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Abstract: The bidirectional communication between the gut and central nervous system (CNS)
through microbiota is known as the microbiota–gut–brain axis. The brain, through the enteric neural
innervation and the vagus nerve, influences the gut physiological activities (motility, mucin, and
peptide secretion), as well as the development of the mucosal immune system. Conversely, the gut can
influence the CNS via intestinal microbiota, its metabolites, and gut-homing immune cells. Growing
evidence suggests that gut immunity is critically involved in gut–brain communication during health
and diseases, including multiple sclerosis (MS). The gut microbiota can influence the development
and function of gut immunity, and conversely, the innate and adaptive mucosal immunity can
influence microbiota composition. Gut and systemic immunity, along with gut microbiota, are
perturbed in MS. Diet and disease-modifying therapies (DMTs) can affect the composition of the gut
microbial community, leading to changes in gut and peripheral immunity, which ultimately affects
MS. A high-fat diet is highly associated with gut dysbiosis-mediated inflammation and intestinal
permeability, while a high-fiber diet/short-chain fatty acids (SCFAs) can promote the development
of Foxp3 Tregs and improvement in intestinal barrier function, which subsequently suppress CNS
autoimmunity in the animal model of MS (experimental autoimmune encephalomyelitis or EAE).
This review will address the role of gut immunity and its modulation by diet and DMTs via gut
microbiota during MS pathophysiology.

Keywords: central nervous system autoimmunity; multiple sclerosis; gut immunity; gut microbiota;
diet; disease-modifying therapies

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central
nervous system (CNS). MS is characterized by peripheral immune dysregulation and
immune cell infiltration into the CNS, leading to demyelination and axonal damage, and,
ultimately, neurodegeneration. It is suggested that CD4+Th1/Th17, B cells, and CD8+T
cells play an important role during the initial inflammatory phase of MS [1]. In addition,
glial cells such as microglia and astrocytes play critical roles during the neurodegenerative
phase of MS. Both genetic and environmental factors contribute to immune dysregulation
during MS onset and progression [2]. Earlier, we reported that the gut microbiota interacts
with MS susceptibility genes to break immune tolerance to myelin antigens and leads to the
development of experimental autoimmune encephalomyelitis (EAE) in 3A6 TCR/DR2a Tg
mice [3]. So far, nine classes of disease-modifying therapies (DMTs), including interferons,
glatiramer acetate, teriflunomide, sphingosine 1-phosphate receptor modulators, fumarates,
cladribine, and monoclonal antibodies, have been approved by regulatory authorities to
treat MS. These DMTs have been helpful in reducing clinical relapses and gadolinium-
enhancing lesions on brain magnetic resonance imaging (MRI) [4].

The CNS influences gut physiological (gut motility and secretion) and immunological
(development and functioning of the mucosal immune system) functions, while the gut
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influences CNS development and function via the intestinal microbiota and its metabolites,
gut-homing immune cells, gut hormones, and the vagus nerve [5,6]. Such bidirectional
communication between the gut and the CNS is commonly known as the gut–brain axis and
could be a potential target for therapeutic intervention. Accumulating evidence indicates
that brain-resident and gut-resident immune cells are critically involved in orchestrating
gut–brain axis communication. The gut microbiota can influence the development and
function of the intestinal immune system, and, conversely, the innate and adaptive immune
system can influence microbiota composition [7]. Recently, we demonstrated in an MS
animal model that perturbed gut immune homeostasis is associated with EAE develop-
ment [8]. Similarly, immune dysregulation has been demonstrated in MS with excessive
Th17 cell expansion in the intestine [9]. These reports suggest that gut immunity has a
significant role in the immunopathogenesis of MS. Since diet and DMTs can influence gut
immunity by affecting the gut microbial community [10], we hereby review their roles in
modulating MS pathophysiology via gut immunity.

2. Role of Gut–Immune Axis in MS Pathogenesis

In a spontaneous EAE mouse model, we recently showed that CNS autoimmunity is
triggered by altered gut and peripheral immunity due to gut dysbiosis [3,8]. Similarly, altered
gut microbiota and gut immunity were found to be correlated with high disease activity
in MS patients [9]. In addition, the transplantation of stool samples from MS patients into
germ-free mice can increase the severity and incidence of EAE in the transplanted mice [11,12].
These reports suggest that gut dysbiosis may trigger the initiation and progression of CNS
autoimmunity by promoting immune dysregulation in the gut (Figure 1).
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Figure 1. Role of gut–immune axis in MS pathogenesis. (A) Dysbiotic MS microbiota can promote
the differentiation of myelin-specific T cells into Th1/Th17 cells by bystander action and molecular
mimicry. (B,C) Myelin-specific Th1/Th17 cells, neutrophiles, and macrophages can cause gut inflam-
mation and increased gut permeability by proinflammatory cytokines. (D) Increased gut permeability
leads to the passage of bacterial endotoxins from the gut to periphery including the CNS, which may
activate microglia and astrocytes to cause MS onset and/or progression. (E–G) MS gut microbiota is
unable to produce sufficient levels of SCFAs, which may further promote intestinal permeability and
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neuroinflammation. (H) Certain bacterial species produce toxins and promote CNS pathology in MS.
(I) Mobilization of IgA+ plasma blast and/or plasma cells from the gut to the CNS can significantly
suppress neuroinflammation, and gut dysbiosis may suppress the development of IgA+ B cells in the
gut. Schematic diagram was created using BioRender.com (accessed on: 13 September 2023).

Humanized gnotobiotic EAE mouse models contributed significantly to the under-
standing of the role of gut microbiota in MS pathogenesis [11,12]. However, the lack
of standardized protocols, interspecies variation between mouse and human, and the
type of fecal sample used (RRMS vs. SPMS vs. PPMS) in creating humanized gnotobi-
otic mouse models can lead to translatability issues. Interspecies parameters that can
affect fecal transplantation are differences in human and mouse gut anatomy, digestion
process and metabolic rate (quicker in mouse), and mouse genetic and immunological back-
ground [13]. In addition, another important limitation is the lack of a clear understanding
of the cause–effect relationship between MS and intestinal microbiota dysbiosis.

Although they appear similar at the phyla level, human and murine gut floras have
key discrepancies in the microbial composition and abundance. For example, a higher
Firmicutes/Bacterioidetes ratio is observed in humans compared to mice. Further, the phylum
Bacteroidetes mainly consists of the S24-7 family, and Firmicutes consists of Clostridiales in
mice. But Bacteroidetes mainly consists of Bacteroidaceae, Prevotellaceae, and Firmicutes of the
Ruminococcaceae family in humans [14]. Therefore, the results from EAE models should be
interpreted with caution while studying the role of the gut microbiota in MS.

2.1. MS-Associated Gut Microbiota

The gut microbiome of treatment-naïve early-stage MS patients of different ethnici-
ties (Caucasian, Hispanic, and African American) have increased relative abundances of
Clostridia species compared to ethnicity-matched controls. However, other taxa showed
significant differences among different ethnicities [15]. In both progressive MS and RRMS,
Clostridium bolteae, Ruthenibacterium lactatiformans, and Akkermansia muciniphila were in-
creased, while Blautia wexlerae, Dorea formicigenerans, and Erysipelotrichaceae CCMM were
decreased. However, increased Enterobacteriaceae and Clostridium g24 FCEY and decreased
Blautia and Agathobaculum were unique to progressive MS. Interestingly, several Clostridium
species were associated with higher EDSS and fatigue scores [16]. A certain gut microbiota
composition may be associated with subsequent MS relapse, especially in pediatric MS.
Notably, Fusobacteria depletion was associated with pediatric MS relapse [17]. Future stud-
ies should focus on identifying more bacterial species involved in MS relapse. Except for
increased A. muciniphila, the bacterial taxa involved in the development of gut dysbiosis
among individuals with MS varied among studies [11,12,16,18]. These variations may be
due to interindividual differences in the baseline microbial composition caused by host
genetic factors, long-term dietary habits, environmental exposures related to race/ethnicity,
and/or geographical location [15,19,20]. It is unknown whether increased A. muciniphila
contribute to MS pathogenesis or are a consequence of the disease. Interestingly, a recent
report suggests a link between increased Akkermansia and lower disability, suggesting that
Akkermansia may have a beneficial role [16]. It is important that future studies explore the
disease-specific roles and mode of action of MS-associated gut bacteria.

2.2. MS-Associated Dysregulation of Gut Immunity

Dysregulated gut and peripheral immunity are consequences of gut dysbiosis (change in
gut microbiota). Many reports suggest a link between MS pathogenicity and gut immunity.
For example, Th17 cells are now widely accepted to be key players in MS pathogenesis,
and an increased frequency of intestinal Th17 cells correlates with high disease activity and
altered gut microbiota in MS patients [9]. Also, disruption of the intestinal barrier and
increased permeability, often referred to as “leaky gut”, are involved in the pathogenesis
of autoimmune diseases [21]. Interestingly, intestinal barrier dysfunction develops at the
onset of EAE, which is associated with Th17 cell infiltration in the small intestine as well
as an increase in intestinal permeability [22]. Distinct signals from gut microorganisms
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coordinately activate myelin oligodendrocyte glycoprotein (MOG)-specific Th17 cells in the
small intestine. Germ-free mice colonized with two bacteria from the small intestine, a strain
from the Erysipelotrichaceae family and Lactobacillus reuteri, develop more severe EAE compared
to germ-free or monocolonized mice. The strain from Erysipelotrichaceae acts as an adjuvant to
enhance the Th17 cells’ response, while Lactobacillus reuteri possesses peptides that potentially
mimic MOG. Therefore, the synergistic effects of these microorganisms may be involved in
the pathogenicity of MS [23]. MOG-specific Th17 cells infiltrate the colonic lamina propria
prior to the development of neurological symptoms in active and adaptive transfer EAE
models and alter gut microbiota composition. Disrupting Th17 cell trafficking to the large
intestine significantly attenuates EAE [24]. Likewise, we have demonstrated the infiltration
of myelin basic protein (MBP)-specific Th17 cells as well as the recruitment of neutrophils
in the colon of a spontaneous EAE mouse model [8]. Of note, neutrophils can promote
Th17 cell differentiation by neutrophil extracellular traps (NET) and their histones via the
Toll-like receptor (TLR) pathway [25]. These reports suggest that the gut may be a location
for the differentiation of encephalitogenic Th17 cells in the periphery, with the microbiota
playing an important role in their differentiation, activation, and migration to the CNS. It was
hypothesized that this could be the result of cross-reactivity between bacterial antigens and
endogenous CNS antigens (molecular mimicry) or bystander activation [26]. Recently, we
discovered a variant of surface layer protein A (SLPA) in a subtype of Clostridioides difficile
(strain DJNS06-36), which can activate MBP89-98-reactive T cells. SLPA contains an amino acid
sequence that resembles immunodominant myelin basic protein 89–98. Importantly, active
immunization with SLPA activates MBP-specific T cells and induces EAE in MBP-TCR/DR2a
Tg mice. This study suggests that the encephalitogenic mimotope of MBP of gut bacteria can
activate autoreactive myelin-specific T cells and trigger CNS autoimmunity [27]. In summary,
MS-associated gut bacterial species have functional effects on the immune system that can
potentially modulate MS pathogenesis (Table 1).

Table 1. Effect of various gut bacteria on immune system in MS patients.

Bacterial Taxa Level in MS Functional Effect Reference

Clostridium (Clostridia cluster
XIV and IV) Decreased Decreased regulatory T cells (Treg) and IL10 production [28]

Prevotella Decreased
Differentiation of Th17 cells [9]Streptococcus mitis (S. mitis)

and Streptococcus oralis Increased

Methanobrevibacter Increased
Activation of T cells and monocytes [18]Akkermansia

Butyricimonas Decreased

Parabacteroides distasonis Decreased
Decreased anti-inflammatory IL-10-expressing human
CD4+CD25+ T cells and IL-10+FoxP3+ Tregs in mice
Increased differentiation of Th1 type cells and reduced proportion
of CD25+FoxP3+ Treg cells

[12]
Acinetobacter calcoaceticus Increased

Flavonifractor plautii Increased Correlate positively with increased monocytes and neutrophils,
and blood cell gene expression of IL17A and IL6 [29]

Clostridium leptum Increased Correlate positively with increased Type 1 IFN-induced blood cell
genes: MX1, IFIT1, IFI44L, and IFI27

Flavonifractor Increased Corelate positively with increased serum TNF-α
[30]Faecalibacterium and Roseburia Decreased Corelate negatively with serum TNF-α

Faecalibacterium Decreased Corelate positively with serum IL8 and MIP-1a

In addition, in severe cases of MS, commensal-specific gut IgA responses are drastically
reduced, with a simultaneous increase in serum IgG responses against IgA-unbound
bacteria compared to controls [31]. Further, the mobilization of IgA+ Plasma blast and/or
plasma cells from the gut to the CNS can significantly suppress neuroinflammation [32].
In healthy individuals, C-C chemokine receptor type 9 (CCR9)+ memory T cells exhibited
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a regulatory profile characterized by both the expression of C-MAF and the production
of IL-4 and IL-10. However, in CCR9+ memory T cells, the expression of RORγt was
specifically upregulated, and the production of IL-17A and IFN-γ was high in patients
with secondary progressive MS (SPMS) compared to healthy controls, indicating the loss of
regulatory function [33]. These animal and clinical studies suggest that an imbalance in the
gut microbiome between anti-inflammatory and pro-inflammatory bacteria may promote
immune dysregulation and increase the risk of MS.

2.3. Dysregulated Gut Immunity May Promote MS Relapses

Gut dysbiosis-mediated intestinal inflammation could be a risk factor for disease
exacerbation in MS. Recently, we showed that CNS autoimmunity is associated with gut
inflammation, which is probably triggered by a reduction in the enteric bacteria involved
in the development of regulatory immune cells. Also, we observed the gut infiltration of
Th1 and Th17 cells as well as the recruitment of neutrophils during the development of
spontaneous EAE [8]. Inflammatory cytokines like TNF-α, IFN-γ, and IL-1β produced
by immune cells during gut inflammation disrupt tight junction proteins, resulting in
increased intestinal permeability [34,35]. Notably, intestinal permeability is increased in
patients with MS compared with healthy donors [36]. This could be one of the risk factors
involved in disease exacerbation. Intestinal permeability induces the translocation of
microbial components into the systemic circulation, which could break peripheral immune
tolerance [3]. Animal studies also show that increased intestinal permeability exacerbates
EAE and promotes disease progression [22]. Further, microbial dysbiosis can affect the
production of bacterial metabolites that promote or suppress CNS autoimmunity. For
example, microbial dysbiosis reduces the production of short-chain fatty acids (SCFAs),
which are important metabolites for the development of forkhead box P3 (Foxp3) Tregs
and for the maintenance of immune homeostasis [37,38]. Therefore, the gut dysbiosis-
mediated reduction of SCFAs could be a risk factor in MS. Finally, intestinal regulatory
and pathogenic immune cells can migrate from the intestine to the CNS [39,40]. Therefore,
gut dysbiosis may reduce the migration of regulatory cells and increase the migration of
pathogenic immune cells to the CNS. Collectively, these studies suggest that dysregulated
gut immunity may promote MS disease activity.

2.4. Contribution of Gut Microbiota to CNS Pathology in MS

MS pathology involves inflammatory and neurodegenerative processes. Neuroin-
flammation is predominant in the early stages of MS, which is mediated by immune cells,
whereas neurodegeneration is dominant in the later stages of MS and is mainly driven
by microglia and astrocytes, whose activity can be modulated by the gut microbiota [41].
An immature microglia phenotype with diminished immune function and enhanced pro-
liferation and survival observed in germ free mice compared to specific-pathogen-free
(SPF) mice, point to the role of microbiota in microglia development and function [42].
Further, a subtype of reactive astrocytes (A1 astrocytes) is induced by activated neuroin-
flammatory microglia by secreting IL-1α, TNF-α, and C1q [43]. In addition, transforming
growth factor-α (TGF-α) and vascular endothelial growth factor-B (VEGF-B), produced
by microglia, regulate the pathogenic activities of astrocytes in EAE. Microglia-derived
TGF-α limits pathogenic activities of astrocytes and acts via the ErbB1 receptor during EAE.
Conversely, microglial-derived VEGF-B activates fms-related receptor tyrosine kinase-1
(FLT-1) signaling in astrocytes to worsen EAE. Interestingly, the metabolites produced
by the commensal flora from dietary tryptophan control microglial activation and TGF-α
and VEGF-B production by the aryl hydrocarbon receptor [44]. Similarly, neurotoxicity
in MS is induced via the microbially derived metabolites, phenol and indole, produced
by the tryptophan and phenylalanine catabolism [45]. During homeostatic conditions,
a subset of astrocytes expresses the lysosomal-associated membrane protein 1 (LAMP1)
and the TNF-related apoptosis-inducing ligand (TRAIL). The TRAIL expression in the
astrocytes is promoted by interferon-γ (IFN-γ) produced by meningeal natural killer (NK)
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cells. Notably, IFN-γ expression in the NK cells are modulated by the gut microbiome.
These LAMP1+TRAIL+ astrocytes limit neuroinflammation in the CNS by inducing T cell
apoptosis through TRAIL–DR5 signaling. However, during inflammation, TRAIL expres-
sion in astrocytes is suppressed by molecules produced by T cells and microglia [46]. In
addition, the gut microbiota may affect CNS pathology by producing toxins. For example,
Clostridium perfringens, which can produce epsilon toxin (ETX), were found in the major-
ity of RRMS patients. Importantly, ETX can disrupt the blood–brain barrier to promote
multifocal lesions in the brain and spinal cord of the EAE model, resembling MS lesion
pathology [47]. These reports suggest that the gut microbiota can modulate glial cell
phenotypes and the blood–brain barrier to promote CNS pathology in MS.

3. Mechanisms of the Gut–Immune-Axis-Mediated Effect in the CNS

The gut–immune axis affects the CNS during health and disease by several mecha-
nisms (Figure 2). First, microbial metabolites and endogenous components from the gut
microbiota can pass to the circulation and affect peripheral immunity during health and
disease. The most notable microbial metabolites are SCFAs like acetic acid, butyric acid,
and propionic acid. SCFAs are produced by the fermentation of dietary fiber in the colon
by anaerobic gut bacteria [48–50]. In RRMS patients, the fecal levels of acetate, propionate,
and butyrate are significantly lower compared to HC [51]. Interestingly, female RRMS
patients showed significantly reduced fecal SCFA concentrations compared to male RRMS
patients, possibly contributing to the higher female susceptibility to MS [52]. SCFAs are
known to suppresses autoimmunity through immunomodulatory effects, which have been
attributed partially to the epigenetic modulation of immune cells via the inhibition of the
histone deacetylase (HDAC) enzyme. One of the downstream effects is enhanced regulatory
T cells (Tregs), which suppress autoimmunity [53]. Indeed, the number of CD4+ CD25+
FOXP3+ Tregs are decreased in MS patients and have impaired suppressive capacity [54,55].
The SCFA pentanoate suppresses autoimmunity by inducing IL-10 production in lym-
phocytes and reprogramming their metabolic activity towards elevated glucose oxidation.
In addition, pentanoate-induced regulatory B cells suppress autoimmune pathology in
colitis and MS animal models [50]. Also, tryptophan and its metabolites are emerging as
important modulators of mucosal and CNS immunity via the aryl hydrocarbon receptor
(AHR). Tryptophan metabolites like kynurenine, kynurenic acid, anthranilic acid, quinoli-
nate, indole-3-acetic acid, indoxyl-3-sulfate, indole-3-propionic acid, and indole-3-aldehyde
are produced by the action of gut microbiota on dietary tryptophan [56]. Tryptophan
metabolites protect against increased gut permeability through the aryl hydrocarbon re-
ceptor by maintaining the apical junctional complex and its regulatory proteins (myosin
IIA and ezrin) [57]. In addition, tryptophan metabolites also signal through the AHR
in astrocytes and reduce CNS autoimmunity via the Suppressor of Cytokine Signaling 2
(SOCS2)-mediated inhibition of NF-κB-driven inflammation [58]. Interestingly, the tryp-
tophan metabolites kynurenine, kynurenic acid, anthranilic acid, and quinolinate are low
in MS serum, indicating a possible role in MS pathogenesis [58]. Further, lower serum
tryptophan and indole lactate (tryptophan metabolite) are associated with pediatric MS
risk and disease course [59]. Contrary to previous reports, kynurenic acid has been shown
to promote the accumulation of Th17-inducing GPR35+ Ly6C+ macrophages in the small
intestine of EAE mice before disease induction. Sporosarcina pasteurii, Staphylococcus lentus,
Pseudoxanthomonas mexicana, and Sphingomonas were identified as potential species in-
volved in kynurenic acid production [60]. Therefore, tryptophan-metabolizing gut bacteria
and the metabolic end-product will modulate the effect on CNS autoimmunity. Among
bacterial components, polysaccharide-A (PSA) and LPS are well investigated. PSA is a
capsular polysaccharide produced by a Gram-negative symbiont, Bacteroides fragilis, in the
colon. PSA from human gut bacteria Bacteroides fragilis protects against EAE by inducing
IL-10-producing FoxP3+ Treg cells [61]. Further, PSA promotes human CD39+Foxp3+Treg
cells and Treg function [62]. PSA suppresses EAE by the expansion of CD4+Treg. Further,
CD39, which is an ectonucleotidase, promotes the accumulation of CD39+CD4+ Tregs in
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the CNS to suppress autoimmunity [63]. Interestingly, Bacteroides fragilis is significantly
depleted in pediatric MS patients, suggesting its possible role in MS pathogenesis [64]. In
addition, gut dysbiosis during CNS autoimmunity increases the serum level of lipopolysac-
charide (LPS), which promotes the loss of peripheral immune tolerance [3,37]. LPS injection
has been shown to exacerbate EAE [65]. Further, systemic LPS can activate microglia to
increase pro-inflammatory factors in the CNS, consequently contributing to neurodegen-
eration [66]. In summary, it can be concluded that microbiota-derived metabolites and
components will either promote or suppress CNS autoimmunity.
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Figure 2. Mechanisms of gut–immune-axis-mediated effect on the CNS. (A) Microbial metabolites
(SCFAs from dietary fibers and tryptophan metabolites) generated from gut microbiota and bacterial
endogenous components (LPS and PSA) pass to the circulation due to leaky gut and affect peripheral
immunity and glial cells in the CNS. (B) Migration of gut-resident innate and adaptive immune
cell populations to the CNS and their cytokines can modulate MS pathogenesis. (C) The gut wall
is innervated with both afferent and efferent fibers of the vagus nerve. Efferent nerve fibers carry
impulses from the CNS to the gut and affect its physiology. On the other hand, afferent fibers carry
impulses from the gut to the CNS. The activity of these fibers can be modulated by the diffusion of
bacterial components (like LPS) and metabolites (like SCFAs) or hormonal signals from specialized
EECs that are capable of sensing luminal bacterial content. (D) Gut-microbiota-derived LPS and
SCFAs modulate the production and release of gut hormones (CCK, ghrelin, Peptide YY, GLP-1,
5-HT) from EECs. Gut hormones potentially suppress Th17 responses and neuroinflammation by
attenuating activated microglia. (E) Disease-modifying therapies (DMTs) can affect gut immune
cells and epithelial cells to induce changes in gut microbiota, which may contribute toward their
therapeutic effects. By promoting anti-inflammatory gut bacteria, DMTs can enhance the development
of Tregs or the production of regulatory cytokines in the gut and their circulation, which can suppress
CNS autoimmunity. (F) Gut microbiota may modulate the response to DMTs. Schematic diagram
was created using BioRender.com (accessed on: 13 September 2023).

Second, in homeostatic and disease conditions, CNS function and behavior can be
affected by resident innate and adaptive immune cell populations [67–69]. Interestingly,
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many of these immune cells are derived from the periphery and their development can be
modulated by gut microbiota [70,71]. Depending on the composition of the gut microbiota,
the latter can promote or suppress neuroinflammation and/or demyelination via the
development of Th1/Th17 or Treg cells, respectively [72,73]. In fact, the dysregulation
of TGF-beta/Smad7 signaling has been reported in the intestine of MS patients. This
favors an inflammatory phenotype in intestinal CD4+ T cells and leads to migration to the
CNS to cause autoimmunity [40]. Further, the gut-homing of myelin-specific Th17 cells is
required for disease induction in the adoptive transfer EAE model, suggesting a role for
gut microbiota/gut environment in the differentiation of encephalitogenic Th17 cells [24].
Conversely, gut-microbiota-specific IgA+ B cells can traffic to the CNS in active MS and
dampen excessive inflammation [32,74]. Therefore, the gut microbiota can affect the CNS
during health and disease by affecting immune cell homing and migration pathways.

Third, the vagus nerve and enteric nervous system (ENS) innervate the intestinal
wall and play a significant role in bidirectional communication between the gut and the
CNS. The ENS can function independently of the vagus nerve to control gut physiology
like motility and secretion. The ENS is made of myenteric (Auerbach’s) and submucosal
(Meissner’s) plexuses, which are connected to CNS via the vagus nerve [75]. The gut wall
is enervated with both afferent and efferent fibers of the vagus nerve and its activity can be
modulated by the diffusion of bacterial components (like LPS) and metabolites (like SCFAs)
or hormonal signals from specialized enteroendocrine cells (EECs), which are capable of
sensing luminal bacterial content [76]. Only a few studies have explored the role of the ENS
in CNS autoimmunity. For example, in a B-cell- and antibody-dependent mouse EAE model,
the degeneration of the myenteric plexus with gliosis and axonal loss caused a decrease
in intestinal motility before the onset of EAE had been reported. Interestingly, gliosis
and ENS degeneration were also detected in resected colon from MS patients. Further,
both EAE mice and MS patients have serum autoantibodies against antigens derived from
enteric neurons and/or glia [77]. Also, altered gastrointestinal motility in EAE models was
reported due to autoantibodies targeting the ENS [78]. These reports suggest that the ENS
may be involved in the pathogenesis of MS, which warrants further studies.

Lastly, gut hormones can also affect the CNS. It is important to note that gut-microbiota-
derived LPS and SCFAs modulate the production and release of gut hormones. Cholecys-
tokinin (CCK), ghrelin, peptide YY, glucagon-like peptide-1 (GLP-1), and
5-hydroxytryptamine (5-HT) or serotonin are some of the important gut hormones pro-
duced by EEC in the gastrointestinal tract [79]. GLP-1 potentially suppresses neuroinflam-
mation since it attenuates LPS-induced inflammatory responses in microglia [80]. In fact,
Semaglutide, a novel glucagon-like peptide-1 agonist, has been shown to suppress EAE in
rats [80]. Most of the body’s serotonin is secreted by EEC. Fluoxetine, a serotonin reuptake
inhibitor, and 5-HT suppress Th17-immune responses in multiple sclerosis (MS). Such an
effect is facilitated by the activation of 5-HT2B receptors, which reduces IL-17, IFN-γ, and
GM-CSF production in MS [81]. Therefore, gut hormones may play an important role in
MS pathogenesis.

4. Effect of Diet on the Gut–Immune Axis in MS
4.1. High-Fiber Diet

Dietary fiber is an important food component involved in the maintenance of health,
which can be mediated by microbiota-dependent or independent mechanisms [82]. Dietary
fiber is an edible plant carbohydrate polymer that is resistant to digestion and absorption in
the small intestine, with complete or partial fermentation in the large intestine. Dietary fiber
includes polysaccharides (cellulose, hemicellulose, and pectin), oligosaccharides, lignin,
and related plant molecules [83]. Bacterial species from Bifidobacterium, Prevotella, and
Bacteroides are the main degraders of dietary fiber to SCFAs such as butyrate, propionate,
and acetate [84]. Dietary fiber and SCFAs can suppress an immune response through
G protein-coupled receptors or acting as histone deacetylase inhibitors [85]. SCFAs are
critical to maintain intestinal homeostasis and immunity by inducing IL-22 production in
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CD4+ T cells and innate lymphoid cells 3 (ILC3) [86]. Further, SCFAs drive monocyte-to-
macrophage differentiation via histone deacetylase 3 (HDAC3) inhibition. Interestingly,
these macrophages have enhanced antimicrobial activity due to a shift in metabolism,
a reduction in mammalian target of rapamycin (mTOR) kinase activity, and increased
LC3-associated host defense [87]. Therefore, SCFAs can prevent gut dysbiosis by inhibiting
the overgrowth of pathogenic bacteria. Importantly, dietary fiber and SCFAs have been
shown to inhibit CNS autoimmunity in vivo through the differentiation of Tregs and
the inhibition of pathogenic Th cells [88,89]. Tregs differentiation is mediated by the
induction of tolerogenic dendritic cells (DC) and/or the enhanced acetylation of the Foxp3
gene by SCFAs through the inhibition of histone deacetylase activity [38,90]. In addition,
SCFAs can affect immune cell metabolism and T helper cell differentiation through mTOR
signaling [91].

Besides immune modulation, SCFAs are the preferred energy source for intestinal
epithelial cells and maintain a healthy intestinal epithelial layer by promoting epithelial
cell proliferation and turnover [92]. Further, dietary fiber and SCFAs can prevent autoim-
munity by promoting intestinal barrier function and preventing the migration of intestinal
lymphocytes to extraintestinal tissues [93,94]. The SCFAs produced by the microbiota are
important to suppress inflammatory microglia, which partially depend on epigenetic modi-
fications [95]. In addition, butyrate treatment has been shown to suppress demyelination
and enhance remyelination by modulating oligodendrocytes directly [96]. SCFAs maintain
the blood–brain barrier (BBB) and blood–cerebrospinal fluid (CSF) barrier through the
increased expression of tight junction (TJ) proteins as well as cytoskeleton rearrangement
in endothelial cells [97–99]. SCFA diets alleviate cognitive and spatial memory deficits by
enhanced astrocyte–neuron metabolic coupling, leading to reduced oxidative damage [100].
Therefore, dietary fiber and its metabolite SCFAs are important for immune and nervous
system homeostasis, thereby helpful in suppressing autoimmunity and neurodegeneration.

MS is highly associated with gut dysbiosis, characterized by the loss of bacterial taxa
involved in the fermentation of dietary fiber and the production of SCFAs [8,101]. Since
SCFAs can promote the differentiation of Tregs, a decrease in SCFA-producing bacteria in
the gut would be a risk factor for MS. Indeed, the oral intake of propionic acid promotes
a sustained increase in functionally competent Treg cells, while Th1 and Th17 cells are
significantly decreased in MS patients [102]. Similarly, a high-vegetable/low-protein diet
(HV/LP diet), which is rich in dietary fiber, is associated with reduced relapse rate and
less disability due to microbial composition change and the induction of IL10-producing
monocytes and Tregs [103]. Also, animal studies have indicated that feeding a high-fiber
diet or diet rich in SCFAs ameliorated EAE through the increased differentiation of Tregs
and the downregulation of Th1 cells [50,89]. Important ongoing or completed studies
addressing the effects of different diets on MS are summarized in Table 2. Dietary fiber and
SCFAs also affect neurodegenerative diseases. For example, fecal SCFA levels are lower in
Alzheimer’s disease (AD) patients, and its supplementation can potentially provide thera-
peutic benefits for AD since they can prevent the formation of neurotoxic Aβ aggregates
and Aβ-induced microglia activation [104–106]. Thus, an increase in the consumption of a
high-fiber diet could be beneficial for neurodegenerative diseases including MS. Recently,
a high-fiber supplement was shown to efficiently reduce gut dysbiosis and promote the
growth of SCFA-producing gut bacteria in humans [107]. The effect of the high-fiber supple-
ment in MS gut dysbiosis and disease induction in EAE is currently being investigated in
our laboratory.
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Table 2. Important ongoing or completed studies addressing the effects of different diets on MS.

Diet/Intervention Study Cohort or
Design Outcome

Clinical Trial/Ethical
Committee Approval

Number
Reference

High-fiber supplement
(NBT-NM108) RRMS Ongoing study NCT04574024 Not

applicable

Propionate (PA) RRMS

Significant increase in functionally
competent Treg cells and decrease in
Th1 and Th17 cells after two weeks.

Reduced annual relapse rate, disability
stabilization, and reduced brain

atrophy after 3 years of PA intake.

15-5351
4493-12
17-6235
357_17B

[102]

High-vegetable/low-
protein diet (HV/LP

diet
RRMS

Induction of IL10-producing
monocytes and Tregs.

Increase in abundance of
Lachnospiraceae family.

Decrease in relapse rate and Expanded
Disability Status Scale score.

Not available [103]

Healthy/Mediterranean
diet

Case control
retrospective dietary

recall studies

Lower risk of clinically isolated
syndrome (CIS).

Lower risk of MS.
Not applicable [108,109]

4.2. Western Diet/High-Fat Diet (HFD)

Western diets/HFDs can impact gut–brain communications by altering the gut mi-
crobiota and intestinal permeability. Commonly, the consumption of a HFD leads to an
increase in Firmicutes and a decrease in Bacteroidetes, which are associated with obesity and
chronic diseases [110]. Interestingly, obesity is associated with higher disease activity and
poorer outcome in newly diagnosed MS patients [111]. The consumption of a HFD led to
unfavorable changes in fecal and plasma metabolite and plasma factors, resulting in poor
long-term health outcomes [112]. In addition, HFDs have unfavorable effects due to the
dysregulation of gut immunity and barrier function [113,114]. HFDs have been shown to
induce neuroinflammation, oxidative stress, and neuronal death in the brain cortex and
hippocampus of mice [115]. Further, a HFD exacerbated neuroinflammation in an animal
model of MS by promoting microglial activation and T cell infiltration [116]. As the neu-
rotrophic factor BDNF plays a key role in brain function, HFD-induced neuroinflammation
suppresses brain-derived neurotrophic factor (BDNF)-related pathways [117]. Similarly,
saturated fat increases the risk of relapse in pediatric MS [118]. However, polyunsaturated
fatty acids (PUFAs) such as omega-3 fatty acids have been shown to reduce disease severity
in an MS mouse model. This beneficial effect is due to the reduced polarization of naïve
T cells toward proinflammatory Th1 and Th17 phenotypes [119]. In fact, a higher intake
of omega-3 supplementation reduces the risk of MS in patients with clinically isolated
syndrome [120]. In addition, omega-3 supplementation has been associated with decreased
relapse rate and inflammatory markers and improved quality of life in MS patients [121].
Similarly, omega-6 supplementation decreases pro-inflammatory monocyte number and
function, with a simultaneous increase in anti-inflammatory monocyte subsets and func-
tions in MS patients [122]. A HFD increases the risk of neurodegenerative diseases like
Alzheimer’s and Parkinson’s disease [123,124], perhaps in connection with HFD-induced
gut dysbiosis [125].

5. Effect of MS Therapeutics on the Gut–Immune Axis in MS

Disease-modifying therapy (DMT)-induced changes in gut microbiota may contribute
toward their therapeutic effects (Table 3). For example, by promoting anti-inflammatory
gut bacteria, DMTs can enhance Tregs or the production of regulatory cytokines in the
gut and the circulation. Recently, the gut microbiomes of 576 MS patients and 1152 ge-
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netically unrelated household healthy controls (HHC) were studied by the International
Multiple Sclerosis Microbiome Study (iMSMS). In this study, differences in β-diversity were
observed when patients within each treatment group were compared to their correspond-
ing HHC. However, β-diversity did not differ between the treated and untreated RRMS
patients except for the IFN-β treated group [10]. Similarly, in another study, the overall
composition of the microbiota did not differ significantly between treated and untreated
MS patients. However, specific bacteria were found to be linked to each DMT [16]. Over-
all, DMT-induced changes in microbial populations may impact biological and metabolic
pathways. For example, glatiramer acetate (GA) and dimethyl fumarate (DMF) mainly
upregulate retinol (vitamin A) metabolism, which is known to promote the differentiation
of Tregs and suppress the reprogramming of Treg to Th17 cells during intestinal inflamma-
tion [126,127]. In addition, both therapies decreased methane metabolism. An increased
relative abundance of proinflammatory methane-producing bacteria, Methanobrevibacter,
and exhaled methane was reported in MS patients compared with healthy controls [18,126].
Therefore, by decreasing methane-producing bacteria, GA and DMF have beneficial ther-
apeutic effects. Although certain DMT-induced changes in the gut microbiota have been
identified, no specific microbiota DMT signatures are currently established. This can be
explained by two factors: interindividual differences in base microbiota and use of previous
DMTs. First, the baseline microbial compositions have interindividual differences caused
by host genetic factors, dietary habits, environmental exposures, and/or geographical
location [15,19,128]. Therefore, different study cohorts might have different microbiota
compositions after DMT. The effects of individual DMTs on bacterial composition are
summarized in Table 3. Second, treatment guidelines do not provide guidance on how
to select or sequence DMTs, which leads to switches or discontinuations of initial DMTs
(~70% of patients) [129]. Therefore, it will be hard to predict a gut microbiota signature for
a specific DMT. It is also unknown how the gut microbiota modulates the response to DMT.
We hypothesize that the gut microbiota can affect DMT actions by affecting its metabolism
via the production of enzymes that degrade or activate drugs [130]. In addition, the gut
microbiota can produce some metabolites that could compete with DMTs or affect the level
of metabolite transporters, which may affect its bioavailability. Therefore, gut microbiota
composition may contribute to the efficacy of DMTs.

Table 3. Effect of DMTs on gut microbiota composition in MS.

Type of
DMT

DMTs
Microbial Changes

Reference
Increase Decrease

Injectables

Interferons
(IFN)

Bacteroides uniformis
Prevotella genus
Sutterella genus
Ruthenibacterium lactatiformans

Akkermansia muciniphila
Sarcina genus
Prevotella copri

[10,11,16,18,131]

Glatiramer
Acetate (GA)

Prevotella genus
Sutterella genus

Bacteroides uniformis
Lachnospiraceae family
Veillonellaceae family
Akkermansia muciniphila
Sarcina genus

[10,11,18,126]
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Table 3. Cont.

Type of
DMT

DMTs
Microbial Changes

Reference
Increase Decrease

Oral

Dimethyl
fumarate (DMF)

Lactobacillus pentosu
Roseburia intestinalis
Ruthenibacterium lactatiformans
Bacteroidetes phylum

Bacteroides stercoris
Clostridium species
Eubacterium species
Coprococcus eutactus
Enterococcus gilvus
Lachnospiraceae families
Veillonellaceae families
Firmicutes phyla
Fusobacteria phyla
Clostridiales order

[10,16,126,132,133]

Streptococcus, Haemophilus,
Clostridium, Lachnospira, Blautia,
Subdoligranulum, and Tenericutes
in MS subjects with side effects

Bacteroidetes, Barnesiella,
Odoribacter, Akkermansia, and
some Proteobacteria families in
MS subjects with side effects

Fingolimod Ruminococcaceae PAC001607
Ruthenibacterium lactatiformans

Bacteroides finegoldii CAG:203
Roseburia faecis
Blautia species

[10,16]

Infusion

Ocrelizumab
(Anti-CD20)

Faecalibacterium prausnitzii
Ruthenibacterium lactatiformans [16]

Natalizumab
Phascolarctobacterium sp. CAG:207
Ruminococcaceae PAC001607
Ruthenibacterium lactatiformans

Bacteroides uniformis
Prevotella species
Bifidobacterium longum
Akkermansia muciniphila

[10,11,16]

6. Conclusions

Emerging evidence suggests important roles for the gut microbiome and gut immunity
in human health and disease. MS is associated with perturbed gut microbiomes and
immunity, supporting the role of the gut microbiome in the initiation and progression of
MS. However, comprehensive knowledge about the functional effects of MS-associated
bacteria is lacking at present. It is important that future studies explore the functional effects
and mode of action of MS-associated gut bacteria, which would be helpful in designing
therapeutic strategies. A high-fiber diet and disease-modifying therapies (DMTs) can have
beneficial effects for MS by shifting the composition of the gut microbial community to an
anti-inflammatory phenotype, leading to the differentiation of regulatory immune cells
and an improvement in intestinal barrier function. However, it is not known how the
gut microbiota modulates DMTs; the role played by baseline microbiomes in determining
the response to DMTs is also unknown. Studies in this direction could help personalize
the choice of DMTs, since the microbiome is varied among different MS populations and
disease states.
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