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Abstract: Acute hepatitis (AH) is a common liver disease with an increasing number of patients
each year, requiring the development of new treatments. Hence, our work aimed to evaluate the
therapeutic effect of Oryza sativa L. indica (purple rice) seed coat on concanavalin A (ConA)-induced
AH and further reveal its potential mechanisms. Purple rice seed coat extract (PRE) was extracted with
hydrochloric acid ethanol and analyzed through a widely targeted components method. We evaluated
the effects of PRE on AH through histopathological examination, liver function, gut microbiota
composition, and the intestinal barrier. The potential targets of PRE on AH were predicted by
bioinformatics. Western blotting, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick
end labeling assay (TUNEL) staining, and corresponding kits were used to investigate PRE effects on
predicting targets and associated signaling pathways in AH mice. In AH model mice, PRE treatment
increased transformed mouse 3T3 cell double minute 2 (MDM2) expression to inhibit apoptosis; it
also markedly downregulated protein kinase C alpha (PKCα), prostaglandin-endoperoxide synthase
1 (PTGS1), and mitogen-activated protein kinase 1 (MAPK1) activity to alleviate inflammation.
Thus, PRE treatment also recovered the intestinal barrier, decreased the lipopolysaccharide (LPS)
levels of plasma and the liver, enhanced liver function, and improved the composition of intestinal
microbiota. In general, PRE targeting MDM2, PKCα, MAPK1, and PTGS1 ameliorated ConA-induced
AH by attenuating inflammation and apoptosis, restoring the intestinal barrier, enhancing the liver
function, and improving the gut microbiota, which revealed that the purple rice seed coat might hold
possibilities as a therapeutic option for AH.
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1. Introduction

AH is a typical life-threatening liver disease, causing liver dysfunction that can
progress to acute liver failure (ALF) [1], which seriously endangers people’s health in
the world [2,3]. It is caused by various reasons, usually viruses or drugs, and has a high
mortality rate [4,5]. ALF can induce local and systemic syndromes due to the immune
response and hepatic cell death, which are referred to as the most typical reasons for
mortality [6]. The liver, as the main metabolic organ, can decompose and clean toxins
to reduce the toxin damage to the body [7]. Despite its physiological protecting process,
the liver is also susceptible to impairments from various toxins or compound metabolites.
AH-exacerbated progression may lead to the occurrence of acute liver failure [8]. So, the
prevention and treatment of acute hepatitis have always been a research focus [9]. The
ConA-induced acute hepatitis mouse model is a widely accepted animal model that can
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simulate acute hepatitis and liver injuries and is remembered as an appropriate model of
viral hepatitis, autoimmune hepatitis, and related acute liver failure [10]. ConA-induced
acute hepatitis results in the production of various hepatotoxic cytokines, the death of hepa-
tocytes, oxidative stress, and inflammatory damage [11]. Liver inflammatory cytokines take
part in the pathogenesis of hepatitis; tumor necrosis factor alpha (TNF-α) is one important
factor that triggers hepatocyte apoptosis [12].

Oryza sativa L. indica is a type of grass rice and is classified as indica rice, which is
close to wild rice and related to japonica rice. It is usually known as purple rice because
of its brownish-purple seed coat [13]. Previous studies have revealed that purple rice has
various physiological functions such as improving iron deficiency anemia, scavenging
free radicals, delaying aging, anti-stress responses, and immune regulation [14], and the
active ingredients of purple rice are mainly composed of flavonoids, alkaloids, phenols,
etc. [15]. The antioxidant capacity of purple rice is remarkably stronger than that of
white rice because the flavonoid contents are substantial in purple rice. Moreover, purple
rice can modulate the gut microbiota composition to improve colitis [16]. The effect of
purple rice on AH and its corresponding mechanism remains unclear as yet. The main
purpose of this research was to investigate the role of PRE on ConA-induced AH and
its underlying mechanisms. In this study, we extracted the seed coat of purple rice with
hydrochloric acid ethanol and analyzed PRE using a widely targeted components approach.
Through a bioinformatics analysis and experimental validation, we found that PRE could
protect mice against ConA-induced AH. We also demonstrated regulatory mechanisms
where the PRE treatment ameliorated ConA-induced AH by regulating MDM2/p53 and
PKCα/MAPK1 pathways, attenuating inflammation and apoptosis, restoring the intestinal
barrier, enhancing the liver function, and improving the gut microbiota in vivo.

2. Results
2.1. Extraction and Identification of Seed Coat Components of Oryza sativa L. Indica

To identify the PRE chemical compositions, PRE was performed using a widely
targeted components analysis (Figure 1A). A total of 1525 components were identified using
the Metware database, of which flavonoids accounted for 21.19%, phenolic acids accounted
for 15.93%, alkaloids accounted for 9.82%, amino acids and their derivatives accounted for
12.06%, lipids accounted for 10.83%, organic acids accounted for 6.74%, tannins accounted
for 6.27%, lignans and coumarin accounted for 3.72%, nucleotides and their derivatives
accounted for 3.56%, quinones accounted for 1.06%, benzene and its substituted derivatives
accounted for 0.48%, terpenoids accounted for 0.27% and others accounted for 8.07%. The
total ion current diagrams of PRE samples in positive (Figure 1B) and negative (Figure 1C)
ionization modes are shown.

2.2. PRE Improved Pathological Liver Injury and Liver Function in AH Mice

The livers of the control (CTRL) group were reddish-brown, bright in color, and with
soft texture, and the livers of the AH Model group were dark yellow and had obvious
lesions, but the livers of the PRE high dose (PREH), PRE low dose (PREL), and silymarin
(SILY) groups were significantly improved (Figure 2A). HE staining of the livers showed
that PRE treatment alleviated the liver’s pathological injury in AH mice, which was identical
to the SILY treatment (Figure 2B). The liver injury score of the Model group was higher
than that of the CTRL group, while the liver injury scores of the PREH, PREL, and SILY
groups were lower than that of the Model group (Figure 2C). In the Model group, the levels
of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the plasma
were increased, and their levels were lower in the PREH, PREL, and SILY groups than in
the Model group (Figure 2D,E). The reactive oxygen species (ROS) level of livers in the
Model group was higher than the CTRL group, but ROS levels of PREH, PREL, and SILY
were significantly decreased (Figure 2F). The results indicated that PRE reduced the levels
of AST, ALT, and ROS and improved liver function in AH mice.
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Figure 1. Various components were identified in PRE by widely targeted components analysis. (A) 
PRE components were identified with widely targeted components analysis. (B) The total ion cur-
rent diagram of PRE samples in positive ionization mode. (C) The total ion current diagram of PRE 
samples in negative ionization mode. 
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PRE components were identified with widely targeted components analysis. (B) The total ion current
diagram of PRE samples in positive ionization mode. (C) The total ion current diagram of PRE
samples in negative ionization mode.

2.3. PRE May Ameliorate AH by Regulating Target Genes as Predicted by Bioinformatics

In GSE45413, 468 differentially expressed genes (DEGs) of AH were obtained, includ-
ing 262 downregulated and 206 upregulated genes (Figure 3A). There is a significant differ-
ence in DEGs between the normal control group and the AH group of GSE45413 (Figure 3B).
The top nine terms of DEG ontology (GO) annotation are shown in Figure 3C. We picked
out 38 main compounds of PRE in two databases (Table S1). Afterward, 173 potential
targets and the related 38 compounds were obtained in the Swiss Target database (Table S2),
and 656 AH-associated genes were retrieved in DisGeNET (Table S3). A total of 70 hub
genes were filtrated among AH-associated genes, potential Oryza sativa L. indica target
genes, and DEGs of GSE45413 (Figure 3D). Next, the exploration and enrichment of over-
lapping genes from three domains, including molecular function, cellular components, and
biological processes, were performed by GO analysis annotation and obtained the top 10 of



Int. J. Mol. Sci. 2023, 24, 14503 4 of 15

them (Figure 3E). The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were revealed in Figure 3F, including hepatitis B, diabetic cardiomyopathy, and so on. Hub
genes’ PPI was ascertained by STRING, and Cytoscape was used to construct the network,
which consisted of 66 nodes and 391 edges (Figure 3G). In addition, an Oryza sativa L. indica
compound and target network of PRE against AH was constructed (Figure 3H). Taken
together with the results of the above analysis and the literature reports, MDM2, PTGS1,
PKCα, and MAPK1 were chosen as prospective targets.
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Figure 2. PRE improved liver pathological injury and liver function in AH mice. (A) Effect of PRE
treatment on liver morphology. (B) Livers’ hematoxylin and eosin (HE) staining: the white frames
were extended and shown above, and green arrows point to the lesions. Scaleline was 100 µm.
(C) The injury score of livers. (D) Levels of ALT in plasma. (E) Levels of AST in plasma. (F) Levels of
ROS in hepatic tissues. Data are presented as mean ± standard error of mean (SEM), n = 6. ** p < 0.01,
*** p < 0.001.

2.4. PRE Attenuated Liver Apoptosis in AH Mice through Upregulating MDM2

Previous research studies reported that p53 regulated apoptosis via BCL2-Associated X
(BAX) [17–19] and B cell leukemia/lymphoma 2 (BCL2) [20–22]. To confirm the effect of PRE
on apoptosis by the MDM2/p53 pathway in AH mice, the levels of associated factors were
investigated in the liver. In the AH model, MDM2 and BCL2 levels were downregulated,
and PREH and PREL treatment upregulated them (Figure 4C,F). The expression of p53,
BAX, and CASPASE3 (CAS3) -cleaved were all increased in AH mice; comparatively, PREH
and PREL treatment sharply reduced them (Figure 4D,E,G). Some research also found that
CASPASE3-cleaved induced GSDMD-N boosting to stimulate apoptosis [23]. Afterward,
the levels of gasdermin D (GSDMD) and GSDMD-N were enhanced in the AH model, and
PREH and PREL treatment decreased GSDMD and GSDMD-N (Figure 4H,I). At the same
time, we found fewer TUNEL-positive cells in the PREH and PREL groups compared with
the MODEL group (Figure 4J,K). Taken together, PRE treatment restrained apoptosis in AH
mice livers by upregulating MDM2.
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Figure 3. Exploration and identification of potential targets in AH regulated by Oryza sativa L.
indica. (A) Volcano plots of DEGs between AH and normal livers in GSE45413, red plots present
upregulated genes, blue plots present downregulated genes, and gray plots present stable genes
(p < 0.05). (B) DEGs’ heatmap between AH and normal liver in GSE45413. (C) GO analysis. The
top 9 enriched DEG terms. (D) Venn diagram. AH-related genes, DEGs of GSE45413, and potential
target genes of Oryza sativa L. indica. (E) The molecular function, cellular components, and biological
process-enriched terms were analyzed by hub gene GO analysis. (F) KEGG pathway prediction with
hub genes showed the top 20 relevant pathways. (G) PPI network. The red and purple plots present
hub genes, and the edges present their communication. (H) Pharmacological target and compound
network of Oryza sativa L. indica against AH. The purple plots present the targets, the green plots
present the compounds, and the edges present their interplay.
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Figure 4. PRE inhibited apoptosis in AH model by upregulating MDM2. (A) Illustration of PRE
suppressing AH apoptosis by MDM2. (B–I) The protein expressions of MDM2, P53, BCL2, BAX,
CASP3-cleaved, GSDMD, and GSDMD-N in mice livers. (J,K) Representative TUNEL staining images
were quantified by TUNEL-positive cells in indicated groups. Scale bars were 100 µm. Data are
presented as mean ± SEM, n = 6. * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.5. PRE Alleviated Inflammation in AH Mice through Downregulating PTGS1 and PKCα

In order to study the effects of PRE on inflammation via PTGS1 and PKCα, the levels
of pathway factors were detected in the liver tissues. In the AH mouse model, PTGS1
and TNF-α expressions were significantly upregulated; administration of PREH and PREL
both remarkably downregulated them (Figure 5C,H). The phosphorylation levels of PKCα,
MAPK1 and jun proto-oncogene (JUN) were obviously increased in the AH Model; however,
the PREH and PREL treatment could remarkably decrease them all (Figure 5E–G). Similarly,
in the Model group, prostaglandin E2 (PGE2) and nitric oxide (NO) levels were raised,
but PREH and PREL treatment both reduced them (Figure 5D, I). Taken together, PRE
attenuated the inflammation in AH mice via attenuating the PTGS1/PGE2 and PKCα/JUN
signaling pathways.
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(A) Illustration of PRE disincentiving AH inflammation by downregulating PTGS1 and PKCα.
(B,C,E–H) Western blot analyses of PTGS1, PKCα phosphorylation, MAPK1 phosphorylation, JUN
phosphorylation, and TNF-α levels in livers. (D) Levels of PEG2 in hepatic tissues. (I) Levels of NO
in hepatic tissues. Data are presented as mean ± SEM, n = 6. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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2.6. PRE Improved the Intestinal Barrier and Downregulated LPS Levels in AH Mice

By analyzing the alcian blue (AB)-periodic acid Schiff (PAS) staining pattern of the
colon, we found that the mucin density was significantly reduced and the mucin ar-
rangement was destroyed in AH model mice, and then the PRE treatment restored them
(Figure 6A). In the AH Model, the levels of LPS in the plasma and liver tissues increased
significantly, but administration of PREH and PREL all decreased them significantly
(Figure 6B,C).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 16 
 

 

Model; however, the PREH and PREL treatment could remarkably decrease them all 
(Figure 5E–G). Similarly, in the Model group, prostaglandin E2 (PGE2) and nitric oxide 
(NO) levels were raised, but PREH and PREL treatment both reduced them (Figure 5D, 
I). Taken together, PRE attenuated the inflammation in AH mice via attenuating the 
PTGS1/PGE2 and PKCα/JUN signaling pathways. 

 
Figure 5. PRE alleviated inflammation in AH mice through downregulating PTGS1 and PKCα. (A) 
Illustration of PRE disincentiving AH inflammation by downregulating PTGS1 and PKCα. (B,C,E–
H) Western blot analyses of PTGS1, PKCα phosphorylation, MAPK1 phosphorylation, JUN phos-
phorylation, and TNF−α levels in livers. (D) Levels of PEG2 in hepatic tissues. (I) Levels of NO in 
hepatic tissues. Data are presented as mean ± SEM, n = 6. * p < 0.05, ** p < 0.01, and *** p < 0.001. 

2.6. PRE Improved the Intestinal Barrier and Downregulated LPS Levels in AH Mice 
By analyzing the alcian blue (AB)−periodic acid Schiff (PAS) staining pattern of the 

colon, we found that the mucin density was significantly reduced and the mucin ar-
rangement was destroyed in AH model mice, and then the PRE treatment restored them 
(Figure 6A). In the AH Model, the levels of LPS in the plasma and liver tissues increased 
significantly, but administration of PREH and PREL all decreased them significantly 
(Figure 6B, C).  

 
Figure 6. PRE improved intestinal barrier and downregulated LPS levels in AH mice. (A) AB-PBS
staining of mice colon. Scale bars were 100 µm. (B) LPS concentrations of plasma. (C) LPS concentra-
tions of hepatic tissue. Data are presented as mean ± SEM, n = 6. *** p < 0.001.

2.7. Effect of PRE on Gut Microbiota in AH Mice

We analyzed the microbial community 16s rDNA in mouse feces so as to explore the
additional mechanism of PRE action on AH model mice. As shown in the Venn diagram
(Figure 7A), there were 148 operational taxonomic units (OTUs) for all samples. In addition,
116, 56, 157, and 127 unique OTUs were identified in CTRL, MODEL, PREH, and PREL
groups in AH mice, respectively. The results showed that the Chao-1 index decreased in
the MODEL group, and PRE treatment restored these trends (Figure 7B). The top 10 kinds
of intestinal bacteria at the genus level are shown in Figure 7C. The results of the top 10
intestinal bacteria at phyla are shown in Figure 7D by evolution tree. In order to identify
the bacteria that play an important role in AH mice after PRE administration, the MetaStat
method was performed at genus levels (Figure 7E). As it turned out, Alloprevotella and
Akkermansia were significantly decreased after PREH treatment (Figure 7F,G). According to
the previous reports, Alloprevotella and Akkermansia were closely related to the intestinal
barrier and diseases. In general, PRE improved the composition of gut microbiota in
AH mice.
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3. Discussion

AH, induced by drugs, toxins, infections, or alcohol with a high incidence rate, is a
worldwide health problem [24,25]. Although there are lots of AH studies, it is difficult to
reduce mortality with existing treatments [26]. The aim of our study was to find natural
products from rice indicators that could alleviate AH as therapeutic agents. We extracted
and identified 1525 compounds from PRE, which were rich in active substances, such
as flavonoids, phenolic acids, and so on. According to previous reports, flavonoids of
plants have anti-inflammatory capacity and antioxidant properties [27,28]. Rice extract
significantly improved the physiological function of the liver by inhibiting cell apoptosis,
reducing inflammation, and improving gut microbiota in vivo [29,30]. Hence, it is necessary
to make a further study about the PRE’s roles on AH.

With the assistance of various bioinformatics methods, the DEGs of AH were identified
in GSE45413, which involved 262 downregulated and 206 upregulated mRNAs. A total
of 173 predictive molecular targets might respond to the Oryza sativa L. indica seed coat,
and 656 AH-associated genes were obtained. The molecular function, cellular signaling
pathways, and biological processes were performed by GO enrichment analysis methods
and KEGG analysis. In gene expression levels with GO and KEGG, inflammation and
apoptosis were mainly involved in the AH process. A network of hub gene PPI and a target
vs. compound network were constructed to further illustrate interaction modes. TNF-α,
as a notable inflammatory factor, helped to understand inflammatory reactions [31]. By
comprehensive analysis, we focused on MDM2, PTGS1, PKCα, and MAPK1 as potentially
critical actors linked to Oryza sativa L. indica in the development of AH. MDM2 could
bind to p53 and form a complex, then play a key role in the regulation of p53 stability
and inducing cell death, and also be involved in liver injury [32,33]. PTGS1 had both
cyclooxygenase and peroxidase activities and regulated oxidative stress and inflammation
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involved in drug-induced liver injury, non-alcoholic fatty liver disease, and other liver
diseases [34]. PKCα dependently activating MAPK pathways could induce TNF-α expres-
sion during liver injury, which was an important subject in managing acute inflammatory
diseases [35,36]. Our findings suggest that hepatocyte apoptosis, oxidative stress, and
inflammation of AH were attenuated by PRE treatment, so we further investigated the
potential mechanism in the AH mouse model in vivo.

Apoptosis is an active and procedural death process after cells are regulated by specific
genes, and it is also a normal physiological response of cells [37]. We demonstrated that
PRE inhibited the apoptosis in AH models. PRE could upregulate the expression of MDM2
and BCL2 and downregulate the expression of p53, GSDMD, and GSDMD-N in AH mice.
MDM2 is one of the important molecules that inhibit p53 activity, and their interactions
have important functions for cell survival [38]. Meanwhile, TUNEL-positive cells and
apoptotic-related proteins BAX and CASP3-cleaved were significantly decreased with PRE
treatment in AH mice. These results confirmed that PRE can reduce liver cell apoptosis via
the MDM2/p53 signaling pathway in AH mice.

In AH, a serious inflammatory response is also a significant physiologic and patho-
logic mechanism [39]. PTGS1 could regulate the expression of PGE2 and promote the
prostaglandins as an immune response in liver injury [40]. The results showed that PRE
could decrease AST and ALT of the plasma in AH mice and NO and PGE2 levels in the
AH mice hepatic tissues. Similarly, PRE treatment decreased injury scores and relieved the
pathomorphology in AH liver tissues. The regulation networks were that PRE treatment
decreased PTGS1 and TNF-α levels and also declined phosphorylation degrees of PKCα,
MAPK1, and JUN in AH models. Our outcomes showed that PRE relieved inflammation of
AH mice via PTGS1 and PKCα/MAPK1 pathways, and it also supported the elimination of
intracellular oxidative stress and the reduction in the generation of ROS [32]. In sum, PRE
can alleviate inflammation and improve the antioxidant capacity of the liver in AH mice.

According to previous reports, the LPS infiltrated the plasma via the intestinal barrier
in AH mice, and then the plasma LPS induced inflammatory responses and apoptosis [41].
Our data showed that PRE treatment decreased the LPS of the plasma and liver in the
AH mice. Moreover, the PRE treatment improved mucin density and the degree of mucin
alignment, then enhanced intestinal barrier function. In addition, changes in intestinal flora
were detected. Based on the reports, an increase in the Alloprevotella abundance in the colon
might aggravate inflammation [42,43]. Although Akkermansia was generally considered a
biomarker of healthy intestines, studies also found that Akkermansia was a gram-negative
bacteria that could destroy intestinal mucosal barriers and cause inflammation. The abun-
dance of Akkermansia was inversely correlated with the expression of NOD-like receptor
family pyrin domain containing 6 (NLRP6), an innate immune receptor that protects ani-
mals from intestinal injury [44,45]. We observed that gut microbiota abundance changed
significantly at the genus level, especially Alloprevotella and Akkermansia. Compared with
the CTRL group, the relative abundance of Alloprevotella [46] and Akkermansia [47] increased
in the MODEL group, and PREH treatment reduced Alloprevotella and Akkermansia. These
results suggested that PRE treatment restored the intestinal barrier and improved gut
microbiota in AH mice.

4. Materials and Methods
4.1. Acquisition and Analysis of AH Differentially Expressed Genes (DEGs)

The AH and normal liver tissue gene expression profiling by array were picked up
in GEO (http://www.ncbi.nlm.nih.gov/geo/, accessed on 5 November 2021) [48]. We
collected 5 ConA-AH cases and 5 controls from GSE45413 dataset. To single out the AH
DEGs, we applied R package dplyr and limma to analyze GSE45413 dataset. To analyze
the DEG gene GO, we used R package ggplot2 and clusterProfiler.

http://www.ncbi.nlm.nih.gov/geo/
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4.2. Potential Target Prediction of Oryza sativa L. Indica and AH

The main compounds of Oryza sativa L. indica were chosen in PubChem or CAS
SciFinder databases. We retrieved and screened the related targets of Oryza sativa L. indica
compounds from Swiss Target Prediction databases [49]. Then, the AH-associated genes
were screened from DisGeNET database [50]. We screened hub genes among the targets of
Oryza sativa L. indica, DEGs of GSE45413, and AH-associated genes with corresponding R
packages. KEGG was used to analyze the potential cellular signaling pathways associated
with hub genes, and GO was used to visualize the molecular functions, cellular components,
and biological processes of hub genes. KEGG and GO visualized analyses were operated
with R program. Protein-protein interaction (PPI) of hub genes was ascertained by STRING
database [51], and Cytoscape (3.8.0) was used to construct the interaction network. The
Oryza sativa L. indica compound and target network of purple rice seed coat against AH
was built with Cytoscape (3.8.0) as well.

4.3. Extraction of Oryza sativa L. Indica Seed Coat

Oryza sativa L. indica was purchased from Mojiang, Yunnan Province. It was extracted
based on the content with some modifications [52]. In brief, the PRE powder was filtered
with an 80-mesh sieve and extracted 3 times with 70% acidified ethanol containing 1% (v/v)
HCl by sonication-assisted method, for 0.5 h each time, in 1:15 ratio of material/solution,
following by 1500 g centrifugation for 10 min. Finally, the extract was obtained via evapo-
ration and vacuum lyophilized in the supernatant.

4.4. Widely Targeted Components Analysis of PRE

Extensively targeted component analysis is a novel technology that is distinct from
existing component detecting processes as it has the multifunction of non-targeted compo-
nents and the correctness of focused components. It acquires data by triple quadrupole
mass (QQQ) spectrometry in multi-reaction monitoring (MRM) mode, which can evaluate
many known components and many unidentified components with strong throughput,
sensibility, qualitative accuracy, repeatability, and complete database availability. PRE
components were identified based on related public databases and local self-built MWDB
databases (Metware Biotechnology Co., Ltd., Wuhan, China).

4.5. Animal Study

C57BL/6J male mice (7 weeks old) were acquired from Beijing SPF Animal Technology
Co., Ltd. (SPF, Beijing, China). All the animals were acclimated for 7 days before the
experiment, and the experimental diets and water were available ad libitum. Design and
treatment of animal experiments refer to our early research on the natural products. Mice
were randomized to the CTRL, MODEL, PREH, PREL, and SILY groups (6 mice/group).
CTRL received blank (purified water). PREH and PREL groups were 0.6 g/kg or 0.2 g/kg
in weight PRE gavage, individually (PREH and PREL were safe for mice). Meanwhile,
SILY group was injected with 0.01 g/kg (weight) silymarin (SILY) (5304299-1g, Aladdin,
Shanghai, China). A total of 14 d later, except for the CTRL, AH models in all the other
groups were induced via intravenous injection with 0.01 g/kg (weight) ConA (IC4870, So-
larbio, Beijing, China) [53]. After 12 h, the mice were sacrificed under isoflurane anesthesia,
and then the plasma, livers, colons, and feces were sampled. All studies were processed in
accordance with the Institutional Guidelines and Animal Ordinance of Kunming University
of Science and Technology Animal Ethical Committee (PZWH (Dian) K2023-0025).

4.6. Histological Analysis

The fixed livers were enclosed and evaporated in paraffin to prepare 5 µm paraffin
sections. Hematoxylin and eosin (HE) staining was performed after deparaffinization,
hydration, and so on. Pathological changes in the liver tissues were observed, and the
liver injury scores were estimated [54]. Meanwhile, the paraffin sections of colon tissues
were prepared. After dewaxing, hydration, and other steps, sections were flushed for



Int. J. Mol. Sci. 2023, 24, 14503 11 of 15

2 min after 15 min of alcian blue staining, twice again with distilled water after 30 min of
periodic acid Schiff staining, and rinsed with water for 5 min; the sheet was then dried and
sealed. The colon sections were observed by an optical microscope (Olympus, Shinjuku-ku,
Tokyo, Japan).

4.7. Detection of Cytokines

The contents or activities of NO (S0021, Beyotime, Shanghai, China), AST (C010-2-1,
Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China), and ALT (C009-2-1,
Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China) were evaluated via
kits. The levels of ROS (S0033S, Beyotime, Shanghai, China), PGE2 (YJ028719, Beyotime,
Shanghai, China), and LPS (YJ037221, Beyotime, Shanghai, China) in liver tissues were
detected by enzyme-linked immunosorbent assay (ELISA) kits. Data were obtained with a
spectrophotometer (Biotek, Shoreline, WA, USA).

4.8. TUNEL Staining

The mouse liver tissues were rapidly harvested and embedded in the optimal cutting
temperature compound (OCT) (SAKURA, Chuo-Ku, Tokyo, Japan) reagent and then frozen
and sliced with freezing microtome (Leica, Am Leitz-Park, Wetzlar, Germany). Then, the
10µm frozen sections of mouse liver were prepared for TdT-mediated dUTP nick end
labeling (TUNEL) staining. According to the manufacturer’s instructions, we used the
TUNEL Assay Kit (C710, Beyotime, Shanghai, China) to detect apoptosis in liver tissues [55].
Images were captured with a fluorescence microscope (Nikon, Minato-ku, Tokyo, Japan)
and analyzed by Image Pro Plus (6.0) (Rockville, MD, USA).

4.9. 16S rRNA Sequencing of the Gut Microbiota

The mouse fecal samples were collected from four groups (CTRL, MODEL, PREH, and
PREL). Bacterial DNA (deoxyribonucleic acid) was extracted from the samples at Novogene
Bioinformatics Technology Co. Ltd. (Tianjin, China). Diluted DNA was then used to
amplify the 16S rDNA V3-V4 region with barcoded primers. Subsequently, polymerase
chain reaction (PCR) products were sequenced and analyzed.

4.10. Western Blotting

The mice liver tissues were collected with the RIPA buffer (R0020, Solarbio, Bei-
jing, China). The proteins were detected by bicinchoninic acid (BCA) protein assay kit
(P0010, Beyotime, Shanghai, China). Equal protein amounts were loaded for protein
electrophoresis. The primary antibodies are listed as follows: MDM2 (1:2000, 66511-1-lg,
Proteintech, Wuhan, China), BCL2 (1:2000, 66799-1-lg, Proteintech, Wuhan, China), p53
(1:2000, ab175739, Abcam, Waltham, MA, USA), BAX (1:2000, 50599-2-Ig, Proteintech,
Wuhan, China), CASP3 (1:1000, 19677-1-AP, Proteintech, Wuhan, China), GSDMD (1:2000,
20770-1-AP, Proteintech, Wuhan, China), PTGS1 (1:2000, 13393-1-AP, Proteintech, Wuhan,
China), Phospho-PKCα (Thr638) (1:1500, 29123-1-AP, Proteintech, Wuhan, China), PKCα

(1:1500, 21991-1-AP, Proteintech, Wuhan, China), p-MAPK1 (1:2000, 28733-1-AP, Proteintech,
Wuhan, China), MAPK1 (1:2000, 11257-1-AP, Proteintech, Wuhan, China), p-JUN (1:2000,
28891-1-AP, Proteintech, Wuhan, China), JUN (1:2000, 66313-1-Ig, Proteintech, Wuhan,
China), TNF-α (1:2000, 26405-1-AP, Proteintech, Wuhan, China), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) (1:20,000, 60004-1-lg, Proteintech, Wuhan, China). The
IgG-horseradish peroxidase (HRP) secondary antibodies (1:10,000, PR30009, Proteintech,
Wuhan, China) were incubated. Protein Bands were shown by Novex™ ECL Chemilumi-
nescent Kit (WP20005, Thermo Fisher Scientific, Waltham, MA, USA).

4.11. Statistical Analysis

The data were analyzed using one-way analysis of variance (ANOVA), and the dif-
ferences between the groups were determined using Tukey’s post hoc test. A statistically
significant difference was considered as p < 0.05, and the data were represented as the
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mean ± SEM. Statistical analyses were conducted by GraphPad Prism v.8.0.1 (San Diego,
CA, USA).

5. Conclusions

In conclusion, our study confirmed that PRE, by targeting MDM2, PKCα, MAPK1,
and PTGS1, exhibited ameliorating effects on ConA-induced AH in mice by attenuating
inflammation and apoptosis, restoring the intestinal barrier, enhancing liver function, and
improving gut microbiota (Figure 8). Consequently, these findings may provide a potential
natural rice source for ameliorating AH for pharmaceutical applications.
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