0.01, *** p < 0.001, n.s.—not significant.

Additionally, we evaluated the role of G-coupled membrane MT1 and MT2 receptors.
Thus, their activation has been reported to be involved in melatonin’s anti-proliferative
properties in human cancer cells such as colon cancer cells [43], prostate cancer cells [44,45],
or melanoma cells [46,47]. Knowing the presence of MT1/MT2 melatonin’s receptors,
we further examined whether melatonin-regulated melanin content and TYR activity are
receptor-mediated; experiments were performed in the presence of two well-characterized
melatonin receptor antagonists (luzindole and 4-P-PDOT). The obtained results indicate
that neither luzindole (Figure 3A,C), nor or 4-P-PDOT (Figure 3B,D) affected the actions
of melatonin or its metabolites on melanogenesis, suggesting that this process can be
regulated independently of MT1 and MT2. Namely, in the presence of luzindole, there
was drop of melanin content ranging from 22% (6(OH)MEL) to 37% (MEL) and a collapse
of TYR activity from 37% to 51% for 6(OH)MEL and melatonin, respectively. In addition,
pre-incubation with 4-P-PDOT showed similar pattern of regulation (Figure 3B,D).
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Figure 3. Assessment of the role of MT1/MT2 receptors in terms of melatonin and its metabolites-
mediated melanogenesis in human MNT-1 melanoma cells. Cells were pre-incubated for 2 h with a
nonselective MT1 and MT2 receptor antagonist, that is, 10 µM luzindole or selective MT2 receptor
antagonist, i.e., 0.1 µM 4-P-PDOT. Next, cells were treated for 72 h with 10−3 M MEL, AFMK, 5-MT
or 6(OH)MEL and assessed for melanin content (A,B) and tyrosinase activity (C,D) as described in
Materials and Methods. Data are presented as the mean + S.E.M. (n = 5) and values are normalized
and expressed as percentage of the control value. Statistically significant differences are indicated as
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. cAMP Is Reduced by Melatonin and Its Metabolites Independently of G-Coupled
Membrane Receptors

Melanin synthesis in pigmented cells is regulated by a complex and interconnected set
of intracellular signaling pathways, including PKA (stimulated by cAMP elevators), PKC
(stimulated by endothelin) and MAPK (ERKs; stimulated by growth factors). The cAMP
plays a pivotal role in the regulation of melanogenesis through the activation of PKA and
cAMP responsive element binding protein (CREB), which led to the upregulation of the
expression of microphthalmia-associated transcription factor (MITF) [48].

First, we assessed the effect of MEL and its metabolites on the regulatory pathways
of melanogenesis including cAMP signaling. MNT-1 melanoma cells revealed a signif-
icant decrease in cAMP (Figure 4A) of 45% (MEL), 53% (AFMK), 62% (5-MT) and 49%
(6(OH)MEL) according to our observation of decreased TYR activity and melanin synthe-
sis. In parallel, we assessed cAMP level in the presence of 10 µM luzindole (Figure 4B)
and 0.1 µM 4-P-PDOT (Figure 4C). The obtained results showed clearly that a reduction
of cAMP level is induced by MEL and its metabolites independently of the MT1/MT2
membrane receptors. Additionally, we evaluated the effect of subjected indoleamines on
MITF expression, the cAMP downstream pathway. Thus, we observed its distinct reduction
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in the presence of MEL and its metabolites (Figure 4D) and the resultant loss of melanin
content in melanosomes (Figure 5).
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with 10−3 M MEL, AFMK, 5-MT or 6(OH)MEL and assessed for cAMP level (A). Comparatively,
the role of MT1/MT2 receptors was assessed followed by 2 h pre-incubation with 10 µM luzindole
(MT1/MT2) (B) or 0.1 µM 4-P-PDOT (MT2) (C) as described in Materials and Methods. Data are
presented as the mean + S.E.M. (n = 5) and values are normalized and expressed as percentage of the
control value. Statistically significant differences are indicated as *** p < 0.001. (D) PCR assessment of
MITF expression in presence of MEL and its metabolites.

2.3. In Silico Assessment

To determine whether levels of MTNR1A or MTNR1B expression might be associated
with disease outcome in melanoma patients, we examined publicly available expression
data from TCGA (Figure 6). The Kaplan–Meier curves indicated that there were no sig-
nificant differences in overall survival between melanoma patients stratified by MTNR1A
(78.97 vs. 72.06, p = 0.5557) and MTNR1B (74.73 vs. 79.59, p = 0.4250). Similarly, there we no
statistically significant differences between overall survival of melanoma patients stratified
by low and high expression of MTNR1A (107.40 vs. 68.09, p = 0.1301) and MTNR1B (93.01
vs. 72.06, p = 0.5898).
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Figure 5. Melatonin- and its metabolites-induced drop of melanin content in melanotic MNT-1
melanoma cells. After 72 h incubation with subjected substances, transmission electron microscopy
(TEM) images were obtained as described in Materials and Methods where the effect of G-coupled
membrane receptors (10 µM luzindole or 0.1 µM 4-P-PDOT) were assessed and their presence did
not affect collapse of melanogenesis. Bars: 1 µm.
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Figure 6. Kaplan–Meier survival curves and Gehan-Breslow-Wilcoxon test for overall survival of
melanoma patients stratified by positive and negative MTNR1A mRNA expression (A), positive and
negative MTNR1B mRNA expression (B), low and high MTNR1A mRNA expression (C), low and
high MTNR1B mRNA expression (D) as described in Materials and Methods.

3. Discussion

Melanogenesis at the cellular level is dependent on the formation of melanosomes,
which can be produced in varying sizes, numbers, and densities depending on melanin con-
tent. At the subcellular level, melanogenesis is dependent on the expression of genes and
proteins such as melanogenesis-related enzymes, i.e., tyrosinase (TYR) or tyrosinase-related
protein 1 and 2 (TRP1/TRP2). In order to investigate the regulation of melanogenesis, we
used melatonin (MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK)
and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT)
in human melanoma cells. In parallel to amelanotic melanoma cells (A375, Sk-Mel-28), we
conducted melanin assessments using highly pigmented (melanotic) MNT-1 melanoma
cells. This selection has been justified in earlier reports to examine the mechanisms under-
lying melanogenesis regulation and widely understood pigmentation studies [39–42]. On
the other hand, melanoma is one of the fastest increasing cancers worldwide and human
melanoma cell lines are valuable models to study the mechanism of melanin synthesis by
physiological compounds to improve treatment.

Melatonin displays a variety of biological properties and one of its first described
effects was the lightening of skin in amphibians. It was reported that melatonin attenuates
melanogenesis in cultured cells from rodent melanomas [38,49]. Other reports revealed
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that melatonin in human melanoma cells may both stimulate TYR activity in Sk-Mel-28
cells [47] and decrease melanogenesis in highly pigmented MNT-1 cell lines [50]. Based on
this, an explanation for the differential response to melatonin treatment remains unknown
and could be multifunctional. One of the reasonable explanations could be the fact that
melatonin may be metabolized through indolic and kynurenic pathways targeting the
appearance of AFMK, 6(OH)MEL or 5-MT in melanoma cells [51]. To date, it was well-
reported that the lightening effects of melatonin on the skin of lower vertebrates and
inhibition of pigmentation in some furry animals are well appreciated [4,52]. In our report,
we comparatively assessed the effect of MEL, AFMK, 6(OH)MEL and 5-MT where we not
only noticed significant attenuation of TYR activity and melanin content but also a reduction
of cAMP and downstream MITF responses. This pattern of regulation is in accordance
with earlier observations where the inhibition of melanogenesis was demonstrated in
melanomas [38,53,54].

Kim et al. [55] showed that melatonin and some metabolites inhibited tyrosinase and
the proliferation of cultured human epidermal melanocytes. Comparatively, Hardman
et al. [56] have reported that the cutaneous circadian clock elements regulated melano-
genesis and melanocyte activities in the human epidermis and HFs. Thus, although there
are conflicting results on melatonin functions in human hair and epidermal pigmenta-
tion [4,57,58], locally produced melatonin may play a role in the regulation of melanocytic
activities via its impact on the peripheral clock. Therefore, the testing of topically applied
melatonin during defined circadian windows as an external modulator of intracutaneous
clock activity is warranted. Also, topical supplementation of melatonin and its precursors
may be beneficial by ameliorating the oxidative environment of vitiligo skin. It should be
noted that in enclosed studies, we operated along subphysiological (10−6 M) and pharma-
cological (10−3 M) doses. This is in line with previous reports where indeed physiological
concentrations (10−8–10−7 M) affected proliferation with no evident effects on melanogene-
sis. Contrarily, higher doses (>10−6–10−3 M) distinctly inhibited melanin synthesis which
was additionally confirmed by us using electron paramagnetic resonance [50].

Logan and Weatherhead [59] have confirmed that melatonin leads to the inhibition
of melanogenesis independently of applied series of blockers of this process. This may
imply that melatonin arrests melanin synthesis via a mechanism which operates at some
post-tyrosinase step in the melanin biosynthetic pathway. Slominski and Pruski [38]
also reported that melatonin at higher doses acts as a competitive inhibitor rather than
acting through melatonin receptors or via binding sites for ligands. Finally, MEL and its
metabolites reduced the activity of TYR, which is again in agreement with earlier reports
performed in human melanocytes, and this may suggest that these substances can be used
as adjuvants in treatment of skin hyperpigmentation or they could attenuate malignant
transformation of epidermal melanocytes [55]. Indeed, reduced melanogenesis caused
by MEL and its metabolites is in line with applied melanogenesis, i.e., 10−3 M PTU and
these results were earlier presented by Brozyna et al. [60] and later confirmed using the
same inhibitor [61–63]. Additionally, it should be mentioned that, originally, melatonin’s
function was to lighten the skin of amphibians by causing the melanin granules within
the dermal melanosomes to aggregate around the nucleus of the skin cells in frogs [64].
As a result, melatonin was once used in patients affected by localized hyperpigmented
skin in an attempt to reduce the pigmentation in these areas. However, this proved
unsuccessful with no skin-lightening effect in humans [65]. The reason is that mammalian
melanosomes, unlike those in amphibians, are more or less permanently dispersed and
thus melatonin has little effect on its ability to alter pigment aggregation in the skin of
mammals. Moreover, it has been suggested that melatonin can be employed effectively to
inhibit progress of neoplastic disease in both animals and humans. In our study, we set
out to uncover the modus operandi of melatonin and its metabolites targeting as potential
anti-melanoma add-ons in currently applied therapies. On the other side, McElhinney
et al. [57] observed no significant change in skin color among patients receiving melatonin,
and no difference relative to controls. Furthermore, the authors concluded that melatonin’s
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effectiveness in mediating malignant melanoma growth is not related to the suppression of
normal melanogenesis.

Nevertheless, our results implicate a logical pattern of regulation of melanogenesis but
clearly suggest a greater complexity than we initially expected. For example, Slominski et al. [66],
using in vitro and in vivo models, demonstrated that stimulation of melanogenesis leads to
increased expression of HIF-1α and its subsequent translocation into the nucleus. Thus, it is
possible that HIF-1α is induced by the production of intermediates of melanogenesis, includ-
ing massive generation of reactive oxygen species [4,67,68]. Consequently, the initiation of
melanogenesis affects the expression of multiple genes involved in regulating the behavior of
melanocytes and melanoma cells, including the metabolic switch to glycolysis coordinated by
HIF-1. This accompanies the changes in mitochondrial stress-related genes, immunity, angio-
genesis, and cell proliferation. Again, this can be linked to our pharmacological dose (10−3 M)
which was used earlier [69]. The authors noticed a reduction of melanin synthesis in presence of
10−3 M melatonin with parallel inhibition of the HIF-1α protein. This indicates the correlation
between melatonin, HIF-1, and melanogenesis.

Numerous reports during the last two decades have defined melatonin and its critical
role in maintaining the optimal physiology of the mitochondria [70–74]. The beneficial
actions of melatonin at the level of the mitochondria are apparent in reference to quenching
free radicals, reducing oxidative stress, limiting mitochondria-related apoptosis, maintain-
ing the efficiency of the respiratory chain complexes, and ensuring ample ATP produc-
tion [75,76]. Moreover, these regulatory actions are not unique to a single cell type but
rather are applicable to every cell, plant, and animal containing mitochondria. This extraor-
dinary ability of melatonin to preserve mitochondrial function implies that it reaches these
organelles in sufficiently high concentrations to protect them from oxidizing-mediated
dysfunction. It is generally accepted that melatonin exerts some of its biological effects
through interaction with specific G-protein-coupled seven-transmembrane-domain recep-
tors MT1 and MT2 which we pharmacologically blocked by applying selective antagonists,
i.e., luzindole and 4-P-PDOT. We noticed that MEL as well as its kynurenic and indolic
metabolites affect the cAMP-PKA-MITF pathway. This tempted us to claim that melatonin
and its derivatives act not only on the MT1/MT2-dependent receptors, leading to a decrease
in cAMP level and triggering the subsequent drop of MITF and arrest of melanogenesis.
This was proof that the receptors for melatonin may be coupled to the suppression of
the adenylate cyclase activity via an inhibitory guanosine-nucleotide-binding protein [77].
Accordingly, it should be noted that the occurrence of melatonin-binding sites in B16/F10
mouse melanoma cells has been recently described [78]. It should be added that it has been
reported that the soluble adenyl cyclase (sGC)/cGMP pathway can also increase the cAMP
content of cells by cross-talking between the cAMP and cGMP signaling pathways [79–82].
It was shown that cGMP probably inhibits the phosphodiesterase to reduce cAMP degrada-
tion and thereby increases the mitochondria cAMP content [83]. Nevertheless, the nature
of the cAMP-mediated response uncoupled by melatonin and its metabolites remains a
matter of speculation.

4. Materials and Methods
4.1. Reagents

Melatonin (MEL), its derivatives (5-MT, 6(OH)MEL), 10,000 units penicillin and
10 mg streptomycin per mL in 0.9% NaCl, 4-phenyl-2-propionamidotetralin (4-P-PDOT),
agarose, 0.1 M cacodylate buffer, ethanol, glutaraldehyde, HCl, 1 M HEPES solution
(pH 7.0–7.6), L-DOPA, luzindole (N-acetyl-2-benzyltryptamine), lead citrate, Minimum
Essential Medium Eagle (MEM) with low glucose (1000 mg/L), MEM non-essential amino
acid solution (NEAA) (100×), NaOH, 1% OsO4, N-phenylthiourea (PTU), propylene oxide,
Triton® X-100, and uranyl acetate were purchased from Sigma (St. Louis, MO, USA). AFMK
and 0.05% trypsin/0.53 mM EDTA solution were delivered by Cayman Chemical (Ann
Arbor, MI, USA) and Thermo Fisher Scientific (Waltham, MA, USA), respectively. Fetal
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bovine serum, 0.05% trypsin/EDTA solution (1×), 1×PBS (pH 7.4), 200 mM L-glutamine
solution, and AIM-V™ Medium were supplied by Thermo Fisher Scientific.

4.2. Cell Culture and Treatment

Human melanoma cell lines included human melanotic MNT-1 cells acquired as a
gift from Dr. Cédric Delevoye (Institute Curie, Paris, France) and human amelanotic cell
models (A375, Sk-Mel-28) (American Type Culture Collection, Manassas, VA, USA). MNT-1
cells were cultured in MEM medium supplemented with 20% (v/v) heat-inactivated fetal
bovine serum, 10% (v/v) AIM-V™ Medium, 2 mM L-glutamine solution, 10 mM HEPES
solution, 1×NEAA, and 1% (v/v) streptomycin/penicillin solution. A375 and Sk-Mel-28
cells were maintained in MEM medium supplemented with 10% (v/v) heat-inactivated
fetal bovine serum, 2 mM L-glutamine, and 1% (v/v) streptomycin-penicillin solution. Cells
in the logarithmic growth phase were used in all experiments while 80–90% confluent cell
monolayers were harvested with a mixture of 0.05% trypsin/EDTA solution.

Prior to treatment, melanoma cells were allowed to attach to the culture dish by
being maintained in MEM culture medium for 24 h. Culture medium was replaced with
fresh medium containing MEL, AFMK, 5-MT, 6(OH)MEL versus the control sample, i.e.,
0.2% ethanol in culture medium. Ethanol served as a solvent, and was not toxic to the
cells after 72 h. Therefore, the tested compounds were dissolved in absolute ethanol and
further diluted with 1×PBS to yield 10−2 M stock solution. Cells were treated with final
concentrations of 10−6 and 10−3 M for 72 h for the subsequent assessments described below.

Comparatively, a nonselective MT1 and MT2 receptor antagonist or selective MT2
receptor antagonist was used, i.e., luzindole (10 µM) and 4-P-PDOT (0.1 µM), respectively,
where cells were pre-incubated for 2 h before the subjected substances.

4.3. DOPA Oxidase Activity of Tyrosinase

MNT-1 cells were seeded on 6-well plates (0.3 × 106 cells/well) and incubated for 72 h
with MEL, AFMK, 5-MT, and 6(OH)MEL followed by 2 h pre-incubation with luzindole or
4-P-PDOT. Cells were harvested, washed with 1×PBS, centrifuged at 1000× g for 10 min at
4 ◦C, and lysed with 0.5% Triton® X-100 in 1×PBS on ice. The lysates were subsequently
centrifuged at 16,000× g for 15 min at 4 ◦C, resultant supernatant was added to 300 µL of
5 mM L-DOPA in 1×PBS, and were incubated for 1 h at 37 ◦C. The dopachrome formation
was evaluated by measuring absorbance at OD475 nm using a BioTek ELx808™ microplate
reader (BioTek Instruments, Inc., Winooski, VT, USA), and the results were presented as
the percentage of the control sample.

4.4. Melanin Content Assessment

Cells were incubated for 72 h with MEL, AFMK, 5-MT, 6(OH)MEL followed by 2 h pre-
incubation with luzindole or 4-P-PDOT as described above. To determine melanin content,
cells were harvested, washed with 1×PBS, centrifuged at 1000× g for 10 min at 4 ◦C,
and solubilized in 1N NaOH, and incubated for 2 h at 80 ◦C. Samples were centrifuged
at 12,000× g for 10 min at room temperature (RT). The absorbances were measured at
OD405 nm using a BioTek ELx808™ microplate reader, and results were presented as the
percentage of the control sample.

4.5. cAMP Direct ELISA Immunoassay

Cells (6 × 106 cells), followed by 72 h culture on 100 mm dishes with subjected
compounds, were washed with 1×PBS; 3 mL of 0.1M HCl was added and incubated for
20 min at RT. Cells were scrapped, samples were dissociated up and down until suspension
was homogenous, and then centrifuged at 16,000× g for 10 min. To determine changes in
the cAMP ratio, colorimetric ELISA immunoassay was used (BioVision, Inc., Milpitas, CA,
USA). Briefly, 100 µL of sample was mixed with 50 µL neutralizing buffer, 5 µL acetylating
mix provided by the supplier, and incubated for 10 min at RT to acetylate cAMP. Next, in
order to dilute the acetylation reagents, assay buffer was added, and the resultant sample
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was ready to quantify cAMP. Namely, 50 µL of test sample was added to the protein G-
coated 96-well plate, and subsequently the samples were incubated with 10 µL of rabbit
anti-cAMP IgG and 10 µL of cAMP-HRP for 1 h at RT. Wells were washed with assay
buffer, 100 µL of HRP developer and 100 µL 1 M HCl were added, and the plate was read
at OD450 nm using a BioTek ELx808™ microplate reader. Results were presented as the
percentage of the control sample.

4.6. Transmission Electron Microscopy (TEM) Assessment

Cells were seeded on 6-well plates (0.3 × 106 cells/well) and incubated for 72 h with
MEL, AFMK, 5-MT, 6(OH)MEL. Next, cells were harvested and centrifuged (700 r.p.m.
for 5 min), washed with 1×PBS, and fixation was performed for 24 h at 4 ◦C using 2.5%
glutaraldehyde in 0.1 M cacodylate buffer. After that, cells were washed with 0.1 M
cacodylate buffer, postfixed in 1% OsO4 for 2 h at RT, and washed once more using distilled
water. Cells were embedded in Poly/Bed®812 (Polysciences, Inc., Warrington, PA, USA)
after dehydration in graded ethanol (50–100%) and propylene oxide. Ultrathin sections
(65 nm thick) were stained with uranyl acetate/lead citrate prior to visualization using the
Jeol JEM 2100 HT transmission electron microscope and assessed qualitatively in terms of
melanin content.

4.7. RNA Isolation, cDNA Synthesis and PCR

RNA from MNT-1 cell pellet (5 × 106 cells) was extracted according to the manufac-
turer’s instructions using the innuPREP RNA Mini Kit (Analytik Jena, Berlin/Heidelberg,
Germany). The amount of RNA was determined using BioPhotometer (Eppendorf, Ham-
burg, Germany). cDNA synthesis was conducted using RevertAid™ First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) in presence of oligo (dT)
primers as follows: 65 ◦C for 5 min, 42 ◦C for 60 min, 70 ◦C for 5 min in Thermomixer
(Eppendorf), and the resultant cDNA was stored at−20 ◦C prior to PCR reaction. Reactions
were carried out by GoTaq® PCR Master Mix (Promega GmbH, Mannheim, Germany) in
the presence of primers as follows: MITF (Forward: 5′-GATGTTAGAGCAGTTCCGCC, Re-
verse: 5′-AGGATCCATCAAGCCCAAGA; 479 bp), GAPDH (Forward: 5′-AAGGTCATCCC
TGAGCTGAA, Reverse: 5′-CCCCTCTTCAAGGGGTCTAC; 498 bp). Amplification was
performed using 10 min initial denaturation at 95 ◦C followed by three-step 39-cycling of
60 s at 95 ◦C (denaturation), 60 s at 60 ◦C (annealing), and 60 s at 72 ◦C (extension). PCR
products were separated on 1.8% agarose gel containing RedSafe™ Nucleic Acid Staining
solution (iNtRON Biotechnology, Sangdaewon-Dong, Korea), and afterwards visualized us-
ing the Fusion-FX7 UV transilluminator (Vilber GmbH, Eberhardzell, Germany). Samples
were standardized by amplification of the housekeeping gene glyceraldehyde phosphate
dehydrogenase (GAPDH). DNA-standard O’GeneRuler™ 100 bp DNA Ladder Mix from
Fermentas International (Burlington, ON, Canada) was used.

4.8. In Silico Assessment

In our analyses, we also examined the prognostic significance of MTNR1A and
MTRNR1B mRNA levels in The Cancer Genome Atlas (TCGA) cohort. The survival
data and gene expression for the cohort of 445 skin melanoma patients were obtained from
www.cBioPortal.org and UCSC Xena Browser (http://xena.ucsc.edu/; accessed on 5 June
2023). The RNA-sequencing (RNA-seq) data sets were normalized using the upper-quartile
method. The data were split into low-level (with elimination of negative expression) and
high-level expression groups according to cut-off points established using the Evaluate
Cutpoints R package [84].

4.9. Statistical Analysis

Data were expressed as pooled means +standard error of the mean (S.E.M.) of at least
three independent experiments. Results were normalized and expressed as a percentage of
the control value. Statistically significant differences between results were determined by
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the univariate analysis of variance (ANOVA) or Student’s t-Test and appropriate post hoc
analysis using GraphPad Prism 7.05 software (La Jolla, CA, USA). A p-value of less than
0.05 was considered statistically significant.

For in silico assessment, survival curves were plotted using the Kaplan–Meier method,
and the differences were evaluated using a Gehan–Breslow–Wilcoxon test.

5. Conclusions

In this study, we assessed the effect of melatonin and its kynurenic and indolic deriva-
tives on melanogenesis and the downstream pathway of this process. These results sub-
stantiate previous molecular, histochemical and biochemical studies on human cutaneous
melatoninergic system [22,51,85–90]. They also provide an initial proof of concept that the
presence of G-protein-coupled receptors for melatonin and its pharmacological blockage by
luzindole or 4-P-PDOT does not affect the resultant decrease in melanogenesis in human
melanoma cells. Thus, these findings might provide a convenient experimental model to
study the complex relationship between melatonin and the control of mammalian pigmen-
tation. Future work will be devoted to extending this study to the control of melanogenesis
in normal melanocytes, whose hormonal regulation might be somewhat different to that of
their malignant counterparts.

The reported data also open exciting new possibilities on the in vivo role of local mela-
tonin synthesis and metabolism systems in the regulation of epidermal functions. These
would include regulation of its barrier function, epidermal pigmentary system, and anti-
carcinogenic activity. Furthermore, regulation of their endogenous production/metabolism
can serve as a rational strategy for targeted therapies of melanoma patients. Thus, based
on results presented here and hypothesized recently Kleszczyński and Böhm [91] and
others [92,93], we are tempted to claim that melatonin, and also its metabolites, may boost
commonly used BRAF/MEK inhibitors; however, these investigations still need to be
carefully checked using in vitro and in vivo models.
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