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Abstract: Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine
development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and
(2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2
VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a
viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been
unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by
expressing spike protein in combination with the native coronavirus membrane and/or envelope
protein forms VLPs, but at a critically low spike yield (~0.04–0.08 mg/L). In contrast, fusing the spike
ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1
increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater
VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native
SARS-CoV-2 virus (~72–144 Spike monomers/virion). Pseudotyping further allowed for production
of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2
VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped
VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed
at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping
over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the
usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development
against SARS-CoV-2 variants.

Keywords: SARS-CoV-2; virus-like particle (VLP); antigen density; pseudotyping; variants; ACE2;
neutralization; Sf9 insect cells

1. Introduction

COVID-19, the disease caused by the SARS-CoV-2 coronavirus, has led to a significant
global burden over the last 3.5 years, totaling >760 M confirmed cases and ~7 M deaths
worldwide [1]. Early development and rollout of vaccines played key roles in protecting
against COVID-19 and reducing transmission of SARS-CoV-2. To date, more than 5.5 billion
humans have received at least one dose of a COVID-19 vaccine, while more than 13 billion
doses have been administered worldwide since late 2020 [1]. Despite the initial success of
SARS-CoV-2 vaccines, primarily mRNA lipid nanoparticles (LNPs), key challenges remain
for future vaccine development. Both the high mutability [2,3] and transmissibility [4,5] of
SARS-CoV-2, resulting in the rapid emergence of more drifted variants [6], coupled with the
waning immunity in humans previously vaccinated or infected [7–9], have necessitated the
rollout and update of booster vaccines in efforts to reduce more severe outcomes. However,
given the continual decline in booster vaccine uptake [10] and the continued circulation of
the virus for the foreseeable future [1], there is a critical need to develop next-generation
SARS-CoV-2 vaccines.
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In addition to the need for more effective vaccines, the SARS-CoV-2 vaccine and
therapeutic development also face key safety challenges. Working with SARS-CoV-2 virus
requires biosafety level 3 (BSL-3) containment, severely limiting the number of experiments
that can be performed due to high cost and limited availability of facilities [11]. To address
this challenge, human immunodeficiency virus (HIV-1), murine leukemia virus (MLV), and
vesicular stomatitis virus (VSV) pseudotyped with the SARS-CoV-2 spike protein have been
most commonly used as substitutes for live virus to study binding properties and quantify
neutralizing antibody titers, among other applications [12]. Despite their utility, there are
several limitations for pseudovirus systems that are still replication competent, most notably
safety concerns and low yields for the HIV-1 platform, morphology mismatch between
VSV pseudovirus (bullet) and SARS-CoV-2 (spherical), as well as broader difficulties
in quantifying pseudovirus titers and ensuring similar antigen surface density to that
on the SARS-CoV-2 virus [12,13]. Taken together, there is a great need for more easily
characterizable biological tools such as viral cDNA technologies [14,15], virosomes [16],
and virus-like particles [17] that can emulate native SARS-CoV-2 virus.

Virus-like particles (VLPs) represent an attractive platform to serve a dual purpose in
SARS-CoV-2 vaccine development, offering several unique advantages both as a vaccine
candidate and as a replacement for live virus in assays. SARS-CoV-2 VLPs are commonly
produced by co-expressing spike (S), envelope (E), and membrane (M) proteins in a host
expression system [18–21]. They mimic the structure of the native SARS-CoV-2 virus but
lack viral RNA and the ability to replicate. In contrast to the mRNA LNP technologies used
for SARS-CoV-2 vaccines, VLPs have a much more favorable reactogenicity profile, in line
with more traditional vaccine technologies [22]. Another advantage is the rapid production
timeline (2–3 months) of VLPs [23–25], which can address the need for swift update of
the vaccine should new variants arise. Furthermore, VLPs are highly immunogenic, and
performed well as a booster in mice previously vaccinated with SARS-CoV-2 mRNA
LNPs, eliciting slightly higher antibody levels with greater avidity compared to an mRNA
LNP booster [26]. Finally, the molecular mimicry of VLPs to native virus makes them
a useful biological tool to replace live virus in vaccine and therapeutic development,
allowing for binding and neutralization assays to be carried out safely at biosafety level 1
(BSL-1) conditions.

While several host expression systems have been investigated to produce SARS-CoV-2
VLPs, including ones utilizing mammalian [17,27–30] and plant cells [31,32], the bac-
ulovirus expression vector system (BEVS) in insect cells is a particularly advantageous plat-
form due to its ability to achieve high expression levels of recombinant
proteins [18,19,21,25,33,34]. A variety of designs for SARS-CoV-2 VLPs have been pro-
duced in insect cells, with most incorporating the S protein in combination with both
E and M structural proteins to form budded VLPs [18,19,21,34]. Despite the successful
demonstration that expressing all three proteins can lead to the production of VLPs, it
is unclear if both E and M are necessary for VLP production and how the inclusion of
each of these proteins affects the overall VLP spike yield, an important parameter that is
largely unreported in SARS-CoV-2 VLP studies. Moreover, though a limited number of
studies [35,36] have produced VLPs towards the SARS-CoV-2 variants of interest using
mammalian cells, insect cell SARS-CoV-2 VLPs to date have only incorporated the S protein
from the ancestral SARS-CoV-2 strain, and VLPs based on the major circulating variants
have yet to be explored.

In this study, we sought to determine the minimum requirement for native SARS-
CoV-2 VLP formation in Sf9 insect cells and quantify the resulting VLP spike yield. Our
data demonstrated that co-expressing S protein with either E or M protein resulted in
VLP formation, but the VLP spike yield was lower compared to co-expressing all three
proteins. However, regardless of the combination, all three showed very low VLP spike
yields (<0.1 mg/L). To overcome this limitation, we formed pseudotyped VLPs by co-
expressing an S-HA fusion protein with influenza M1, which improved the VLP spike yield
approximately fivefold. This improvement further translated to VLPs with a greater anti-
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gen density (~96 S monomers/VLP), closely resembling that of native SARS-CoV-2 virus
(72–144 S monomers/virion). This pseudotyping strategy also led to the successful produc-
tion of VLPs for the major circulating variants, including alpha (B.1.1.7), beta (B.1.351), delta
(B.1.617.2), and omicron (B.1.1.529). More importantly, the pseudotyped wild-type and
variant VLP spike proteins were all shown to be functional, exhibiting differential affinities
for binding with ACE2. Finally, we demonstrated the utility of VLPs to test neutralizing
antibody activity in a simple, acellular ELISA assay, highlighting the usefulness of VLPs as
SARS-CoV-2 virus surrogates for vaccine and therapeutic development.

2. Results and Discussion
2.1. Sf9 Insect Cells Support SE, SM, and SEM VLP Formation with Low Spike Yield

The majority of SARS-CoV-2 VLP designs reported to date have co-expressed the
spike (S), envelope (E), and membrane (M) proteins in insect cells [18,19,21,34], or S, E,
and M proteins, along with the nucleoprotein (N) in mammalian cells [17,27–30]. While
these designs all successfully produced VLPs, it is unclear if either E or M protein on its
own can support the formation of S-decorated VLPs and if the resulting VLP spike yield is
increased as a result of expressing fewer number of recombinant proteins. To this end, three
baculovirus vectors were generated to express S protein in combination with E and/or
M proteins: SE, SM, and SEM (Figure 1A). All protein sequences were derived from the
Wuhan-Hu-1 SARS-CoV-2 strain (accession #: NC_045512). Sf9 cells were then infected
with the baculovirus vectors at a multiplicity of infection (MOI) of 3. At 72 h post infection,
particles from the culture supernatants were harvested and processed for transmission
electron microscopy (TEM) analysis (see Methods). As shown in Figure 1B, TEM analysis
revealed the formation of spherical particles ~80–130 nm in diameter for all three constructs,
consistent with the morphology of native SARS-CoV-2 virions (~60–140 nm diameter [37]).
These particles also showed binding with multiple anti-S immunogold particles, indicating
that the S protein was successfully incorporated into VLPs. Western blot analysis of these
VLPs further showed that the S, E, and M proteins could be detected in the intended
combinations for the SE, SM, and SEM VLPs and migrated according to their expected
molecular weight (180 kDa, 12 kDa, and 25 kDa, respectively) (Figure 1C). Taken together,
these data demonstrate that the formation of SARS-CoV-2 VLP in Sf9 cells does not require
co-expressing S protein with both E and M proteins, and Sf9 cells support the formation of
SE, SM, and SEM VLPs.

As the SE and SM VLPs require the Sf9 cells to express one less recombinant protein
compared to the SEM VLP, we next examined if this leads to higher spike yields in SE
and SM VLPs. The S protein in VLPs was quantified by Western blot analysis using a
standard curve generated from purified S protein (Figure S1A). The SE, SM, and SEM
VLP spike yields ranged from 0.04–0.08 mg/L, with SEM VLP having the highest spike
yield, followed by SM and SE (Figure 1D). However, none of the yields were statistically
different from each other (p > 0.05). Notably, the spike yields for all three native VLP
constructs reported here are markedly low, particularly when compared to the influenza
VLP hemagglutinin (HA) yield, which typically exceeds 1 mg/L [38]. When the S protein
in cell lysates was quantified using Western blot (Figure S1B), all three VLP constructs
showed high S protein expression levels (~18–20 mg/L) (Figure 1E), comparable to that of
HA protein [39,40]. This indicates that the cellular expression of the S protein itself is not
the cause of low VLP spike yield. Therefore, other factors severely restrict the formation of
native SARS-CoV-2 VLPs in Sf9 cells. The VLP formation efficiency was evaluated using
the % of S protein incorporated into VLPs, defined as the VLP spike yield divided by the
cellular S protein expression level. As shown in Figure 1F, only ~0.2–0.4% of the cellular
S protein expressed was incorporated into VLPs (Figure 1F). This suggests that native
SARS-CoV-2 VLP formation is incredibly inefficient in Sf9 cells. It has been shown that
the E and M proteins alter the secretory and glycosylation pathways in mammalian cells,
resulting in the retention of S protein intracellularly [41]. Given the high influenza VLP HA



Int. J. Mol. Sci. 2023, 24, 14622 4 of 17

yield in Sf9 cells [38], we hypothesized that a pseudotyping strategy based on influenza
proteins would improve the SARS-CoV-2 VLP spike yield.
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Figure 1. Characterizing the effects of SARS-CoV-2 structural proteins on VLP formation and spike
yield. (A) Schematic of the recombinant baculovirus vectors used to produce SE, SM, and SEM
SARS-CoV-2 VLPs in Sf9 cells. (B) Transmission electron microscopy (TEM) images showing anti-S
immunogold-labeled VLPs. (C) Western blot analyses of SARS-CoV-2 proteins in VLPs. Quantification
of (D) VLP spike yield and (E) cellular S protein expression level based on Western blot analyses.
(F) % S protein incorporated in VLPs. For (D–F), data represent mean ± SE (n = 3, unpaired Student’s
t test, all p > 0.05, not significant).

2.2. Pseudotyping Improves SARS-CoV-2 VLP Spike Yield

Pseudotyping using influenza proteins was previously employed for SARS-CoV-1
VLPs in Sf9 cells, leading to >twofold improvement in VLP spike yield (1 mg/L) [42]
compared to that of SARS-CoV-1 SEM VLPs [43]. A similar strategy was more recently
utilized for SARS-CoV-2 VLPs in mammalian [44] and Sf9 insect cells [33,45], though the
VLP spike yields were not reported. To determine if pseudotyping similarly improves
SARS-CoV-2 VLP spike yield, a baculovirus vector was created to express the SARS-CoV-2
S ectodomain (aa 1–1213) fused to the transmembrane (TM) and cytoplasmic tail (CT)
domains of an H1N1 influenza HA protein (accession #NP_040980) in combination with
the influenza matrix protein M1 (denoted SHAM1, Figure 2A). For simplicity, we refer to
this influenza pseudotyping strategy as “pseudotyping” throughout, including designs
from other studies [44,45] that used the same HA domains but from different influenza
strains. Similar to SE, SM, and SEM VLPs (Figure 1B,C), SHAM1 VLPs exhibited a spherical
morphology and showed binding with multiple anti-S immunogold particles (Figure 2B).
As shown in Figure 2C, Western blot analysis revealed that the S-HA and M1 proteins were
incorporated into the VLPs with the correct molecular weight (S-HA, 174 kDa and M1,
25 kDa). However, the SHAM1 VLPs were slightly larger in size (~100–200 nm diameter),
similar to previously engineered pseudotyped VLPs for both SARS-CoV-1 (~160 nm di-
ameter) [42] and SARS-CoV-2 (~80–200 nm diameter) [44,45]. To examine if pseudotyping
improves VLP spike yield, S protein quantification was performed as described above
(Figure S1A). As expected, the SHAM1 VLP spike yield showed a significant improvement
of ~fivefold to ~0.4 mg/L (Figure 2D). This yield is more comparable to the influenza VLP
HA yield [38] as well as the SARS-CoV-1 VLP S-HA yield [42]. Notably, the cellular S
protein expression level of SHAM1 (~20 mg/L) was not significantly different than that
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of SEM (Figure 2E), suggesting that the increased VLP spike yield was not a result of
improved S protein expression, but was rather driven by more efficient VLP formation from
influenza pseudotyped S-HA and M1 proteins. Indeed, the % of S protein incorporated into
pseudotyped VLP was ~1.9%, representing a ~fivefold improvement compared to SEM
VLP (Figure 2F).
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Figure 2. Pseudotyping improves SARS-CoV-2 VLP spike yield and antigen density. (A) Schematic
of the recombinant baculovirus vector used to produce pseudotyped SHAM1 VLPs in Sf9 cells.
The SARS-CoV-2 spike ectodomain was fused to the influenza H1N1 HA transmembrane (TM)
and cytoplasmic tail (CT) domains and co-expressed with influenza M1 protein. (B) Transmission
electron microscopy (TEM) images showing anti-S immunogold-labeled SHAM1 VLPs with a range
(~100–200 nm) of diameters. (C) Western blot analysis of spike (top) and M1 (bottom) proteins in
VLPs. Quantification of (D) VLP spike yield and (E) cellular S protein expression level based on
Western blot analysis. (F) % S protein incorporated in VLPs. (G) VLP antigen density reported as the
number of S monomers per VLP. For (D–G), data represent mean ± SE (n = 3, unpaired Student’s
t test, ** p < 0.01).

Due to the higher % S protein incorporated into SHAM1 VLPs compared to native
SARS-CoV-2 VLPs (Figures 1F and 2F), we hypothesized that this improved S protein
incorporation would result in VLPs with greater spike antigen density (i.e., the number of
S monomers per VLP). Using the VLP spike yield (Figure 2D) and the total number of VLPs
obtained using nanoparticle tracking analysis (see Methods), the spike antigen density of
SEM VLP was determined to be ~22 S monomers/VLP (Figure 2G). In contrast, SHAM1
VLP spike antigen density was ~96 S monomers/VLP; thus, incorporating S-HA and M1
proteins into VLPs increased the antigen density by >fourfold. This improvement resulted
in pseudotyped VLPs with a spike antigen density similar to that of native SARS-CoV-2
virus (~72–144 S monomers/virion [37,46–48]). There are several potential factors that
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may explain the greater antigen density of influenza pseudotyped VLPs compared to the
native SARS-CoV-2 VLPs. Influenza M1 is known to be a major driving force in influenza
virus budding due to its high degree of oligomerization and its strong association with the
cytoplasmic tail of influenza HA at the plasma membrane [49]. In contrast to the E and
M proteins, M1 is not known to alter the secretory pathway and retain other proteins. In
addition, foreign transmembrane domains inserted into influenza HA have been previously
shown to affect its folding into trimers and transport to the plasma membrane [50]. Future
work is needed to elucidate the structural differences between the native spike and S-HA
fusion proteins that might affect the conformation and in turn immunogenicity.

Despite the successful production of several pseudotyped SARS-CoV-2 VLPs using
mammalian [44] and insect [33,45] expression systems, the benefit of pseudotyping in
terms of vaccine efficacy is unclear. One design using HA TM/CT and M1 sequences
derived from an H5N1 influenza virus resulted in SHAM1 VLPs, eliciting an inferior
antibody response in mice compared to the corresponding SHA VLPs based on S-HA
alone [45]. This is surprising given that M1 is known to promote influenza VLP formation
in Sf9 cells [51,52], and suggests that other factors such as differences in VLP morphology
or S-HA antigen density with or without M1 may explain this result. Moreover, using
codon-optimized S ectodomain in these same two constructs showed the opposite effect
where SHAM1 VLPs resulted in superior immunogenicity compared to SHA VLPs [45].
Further, while none of these four VLPs protected mice against lethal SARS-CoV-2 viral
challenge [45], another study [44] using the same SHAM1 VLP design and codon-optimized
S ectodomain did. These discrepancies observed in the immune responses elicited by
pseudotyped SARS-CoV-2 VLPs highlight the need to evaluate parameters for the VLP
quality, such as VLP spike yield and VLP spike antigen density described in this study. As
shown in Figure 2G, different VLP designs can lead to VLPs with significantly different
antigen densities, which have been correlated with antibody titer and survival against
viral challenge [53,54]. In addition, the relative VLP purity may also play a role as each
expression system can introduce different contaminants into the VLP sample. In the present
work as well as previous studies, the baculovirus expression vector system in Sf9 cells
results in the production of baculovirus vectors as well as VLPs [25]. Due to their similarities
in size and density, separation of baculovirus from VLP remains challenging [55], and a
well-established metric to define VLP purity is presently lacking. Therefore, including
quantitative parameters in VLP characterization will help better benchmark the vaccine
efficacy of different VLPs from different studies.

2.3. Pseudotyped Alpha, Beta, and Delta VLPs Show Higher Spike Yield Than Omicron

VLP designs in insect cells thus far have only incorporated the S protein from the
ancestral SARS-CoV-2 strain, and VLPs based on the major circulating variants have yet
to be explored using the baculovirus expression vector system in Sf9 cells. Given the
rapid emergence of new SARS-CoV-2 variants, we next sought to produce pseudotyped
VLPs for several key variants reported to date, including alpha (B.1.1.7), beta (B.1.351),
delta (B.1.617.2), and omicron (B.1.1.529). These variants contain mutations in the receptor
binding domain (RBD) of the S protein, ranging from as few as 1 mutation in alpha to
as many as 15 mutations in the case of omicron [5]. To determine if these mutations still
allow for the formation of pseudotyped VLPs in Sf9 cells, the protein sequences of the
variant S RBDs were cloned in place of the Wuhan-Hu-1 (denoted as “WT”) S protein
RBD using the SHAM1 baculovirus vector as backbone (Figure 3A). Following infection
with respective baculovirus vectors, particles were harvested and prepared for TEM and
Western blot analysis as described above (Figures 1B and 2B), with one exception: anti-S2
antibody was used to ensure the same binding affinity for variant S protein detection
and quantification. As shown in Figures 3B,C and S2, TEM, immunogold labeling, and
Western blot analysis revealed that all four variant SHAM1 VLPs exhibited a spherical
morphology with a diameter ranging ~100–200 nm, showed binding with multiple anti-S2
immunogold particles, and incorporated expected proteins with the correct molecular
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weight (S-HA, 174 kDa and M1, 25 kDa), respectively, similar to WT SHAM1 VLPs as
observed in Figure 2B,C. Therefore, the pseudotyping strategy allows for the formation of
alpha, beta, delta, and omicron VLPs in Sf9 cells.
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Figure 3. Pseudotyped alpha, beta, and delta VLPs show higher VLP spike yield than omicron.
(A) Schematic of baculovirus vectors incorporating RBD mutations of respective variants. (B) Trans-
mission electron microscopy (TEM) images showing anti-S2 immunogold-labeled VLPs for each
variant. (C) Western blot analyses of spike (top) and M1 (bottom) proteins in VLPs. Quantification of
(D) VLP spike yield and (E) cellular S protein expression level based on Western blot analyses. (F) %
S protein incorporated in VLPs. For (D–F), data represent mean ± SE (n = 3, unpaired Student’s t test,
* p < 0.05, ** p < 0.01, *** p < 0.001).

Although all four variants successfully formed pseudotyped VLPs, the S protein band
for omicron was much weaker compared to the other three variants (Figure 3C). The
Western blot quantification using anti-S2 antibody (Figure S3A) showed that the omicron
VLP spike yield (~0.07 mg/L) was ~sixfold lower than alpha, beta, and delta (~0.4 mg/L,
Figure 3D). Interestingly, the omicron S protein cellular expression level (~8 mg/L) was
~2.5-fold lower than the other three variants (~20 mg/L, Figures 3E and S3B), suggesting
that this reduced cellular expression was partially offsetting the benefit of pseudotyping in
enhancing VLP formation. Indeed, the % of S protein incorporated into omicron VLP was
~0.9% (Figure 3F), which was not as high as the other variants but still >twofold higher
than the native SARS-CoV-2 VLPs (Figure 1F).

As the omicron S RBD has 15 mutations compared to WT (Figure 3A), it is unclear
which mutations or specific combinations thereof are responsible for the lower S protein
expression level. One other study using Vero-E6 cells reported reduced omicron S protein
expression compared to WT [56], though the specific mutation (N679K) responsible for the
observed lower yield resides outside the RBD, and was not included in our VLP design.
One important implication of reduced omicron S protein expression during infection or
potentially mRNA vaccination may lead to a less productive antibody response against the
S protein, which may in turn lead to more breakthrough infections [56]. Nevertheless, our
data demonstrated that the baculovirus expression vector system in Sf9 cells is useful in
evaluating and characterizing S protein expression and SARS-CoV-2 VLP formation. The
resulting pseudotyped WT and variant VLPs further represent an attractive alternative to
live viruses for the study of S protein binding and neutralization properties.
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2.4. Pseudotyped VLPs Are Functional and Bind ACE2 with Varying Affinity

SARS-CoV-2 viral infection is initiated by the binding of S protein to its target receptor,
angiotensin-converting enzyme 2 (ACE2) [57]. ELISA has proven a useful method to rapidly
assess the relative binding affinities between WT and several variant S protein RBDs to
ACE2 [58,59]. However, this assessment using VLPs, which would allow for binding of S
protein to ACE2 in a more physiologically relevant condition, has not been explored yet. To
this end, we next sought to evaluate the relative binding affinities of pseudotyped WT, alpha,
beta, delta, and omicron VLPs to ACE2 using conventional sandwich ELISA, where VLPs
are titrated on ACE2-coated plates and quantified with anti-S2 followed by anti-rabbit IgG-
HRP antibodies (Figure 4A, left panel). Since the higher binding affinity of the delta RBD
with ACE2 compared to WT RBD is well established [58,59], these two pseudotyped VLPs
were tested first. As shown in Figure 4B, compared to the negative control influenza H1M1
VLPs, both WT and delta VLPs showed a dose-dependent response, indicating that the S
protein in both VLPs is functional and can bind ACE2. However, there was no difference
observed in the EC50 (half maximal effective concentration) between WT and delta VLPs,
in contrast to previous studies using soluble RBDs [58,59]. A plausible explanation for this
discrepancy is that, in the conventional sandwich ELISA, the interaction between ACE2 and
S protein on VLPs is influenced by avidity (Figure 4A, left panel). Avidity effects have been
shown to enhance the binding affinity >10–1000-fold [60,61], and may mask binding affinity
differences depending on the experimental setup [62,63]. Notably, the delta VLPs showed
stronger binding than the WT VLPs, but this was evident only at lower concentrations of
VLPs (≤2.5 µg/mL S protein) (Figure 4B). This observation further supports avidity effects
on binding behavior in this conventional sandwich ELISA setup.
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To eliminate the influence of the avidity effect, we modified the ELISA as depicted
in the right panel of Figure 4A. In this modified format, ACE2-Fc protein is titrated in
wells containing the same amount of captured VLPs, which allows for the assessment
of the monovalent interaction between S protein on VLPs and ACE2-Fc. A critical step
here is ensuring that the same amount of VLPs based on S protein amount are captured
in each well. To achieve this, 10 µg/mL of VLPs (S protein) was loaded, and the captured
VLPs were quantified using anti-S2 followed by anti-rabbit IgG-HRP antibodies. All wells
showed the same colorimetric signal (Figure S4), confirming that they contained the same
amount of S protein on captured VLPs.

Once the same amount of captured VLPs was confirmed, the modified ELISA was
performed by titrating ACE2-Fc and detecting with protein A-HRP (Figure 4A, right panel).
All five pseudotyped SARS-CoV-2 VLPs showed a dose-dependent response, indicating
that the S protein in all VLPs is functional and can bind ACE2-Fc (Figure 4C). Based on
the binding curves, EC50 values were determined for each of the S:ACE2-Fc interactions.
Compared to WT S:ACE2-Fc (EC50 0.7 µg/mL), the delta S:ACE2-Fc EC50 value was
~twofold lower (~0.3 µg/mL), indicating a stronger binding affinity between the delta VLP
S protein and ACE2-Fc (Figure 4D). Beta behaved similarly to delta. In contrast, the binding
of omicron to ACE2-Fc was significantly weaker than WT, with ~twofold greater EC50.
These data agree with previous studies using soluble RBDs [58,59], confirming the validity
of the modified ELISA format for measuring the relative binding affinity. Additionally,
our data revealed that the binding of alpha to ACE2-Fc was similar to beta. Interestingly,
this result suggests that the N501Y mutation in S protein, common to both alpha and beta,
drives the increase in binding affinity to ACE2 compared to WT. Despite also sharing the
N501Y mutation, omicron showed much weaker binding affinity than WT. A computational
modeling study suggested that nine other mutations in the omicron RBD would decrease its
binding affinity to ACE2 [64]. The weaker binding of omicron S protein to ACE2 implicates
other interactions such as omicron’s preference for cathepsin L instead of TMPRSS2 as the
driving force behind its enhanced infectivity and transmissibility [65].

2.5. Using Pseudotyped VLPs as Surrogates for Live Virus in a Neutralization Assay

In addition to understanding virus binding properties, another important aspect of
SARS-CoV-2 vaccine and therapeutic development is the screening of viral inhibitors and
antibodies, particularly for their virus-neutralizing properties. However, neutralization
assays remain challenging due to the BSL-3 requirement for experiments involving live
SARS-CoV-2 virus [66]. As a result, pseudoviruses [67–69] or VLPs [21,35,36,70] have been
used as virus surrogates in neutralization assays. In these studies, a reporter system (e.g.,
luciferase or GFP) is incorporated in the pseudovirus or VLP to evaluate if antibodies can
block their ability to enter the target cell (e.g., ACE2-expressing cells). In the present work,
we developed a simple, acellular neutralization assay based on ELISA (Figure 5A), allowing
us to measure antibody neutralization activity against VLPs without relying on a reporter
system. In the context of this assay, neutralization is defined as the ability of the neutralizing
antibody to block the binding of VLPs to ACE2 [71,72]. Briefly, 5 µg/mL of VLPs was
preincubated with varying concentrations of a neutralizing monoclonal antibody (mAb)
raised against WT S protein, and then loaded into ACE2-coated wells. After washing away
unbound VLPs, captured VLPs were detected with anti-S2 followed by anti-rabbit IgG-HRP
antibodies. As shown in Figure 5B, increasing concentration of neutralizing mAb prevented
more VLPs from being captured by ACE2, leading to a reduction in signal. To quantify
the percent of neutralization, the signal for a given neutralizing mAb concentration was
normalized against the signal for VLPs preincubated without neutralizing mAb. Percent
neutralization was then plotted as a function of mAb concentration (Figure 5C), and the
half maximal inhibitory concentration (IC50) was determined to compare the antibody
neutralization against both WT and variant VLPs (Figure 5D).
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Figure 5. Using pseudotpyed VLPs as SARS-CoV-2 virus surrogates to measure antibody neutraliza-
tion activity. (A) Schematic showing neutralization ELISA setup. VLPs were preincubated with a
neutralizing antibody to prevent capture by ACE2. (B) Signal reduction indicating neutralization
of indicated VLPs. (C) The percent neutralization was determined by comparing the signal from
VLPs preincubated with or without neutralizing antibody. (D) IC50 calculated from data in (C) using
nonlinear regression analysis. For (B,C), data represent mean ± SE (n = 3).

Overall, the neutralizing mAb blocked WT VLP binding to ACE2 most effectively,
reaching >87% neutralization (Figure 5C), with the lowest IC50 value (0.03 µg/mL) among
all VLPs tested (Figure 5D). This is expected, as the mAb tested in this study was raised
against the WT S protein. Comparatively, the neutralizing mAb blocked the alpha and
beta VLPs less effectively, with IC50 values ~2.7- and ~6.7-fold higher than that of the
WT VLP, respectively (Figure 5D). This result indicates that in addition to the N501Y
mutation, which is shared between alpha and beta variants, the E484K and/or K417N
mutations also affect the neutralization activity of this mAb. For delta and omicron VLPs,
<30% neutralization was observed at the highest concentration of neutralizing mAb tested
(Figure 5C), and the IC50 values could not be determined (Figure 5D). This result suggests
that the L452R and/or T478K mutations found in the delta variant nearly abolished the
neutralization activity of the mAb tested. These results are consistent with the data from
the manufacturer, which showed significantly less neutralization of delta and omicron
pseudoviruses compared to WT in a cell-based microneutralization assay. Therefore, the
ELISA-based acellular neutralization assay developed here can provide quantitative data
on the efficacy of neutralizing antibodies. It is important to note that this assay evaluates
the ability of neutralizing antibodies or inhibitors to block binding of VLPs to ACE2. Other
cellular-based assays are needed to further demonstrate neutralization through the point of
cellular fusion and entry. Nevertheless, combined with the advantages of its fast completion
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in less than a day and adaptability for high-throughput screening of antibodies and viral
inhibitors, this assay adds another effective approach to the neutralization assay toolkit.

In summary, pseudotyped VLPs produced in Sf9 insect cells are a promising dual-
purpose platform in the fight against COVID-19. Compared to the critically low VLP
spike yields of native SE, SM, and SEM VLPs produced in Sf9 insect cells, influenza
pseudotyped VLP spike yields were significantly improved, resulting in VLPs with antigen
density similar to that of the native SARS-CoV-2 virus. We successfully employed this
pseudotyping strategy to produce VLPs incorporating the alpha, beta, delta, and omicron
RBDs, the first example of variant VLPs produced in Sf9 insect cells. Despite the lower
omicron VLP spike yield, we were able to demonstrate the functionality of all pseudotyped
VLPs by quantifying their differential binding affinity to ACE2. Finally, we showed the
utility of pseudotyped VLPs as virus surrogates in evaluating neutralizing antibody activity
in a simple, acellular ELISA format. Taken together, pseudotyped VLPs produced in Sf9
cells represent a safe and effective tool that allows for the investigation of SARS-CoV-2 viral
binding properties and antibody neutralization activity to be performed at BSL-1 facilities.
This accessibility opens avenues for the wider research community to contribute to the
collective endeavor in combatting COVID-19.

3. Methods
3.1. Strains, Media, and Reagents

Sf9 insect cells (CRL-1711, ATCC, Manassas, VA, USA) were grown in Insect XPRESS
Media (Lonza, Walkersville, MD, USA) supplemented with 10 mg/L gentamycin at 27 ◦C
and 135 rpm agitation. DH10Bac cells (Bac-to-Bac Baculovirus Expression Systems, Life
Technologies, Foster City, CA, USA) were grown in Luria–Bertani (LB) medium contain-
ing 50 µg/mL kanamycin, 7 µg/mL gentamicin, and 10 µg/mL tetracycline. Unless
otherwise stated, all media and antibiotics were purchased from Thermo Fisher Scien-
tific (Waltham, MA, USA) and all other chemicals were purchased from Sigma-Aldrich
(St. Louis, MO, USA). All primers were purchased from Integrated DNA Technologies
(Coralville, IA, USA).

3.2. Recombinant Baculovirus Generation

The DNA sequences encoding the SARS-CoV-2 S, E, and M proteins were amplified
from gBlock fragments purchased from Integrated DNA Technologies. First, the S gene
was cloned into the BamHI/HindIII site in plasmid pFastBac Dual to create the intermediary
plasmid pFastBac Dual-S. E and M genes were cloned into the XhoI/XmaI site in separate
pFastBacDual-S plasmids to create plasmids pFastBacDual-SE and pFastBacDual-SM, re-
spectively. The expression cassette for M including the p10 promoter, M gene, and HSV
terminator was then PCR amplified from pFastBac Dual-SM and cloned into the AvrII site
of pFastBac Dual-SE to create pFastBac Dual-SEM.

Previously, influenza HA and M1 genes were cloned into the XbaI/HindIII and KpnI/XmaI
site in plasmid pFastBac Dual, respectively, to create plasmid pFastBac Dual-H1M1 [73].
This plasmid served as the backbone for all pseudotyped SARS-CoV-2 S/Influenza HA
fusion plasmids. The S/HA fusion fragment was created using overlap extension PCR.
First, the S ectodomain fragment (S-ECTO) and HA transmembrane and cytoplasmic tail
domain fragment (HA_TMCT) were amplified from pFastBac Dual-S and pFastBac Dual-
H1M1, respectively. S-ECTO and HA-TMCT fragments were then spliced and cloned into the
XbaI/HindIII site of pFastBac Dual-H1M1, replacing the full-length HA gene to create pFastBac
Dual-SHAM1.

Receptor binding domain (RBD) mutations for the SARS-CoV-2 alpha (N501Y), beta
(K417N, E484K, N501Y), and delta (L452R, T478K) variants were introduced into separate
pFastBac Dual-SHAM1 plasmids using Quikchange mutagenesis [74] to create pFastBac
Dual-SHAM1-Alpha, pFastBac Dual-SHAM1-Beta, and pFastBac Dual-SHAM1-Delta. The
sequence encoding the first 685 amino acids of the S ectodomain including the omicron
RBD sequence was amplified from a gBlock gene fragment and cloned into the XbaI/ApaI
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site in pFastBac Dual-SHAM1 plasmid to create pFastBac Dual-SHAM1-Omicron. The
templates and primers used for all PCR reactions are listed in Table S1. All DNA sequences
were confirmed using Sanger sequencing.

The recombinant baculovirus genome (i.e., bacmid) was created by transforming each
pFastBac Dual plasmid into DH10Bac via transposition. After confirming the recombina-
tion events using blue/white colony screening and PCR, the recombinant bacmids were
purified using a PureLink HiPure Plasmid Miniprep kit (Invitrogen, Carlsbad, CA, USA).
The purified bacmids were then transfected into Sf9 cells using Cellfectin II (Invitrogen)
according to manufacturer’s protocol to generate recombinant baculovirus P1 stocks, which
were amplified in Sf9 cells to obtain high-titer P2 baculovirus stocks for use in protein
expression and VLP production experiments.

3.3. Cellular Expression and Protein Quantification

Cellular expression of S, E, and M proteins as well as S/HA and M1 was confirmed
using Western blot analysis of cell lysates using anti-S (40591-T62, Sino Biological US Inc.,
Wayne, PA, USA), anti-M (NBP3-07058, Novus Biologicals, Centennial, CO, USA), anti-E
(NBP3-07060, Novus Biologicals), and anti-M1 (PA532253, Invitrogen). For variant S pro-
teins, anti-S2 (40590-T62, Sino Biological US Inc.) was used, as the S2 domain was conserved
across all variants. To quantify cellular yields of all S protein constructs, S protein standard
(40589-V08B1, Sino Biological US Inc.) was used. Following primary antibody staining,
alkaline phosphatase-conjugated anti-mouse or anti-rabbit IgG secondary antibody (Life
Technologies) was used. NBT-BCIP (Thermo Fisher Scientific) was used to develop Western
blots. Densitometric analysis of Western blots was performed using a Gel Doc EZ™ Imager
(Bio-Rad, Hercules, CA, USA) to generate standard curves for S, which were then used to
calculate the S cellular expression level.

3.4. Virus-like Particle (VLP) Production and Characterization

Influenza VLPs were produced from Sf9 cells infected at an MOI of 3 and harvested
72 hpi. Cell debris was removed from the supernatant by centrifugation at 300× g for
20 min followed by 10,000× g for 20 min. The cleared supernatant was ultracentrifuged at
150,000× g for 2 h, and the pellet containing VLPs was resuspended in PBS containing 40%
glycerol. All centrifugation steps were carried out at 4 ◦C.

The number of VLPs was quantified using a NanoSight NS300 particle tracking
system (Malvern Panalytical, Malvern, UK). Specifically, VLPs were diluted in PBS to
manufacturer’s recommended concentrations prior to injection. Videos of 60 s in length
were recorded for each sample, and the particle concentration was determined using the
nanoparticle tracking analysis (NTA) software provided with the NS300 system. The
amount of S in each VLP preparation was quantified by densitometric analysis of Western
blots as described in the section above. VLP spike yield (defined as the amount of S protein
in VLPs), was determined by densitometric analysis of Western blots as described above.
For each VLP construct, the particle concentration and VLP spike yield are represented
as the mean of three independent experiments. The spike antigen density (defined as the
number of S monomers per VLP) was then determined by using the equation below:

Spike Antigen Density =
(VLP Spike Yield)

(
1

MWSpike

)
(NA)

Particle concentration
(1)

The MWSpike is the molecular weight of the spike protein (180 kDa for native S protein,
174 kDa for S-HA fusion protein). NA is Avogadro’s number. All appropriate conversion
factors were used to calculate the antigen density in units of S monomers per VLP.

VLPs were characterized by immunogold labeling analysis using transmission electron
microscopy (TEM). Briefly, VLPs were absorbed on Ni grids (Electron Microscopy Sciences,
Hatfield, PA, USA) and incubated with 20 ng/µL anti-S antibody for 1 h, followed by
labeling with protein G—gold nanoparticle (15 nm)—conjugates (Electron Microscopy
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Sciences) at a concentration of 1011 gold nanoparticles/mL for 30 min. Grids were stained
with 2% phosphotungstic acid (PTA) and allowed to dry 1 h prior to TEM analysis on a
JEM-1400 Transmission Electron Microscope, 80 kV (JEOL, Peabody, MA, USA).

3.5. VLP Binding and Neutralization ELISA

VLP binding to ACE2 was analyzed using ELISA. 96-well MaxiSorp plates (BioLegend,
San Diego, CA, USA) were coated with 2 µg/mL of recombinant human ACE2 (carrier
free) (BioLegend) overnight at 4 ◦C. After washing 3× with ELISA wash buffer, wells
were blocked with a 1× ELISA diluent (5× stock, Thermo Fisher Scientific) for 2 h at
room temperature. VLPs containing 10 µg/mL S protein/well in 1× ELISA diluent were
captured for 2 h at room temperature. After washing 3×, recombinant protein ACE2-Fc
(BioLegend) was titrated from 0.004–10 µg/mL well for 2 h at room temperature. After
washing 3× to remove unbound ACE2-Fc, detection was performed using HRP protein A
(1:1000, BioLegend). After 5× washing, visualization was performed using TMB substrate
(BioLegend). Absorbance was read at 620 nm using a SpectraMax M5 plate reader. EC50
values were calculated with GraphPad Prism, fitting to a five-parameter logistic curve.

To confirm that an equivalent amount of VLPs were captured for each sample in the
above experiment, three VLP-captured wells for each sample were labeled with anti-S2
(1:1000, Sino Biological US Inc.), washed 3×, and detected with anti-rabbit IgG-HRP (1:2000,
PI31460, Thermo Fisher Scientific) (Figure S4). Five times washing, visualization with TMB,
and absorbance readings were performed as described above.

Neutralization of VLPs was investigated using a similar ELISA setup. First, VLPs
containing 5 µg/mL S were incubated with 0.0032–2 µg/mL SARS-CoV-2 (2019-nCoV)
Spike-Neutralizing Monoclonal Antibody (40591-MM48, Sino Biological US Inc.) overnight
at 4 ◦C. On the same day, plates were coated with 2 µg/mL ACE2/well as described above
and stored overnight at 4 ◦C. The next day, preincubated VLPs were then loaded into the
ACE2-coated wells for 2 h. After washing 3× to remove unbound (i.e., neutralized) VLPs,
captured VLPs were labeled with anti-S2, detected with anti-rabbit IgG-HRP (1:2000), and
visualized with TMB as described above. Percent neutralization of VLPs was calculated as
the difference in A620 signal for VLPs preincubated with and without neutralizing antibody
divided by the A620 signal for VLPs preincubated without neutralizing antibody. Following
nonlinear fitting, IC50 values were calculated with GraphPad Prism.

3.6. Statistical Analysis

Statistical analysis was performed using unpaired Student’s t test. All data are repre-
sented as the mean of three independent experiments and error bars represent the standard
error of mean (SE). * p < 0.05, ** p < 0.01, *** p < 0.001; not significant p > 0.05.
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