# Structural and Electromagnetic Signatures of Anatase and Rutile NTs and Sheets in Three Different Water Models under Different Temperature Conditions

^{1}

^{2}

^{*}

## Abstract

**:**

_{2}nanotubes have been conducted for nearly three decades and have revealed the remarkable advantages of this material. Research based on computer simulations is much rarer, with research using density functional theory (DFT) being the most significant in this field. It should be noted, however, that this approach has significant limitations when studying the macroscopic properties of nanostructures such as nanosheets and nanotubes. An alternative with great potential has emerged: classical molecular dynamics simulations (MD). MD Simulations offer the possibility to study macroscopic properties such as the density of phonon states (PDOS), power spectra, infrared spectrum, water absorption and others. From this point of view, the present study focuses on the distinction between the phases of anatase and rutile TiO

_{2}. The LAMMPS package is used to study both the structural properties by applying the radial distribution function (RDF) and the electromagnetic properties of these phases. Our efforts are focused on exploring the effect of temperature on the vibrational properties of TiO

_{2}anatase nanotubes and an in-depth analysis of how the phononic softening phenomenon affects TiO

_{2}nanostructures to improve the fundamental understanding in different dimensions and morphological configurations. A careful evaluation of the stability of TiO

_{2}nanolamines and nanotubes at different temperatures is performed, as well as the adsorption of water on the nanosurface of TiO

_{2}, using three different water models.

## 1. Introduction

## 2. Results and Discussion

#### 2.1. Strutural Analysis in the Aspect of RDF

#### 2.2. Phonon Density of States (PDOS) Analysis

#### 2.3. Infrared Spectrum (IR) Analysis

## 3. Materials and Methods

#### 3.1. Creating the Nanotubes

#### 3.2. Radial Distribution Function (RDF)

#### 3.3. Phonon Density of States (PDOS)

#### 3.4. Infrared Spectrum (IR)

## 4. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Chen, X.; Mao, S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev.
**2007**, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed] - Almomani, M.; Ahmed, N.; Rashid, M.; Ibnaouf, K.; Aldaghri, O.; Madkhali, N.; Cabrera, H. Performance improvement of graded bandgap solar cell via optimization of energy levels alignment in Si quantum dot, TiO
_{2}nanoparticles, and porous Si. Photonics**2022**, 9, 843. [Google Scholar] [CrossRef] - Moma, J.; Baloyi, J. Modified titanium dioxide for photocatalytic applications. In Photocatalysts: Applications and Attributes; BoD—Books on Demand: Norderstedt, Germany, 2019; Volume 18. [Google Scholar]
- Nunzi, F.; De Angelis, F. Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chem. Sci.
**2022**, 13, 9485–9497. [Google Scholar] [CrossRef] [PubMed] - Kılınç, N.; Şennik, E.; Işık, M.; Ahsen, A.; Öztürk, O.; Öztürk, Z. Fabrication and gas sensing properties of C-doped and un-doped TiO
_{2}nanotubes. Ceram. Int.**2014**, 40, 109–115. [Google Scholar] [CrossRef] - Zhu, X.; Zheng, Y.; Chen, L.; Wu, J.; Li, S.; Xin, Y.; Su, M.; Cui, Y. Degradation of chemical warfare agents by nickel doped titanium dioxide powders: Enhanced surface activity. Arab. J. Chem.
**2022**, 15, 103678. [Google Scholar] [CrossRef] - Cheng, F.; Chen, J. Storage of hydrogen and lithium in inorganic nanotubes and nanowires. J. Mater. Res.
**2006**, 21, 2744–2757. [Google Scholar] [CrossRef] - Paul, S.; Rahman, M.; Sharif, S.; Kim, J.; Siddiqui, S.; Hossain, M. TiO
_{2}as an Anode of high-performance lithium-ion batteries: A Comprehensive Review towards Practical Application. Nanomaterials**2022**, 12, 2034. [Google Scholar] [CrossRef] - Madian, M.; Eychmüller, A.; Giebeler, L. Current advances in TiO
_{2}-based nanostructure electrodes for high performance lithium ion batteries. Batteries**2018**, 4, 7. [Google Scholar] [CrossRef] - Cheng, Y.; Yang, H.; Yang, Y.; Huang, J.; Wu, K.; Chen, Z.; Wang, X.; Lin, C.; Lai, Y. Progress in TiO
_{2}nanotube coatings for biomedical applications: A review. J. Mater. Chem. B**2018**, 6, 1862–1886. [Google Scholar] [CrossRef] - Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol.
**2012**, 46, 2242–2250. [Google Scholar] [CrossRef] - Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials
**2020**, 10, 387. [Google Scholar] [CrossRef] [PubMed] - Llave, E. Modelado computacional del comportamiento molecular en interfases y entornos nanoestructurados; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires: Aires, Argentina, 2012. [Google Scholar]
- Born, M.; Huang, K.; Lax, M. Dynamical theory of crystal lattices. Am. J. Phys.
**1955**, 23, 474. [Google Scholar] [CrossRef] - Dove, M. Introduction to Lattice Dynamics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Wei, S.; Chou, M. Ab initio calculation of force constants and full phonon dispersions. Phys. Rev. Lett.
**1992**, 69, 2799. [Google Scholar] [CrossRef] [PubMed] - Kunc, K.; Dacosta, P. Real-space convergence of the force series in the lattice dynamics of germanium. Phys. Rev. B
**1985**, 32, 2010. [Google Scholar] [CrossRef] - Srivastava, G.; Kunc, K. Phonon dispersion in the (110) direction: A testing ground for phenomenological models of germanium. J. Phys. C Solid State Phys.
**1988**, 21, 5087. [Google Scholar] [CrossRef] - Lewis, A.; Grisafi, A.; Ceriotti, M.; Rossi, M. Learning electron densities in the condensed phase. J. Chem. Theory Comput.
**2021**, 17, 7203–7214. [Google Scholar] [CrossRef] - Baroni, S.; Giannozzi, P.; Testa, A. Green’s-function approach to linear esponse in solids. Phys. Rev. Lett.
**1987**, 58, 1861. [Google Scholar] [CrossRef] - Gonçalves, S.; Bonadeo, H. Vibrational densities of states from molecular-dynamics calculations. Phys. Rev. B
**1992**, 46, 12019. [Google Scholar] [CrossRef] - Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys.
**2001**, 73, 515. [Google Scholar] [CrossRef] - Kong, L.; Lewis, L. Transition state theory of the preexponential factors for self-diffusion on Cu, Ag, and Ni surfaces. Phys. Rev. B
**2006**, 74, 073412. [Google Scholar] [CrossRef] - Kong, L.; Lewis, L. Surface diffusion coefficients: Substrate dynamics matters. Phys. Rev. B.
**2008**, 77, 165422. [Google Scholar] [CrossRef] - Mortier, W.; Van Genechten, K.; Gasteiger, J. Electronegativity equalization: Application and parametrization. J. Am. Chem. Soc.
**1985**, 107, 829–835. [Google Scholar] [CrossRef] - Nistor, R.; Müser, M. Dielectric properties of solids in the regular and split-charge equilibration formalisms. Phys. Rev. B
**2009**, 79, 104303. [Google Scholar] [CrossRef] - Rutledge, G.; Lacks, D.; Martoňák, R.; Binder, K. A comparison of quasi-harmonic lattice dynamics and Monte Carlo simulation of polymeric crystals using orthorhombic polyethylene. J. Chem. Phys.
**1998**, 108, 10274–10280. [Google Scholar] [CrossRef] - Estévez Ruiz, E.P.; Lago, J.L.; Thirumuruganandham, S.P. Experimental Studies on TiO
_{2}. NT with Metal Dopants through Co-Precipitation, Sol–Gel, Hydrothermal Scheme and Corresponding Computational Molecular Evaluations. Materials**2023**, 16, 3076. [Google Scholar] [CrossRef] - Ogata, S.; Iyetomi, H.; Tsuruta, K.; Shimojo, F.; Nakano, A.; Vashishta, P.; Kalia, R.; Loong, C. Initial stages of sintering of TiO
_{2}nanoparticles: Variable-charge molecular dynamics simulations. MRS Online Proc. Libr. (OPL)**2000**, 634, B7-6. [Google Scholar] [CrossRef] - Ghuman, K.; Goyal, N.; Prakash, S. Vibrational density of states of TiO
_{2}nanoparticles. J. Non-Cryst. Solids**2013**, 373, 28–33. [Google Scholar] [CrossRef] - Fuertes, V.; Negre, C.; Oviedo, M.; Bonafé, F.; Oliva, F.; Sánchez, C. A theoretical study of the optical properties of nanostructured TiO
_{2}. J. Phys. Condens. Matter**2013**, 25, 115304. [Google Scholar] [CrossRef] - Soussi, A.; Ait Hssi, A.; Boujnah, M.; Boulkadat, L.; Abouabassi, K.; Asbayou, A.; Elfanaoui, A.; Markazi, R.; Ihlal, A.; Bouabid, K. Electronic and optical properties of TiO
_{2}thin films: Combined experimental and theoretical study. J. Electron. Mater.**2021**, 50, 4497–4510. [Google Scholar] [CrossRef] - Qin, H.; Qin, Q.; Luo, H.; Wei, W.; Liu, L.; Li, L. Theoretical study on adsorption characteristics and environmental effects of dimetridazole on TiO
_{2}surface. Comput. Theor. Chem.**2019**, 1150, 10–17. [Google Scholar] [CrossRef] - Rosiński, W.S. Development of the Method for Analysis of Contact Angle between Water Drolet and Surface of Materials Used in Aerospace Industry. Ph.D. Thesis, Zakład Projektowania Materiałów, Warsaw, Poland, 2017. [Google Scholar]
- Wang, D.; Luo, H.; Liu, L.; Wei, W.; Li, L. Adsorption characteristics and degradation mechanism of metronidazole on the surface of photocatalyst TiO
_{2}: A theoretical study. Appl. Surf. Sci.**2019**, 478, 896–905. [Google Scholar] [CrossRef] - Yang, C.; Olsen, T.; Lau, M.L.; Smith, K.A.; Hattar, K.; Sen, A.; Wu, Y.; Hou, D.; Narayanan, B.; Long, M.; et al. In situ ion irradiation of amorphous TiO
_{2}. nanotubes. J. Mater. Res.**2022**, 37, 1144–1155. [Google Scholar] [CrossRef] - Cromer, D.; Herrington, K. The structures of anatase and rutile. J. Am. Chem. Soc.
**1955**, 77, 4708–4709. [Google Scholar] [CrossRef] - Demkowicz, M.; Argon, A. Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B
**2005**, 72, 245205. [Google Scholar] [CrossRef] - Kerrache, A.; Mousseau, N.; Lewis, L. Crystallization of amorphous silicon induced by mechanical shear deformations. Phys. Rev. B
**2011**, 84, 014110. [Google Scholar] [CrossRef] - Hoang, V.; Zung, H.; Trong, N. Structural properties of amorphous TiO
_{2}nanoparticles. Eur. Phys. J. D**2007**, 44, 515–524. [Google Scholar] [CrossRef] - Van Hoang, V. Structural properties of simulated liquid and amorphous TiO
_{2}. Phys. Status Solidi B**2007**, 244, 1280–1287. [Google Scholar] [CrossRef] - Treacy, M.; Borisenko, K. The local structure of amorphous silicon. Science
**2012**, 335, 950–953. [Google Scholar] [CrossRef] - Oba, Y.; Tadano, T.; Akashi, R.; Tsuneyuki, S. First-principles study of phonon anharmonicity and negative thermal expansion in ScF 3. Phys. Rev. Mater.
**2019**, 3, 033601. [Google Scholar] [CrossRef] - Pool, A.; Jain, S.; Barkema, G. Structural characterization of carbon nanotubes via the vibrational density of states. Carbon
**2017**, 118, 58–65. [Google Scholar] [CrossRef] - Svishchev, I.; Kusalik, P.; Murashov, V. Orthorhombic quartzlike polymorph of silica: A molecular-dynamics simulation study. Phys. Rev. B
**1997**, 55, 721. [Google Scholar] [CrossRef] - Cui, Q.; Ren, K.; Zheng, R.; Zhang, Q.; Yu, L.; Li, J. Tunable thermal properties of the biphenylene and the lateral heterostructure formed with graphene: A molecular dynamics investigation. Front. Phys.
**2022**, 10, 1222. [Google Scholar] [CrossRef] - Ni, Y.; Chalopin, Y.; Volz, S. Calculation of inter-plane thermal resistance of few-layer graphene from equilibrium molecular dynamics simulations. J. Phys. Conf. Ser.
**2012**, 395, 012106. [Google Scholar] [CrossRef] - Chakraborty, H.; Mogurampelly, S.; Yadav, V.; Waghmare, U.; Klein, M. Phonons and thermal conducting properties of borocarbonitride (BCN) nanosheets. Nanoscale
**2018**, 10, 22148–22154. [Google Scholar] [CrossRef] [PubMed] - Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y. The design of TiO
_{2}nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity. J. Phys. Chem. C**2014**, 118, 12727–12733. [Google Scholar] [CrossRef] - Zhang, S.; Wang, Q.; Chen, X.; Jena, P. Stable three-dimensional metallic carbon with interlocking hexagons. Proc. Natl. Acad. Sci. USA
**2013**, 110, 18809–18813. [Google Scholar] [CrossRef] - Hermet, P.; Lignie, A.; Fraysse, G.; Armand, P.; Papet, P. Thermodynamic properties of the α-quartz-type and rutile-type GeO
_{2}from first-principles calculations. Phys. Chem. Chem. Phys.**2013**, 15, 15943–15948. [Google Scholar] [CrossRef] - Zhang, Y.; Harris, C.; Wallenmeyer, P.; Murowchick, J.; Chen, X. Asymmetric lattice vibrational characteristics of rutile TiO
_{2}as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem. C**2013**, 117, 24015–24022. [Google Scholar] [CrossRef] - Hamden, Z.; Conceição, D.; Boufi, S.; Vieira Ferreira, L.; Bouattour, S. Structural, morphological, optical and photocatalytic properties of Y, N-doped and codoped TiO
_{2}thin films. Materials**2017**, 10, 600. [Google Scholar] [CrossRef] - Nunzi, F.; De Angelis, F. DFT investigations of formic acid adsorption on single-wall TiO
_{2}nanotubes: Effect of the surface curvature. J. Phys. Chem. C**2011**, 115, 2179–2186. [Google Scholar] [CrossRef] - Enyashin, A.; Seifert, G. Structure, stability and electronic properties of TiO
_{2}nanostructures. Phys. Status Solidi B**2005**, 242, 1361–1370. [Google Scholar] [CrossRef] - Wang, J.; Wang, L.; Ma, L.; Zhao, J.; Wang, B.; Wang, G. Structures, electronic properties, and hydrogen-storage capacity of single-walled TiO
_{2}nanotubes. Phys. E Low-Dimens. Syst. Nanostructures**2009**, 41, 838–842. [Google Scholar] [CrossRef] - Liu, Z.; Zhang, Q.; Qin, L. Reduction in the electronic band gap of titanium oxide nanotubes. Solid State Commun.
**2007**, 141, 168–171. [Google Scholar] [CrossRef] - Bandura, A.; Evarestov, R. From anatase (1 0 1) surface to TiO
_{2}nanotubes: Rolling procedure and first principles LCAO calculations. Surf. Sci.**2009**, 603, L117–L120. [Google Scholar] [CrossRef] - Hossain, F.; Evteev, A.; Belova, I.; Nowotny, J.; Murch, G. Electronic and optical properties of anatase TiO
_{2}nanotubes. Comput. Mater. Sci.**2010**, 48, 854–858. [Google Scholar] [CrossRef] - Lin, F.; Zhou, G.; Li, Z.; Li, J.; Wu, J.; Duan, W. Molecular and atomic adsorption of hydrogen on TiO
_{2}nanotubes: An ab initio study. Chem. Phys. Lett.**2009**, 475, 82–85. [Google Scholar] [CrossRef] - Zhao, H.; Dong, Y.; Jiang, P.; Wang, G.; Zhang, J. Highly dispersed CeO
_{2}on TiO_{2}nanotube: A synergistic nanocomposite with superior peroxidase-like activity. ACS Appl. Mater. Interfaces**2015**, 7, 6451–6461. [Google Scholar] [CrossRef] - Ambroziak, R.; Hołdyński, M.; Płociński, T.; Pisarek, M.; Kudelski, A. Cubic silver nanoparticles fixed on TiO
_{2}nanotubes as simple and efficient substrates for surface enhanced Raman scattering. Materials**2019**, 12, 3373. [Google Scholar] [CrossRef] - Cao, W.; Lu, L.; Huang, L.; Dong, Y.; Lu, X. Molecular behavior of water on titanium dioxide nanotubes: A molecular dynamics simulation study. J. Chem. Eng. Data
**2016**, 61, 4131–4138. [Google Scholar] [CrossRef] - Wang, S.; Hou, K.; Heinz, H. Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces. J. Chem. Theory Comput.
**2021**, 17, 5198–5213. [Google Scholar] [CrossRef] - Matsui, M.; Akaogi, M. Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO
_{2}. Mol. Simul.**1991**, 6, 239–244. [Google Scholar] [CrossRef] - Luan, B.; Huynh, T.; Zhou, R. Simplified TiO
_{2}force fields for studies of its interaction with biomolecules. J. Chem. Phys.**2015**, 142, 234102. [Google Scholar] [CrossRef] [PubMed] - Zeydabadi-Nejad, I.; Zolfaghari, N.; Mosavi-Mashhadi, M.; Baniassadi, M. Exceptional behavior of anatase TiO
_{2}nanotubes in axial loading: A molecular dynamics study of the effect of surface wrinkles. Comput. Mater. Sci.**2019**, 158, 307–314. [Google Scholar] [CrossRef] - Lim, T. Alignment of Buckingham parameters to generalized Lennard-Jones potential functions. Z. Naturforschung A
**2009**, 64, 200–204. [Google Scholar] [CrossRef] - Laguna, M.; Jagla, E. Classical isotropic two-body potentials generating martensitic transformations. J. Stat. Mech. Theory Exp.
**2009**, 2009, P09002. [Google Scholar] [CrossRef] - Laguna, M. Testing conditions for reversibility of martensitic transformations with an isotropic potential for identical particles. Phys. Status Solidi B
**2015**, 252, 538–544. [Google Scholar] [CrossRef] - Zhang, Y.; Farsinezhad, S.; Wiltshire, B.; Kisslinger, R.; Kar, P.; Shankar, K. Optical anisotropy in vertically oriented TiO
_{2}nanotube arrays. Nanotechnology**2017**, 28, 374001. [Google Scholar] [CrossRef] - Reinhardt, A. Phase behavior of empirical potentials of titanium dioxide. J. Chem. Phys.
**2019**, 151, 064505. [Google Scholar] [CrossRef] - Yang, L.; Wang, C.; Lin, S.; Chen, T.; Cao, Y.; Zhang, P.; Liu, X. Thermal conductivity of TiO
_{2}nanotube: A molecular dynamics study. J. Phys. Condens. Matter**2018**, 31, 055302. [Google Scholar] [CrossRef] - Yang, K.; Yang, L.; Ai, C.; Wang, Z.; Lin, S. Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study. Chin. Phys. B
**2019**, 28, 103102. [Google Scholar] [CrossRef] - Mitev, P.; Hermansson, K. Surface properties of rutile TiO
_{2}(1 1 0) from molecular dynamics and lattice dynamics at 300 K: Variable-charge model results. Surf. Sci.**2007**, 601, 5359–5367. [Google Scholar] [CrossRef] - Allen, M.; Tildesley, D. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Thompson, A.; Aktulga, H.; Berger, R.; Bolintineanu, D.; Brown, W.; Crozier, P.; Veld, P.; Kohlmeyer, A.; Moore, S.; Nguyen, T.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm.
**2022**, 271, 108171. [Google Scholar] [CrossRef] - Brostow, W. Radial distribution function peaks and coordination numbers in liquids and in amorphous solids. Chem. Phys. Lett.
**1977**, 49, 285–288. [Google Scholar] [CrossRef] - Hansen, J.; McDonald, I. Theory of Simple Liquids: With Applications to Soft Matter; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Thirumuruganandham, S.; Urbassek, H. Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin. J. Mol. Model.
**2009**, 15, 959–969. [Google Scholar] [CrossRef] [PubMed] - Leach, A.; Leach, A. Molecular Modelling: Principles and Applications; Pearson Education: Hoboken, NJ, USA, 2001. [Google Scholar]
- Guillot, B. A molecular dynamics study of the far infrared spectrum of liquid water. J. Chem. Phys.
**1991**, 95, 1543–1551. [Google Scholar] [CrossRef] - Boulard, B.; Kieffer, J.; Phifer, C.; Angell, C. Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation. J. Non-Cryst. Solids
**1992**, 140, 350–358. [Google Scholar] [CrossRef] - Martinez-Gonzalez, J.; Nandi, P.; English, N.; Gowen, A. Infrared spectra and density of states at the interface between water and protein: Insights from classical molecular dynamics. Chem. Phys. Lett.
**2020**, 757, 137867. [Google Scholar] [CrossRef]

**Figure 1.**Radial distribution functions (RDFs). (

**a**) Anatase nanosheet and rutile nanosheet pairs of Ti-O. (

**b**) Anatase natube and rutile nanotube pairs of Ti-O. (

**c**) Anatase nanosheet and rutile nanosheet pairs of g(r O-O). (

**d**) Anatase nanotube and rutile nanotube pairs of O-O. (

**e**) Anatase nanosheet and rutile nanosheet pairs of Ti-Ti. (

**f**) Anatase nanotube and rutile nanotube pairs of Ti-Ti.

**Figure 2.**Phonon density of states of anatase and rutile nanostructures obtained from the Fourier transform of the velocity autocorrelation. (

**a**) Total PDOS of anatase nanosheet and rutile nanosheet. (

**b**) Total DOS of anatase nanotube and rutile nanotube; PDOS of anatase nanosheet and rutile nanosheet (

**c**) x-axis (

**e**) y-axis, (

**g**) z-axis; PDOS of anatase nanotube and rutile nanotube (

**d**) x-axis (

**f**) y-axis, (

**h**) z-axis.

**Figure 4.**Anatase NTs density of states through calculations of the power spectrum for the whole TiO${}_{2}$ moiety (blue), Ti (red), and oxygen (orange) atoms.

**Figure 7.**Analyze the anatase TNTs density of states using power spectrum analysis for tubes with various radii (normalized).

**Figure 8.**Computational infrared spectrum of Anatase NT with radius of 10 Å and length 31 Å in different temperatures.

**Figure 10.**(

**a**) Number of water molecules confined (3 Å) next to anatase NT in different water models, (

**b**) water molecules confined (3 Å) next to anatase NT in CVFF water model, (

**c**) water molecules confined (3 Å) next to anatase NT in Tip3P-FW water model, (

**d**) water molecules confined (3 Å) next to anatase NT in COMPASS water model.

**Figure 11.**Initial structure of nanotube (

**a**) in rutile phase, crystal in orientation 001 (

**b**) in anatase phase, crystal in orientation 001. During the production dynamics of nanotube, at T = 300 K (

**c**) in rutile phase, 18 nm × 73 nm, (

**d**) in anatase phase, 29 nm × 72 nm. During the production dynamics of nanotube in water, at T = 300 K (

**e**) in rutile phase, radius = 12 nm, length = 20 nm, at the (

**f**) in anatase phase, radius = 12 nm, length = 20 nm.

Interaction | ${\mathit{A}}_{\mathit{ij}}$ (Kcal/mol) | ${\mathit{\rho}}_{\mathit{ij}}$ (Å) | ${\mathit{C}}_{\mathit{ij}}$ (Kcal/mol)/Å |
---|---|---|---|

Ti-Ti | 717,653.9571 | 0.154 | 120.9967 |

Ti-O | 391,052.7442 | 0.194 | 290.3920 |

O-O | 271,718.8311 | 0.234 | 696.9407 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ruiz, E.P.E.; Thirumuruganandham, S.P.; Lago, J.C.L.
Structural and Electromagnetic Signatures of Anatase and Rutile NTs and Sheets in Three Different Water Models under Different Temperature Conditions. *Int. J. Mol. Sci.* **2023**, *24*, 14878.
https://doi.org/10.3390/ijms241914878

**AMA Style**

Ruiz EPE, Thirumuruganandham SP, Lago JCL.
Structural and Electromagnetic Signatures of Anatase and Rutile NTs and Sheets in Three Different Water Models under Different Temperature Conditions. *International Journal of Molecular Sciences*. 2023; 24(19):14878.
https://doi.org/10.3390/ijms241914878

**Chicago/Turabian Style**

Ruiz, Eduardo Patricio Estévez, Saravana Prakash Thirumuruganandham, and Joaquín Cayetano López Lago.
2023. "Structural and Electromagnetic Signatures of Anatase and Rutile NTs and Sheets in Three Different Water Models under Different Temperature Conditions" *International Journal of Molecular Sciences* 24, no. 19: 14878.
https://doi.org/10.3390/ijms241914878