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Abstract: Zinc (Zn) deficiency is a common limiting factor in agricultural soils, which leads to sig-
nificant reduction in both the yield and nutritional quality of agricultural produce. Exploring the
quantitative trait loci (QTL) for shoot and grain Zn accumulation would help to develop new barley
cultivars with greater Zn accumulation efficiency. In this study, two glasshouse experiments were
conducted by growing plants under adequate and low Zn supply. From the preliminary screen-
ing of ten barley cultivars, Sahara (0.05 mg/pot) and Yerong (0.06 mg/pot) showed the lowest
change in shoot Zn accumulation, while Franklin (0.16 mg/pot) had the highest change due to
changes in Zn supply for plant growth. Therefore, the double haploid (DH) population derived from
Yerong × Franklin was selected to identify QTL for shoot mineral accumulation and biomass produc-
tion. A major QTL hotspot was detected on chromosome 2H between 31.91 and 73.12 cM encoding
genes for regulating shoot mineral accumulations of Zn, Fe, Ca, K and P, and the biomass. Further
investigation demonstrated 16 potential candidate genes for mineral accumulation, in addition to a
single candidate gene for shoot biomass in the identified QTL region. This study provides a useful
resource for enhancing nutritional quality and yield potential in future barley breeding programs.

Keywords: double haploid; elements; Hordeum vulgare; quantitative trait loci

1. Introduction

Plants, animals and humans require at least 17 mineral elements for adequate nutri-
tion [1]. Plants take up most of these minerals from the soil, while humans and animals
primarily obtain these nutrients from plant sources [2]. Inadequate intake of essential
elements, such as iron (Fe), zinc (Zn), phosphorus (P), potassium (K), calcium (Ca), mag-
nesium (Mg), manganese (Mn), iodine (I), selenium (Se) and copper (Cu) in human diet
is the leading (>65%) cause of childhood deaths worldwide [3]. Of all these, Fe and Zn
deficiencies are the most prevalent, affecting over three billion people globally [4]. Human
Zn malnutrition is often attributed to the cultivation of staple crops (mostly cereals) on
marginal Zn soils [5]. Insufficient intake of Zn in humans leads to overall poor health,
anaemia, increased morbidity and high mortality rates [6]. In contrast, cadmium (Cd)
is a common contaminant in agricultural soils [7,8], which is toxic to both animals and
plants [9]. As Cd shares uptake pathways with Zn, and its concentration increases with
increased Zn concentration in grains of Zn biofortified wheat cultivars [10], it is crucial to
confirm if high Zn accumulating varieties contain unhealthy concentrations of Cd.

Barley (Hordeum vulgare L.) belongs to the Poaceae (grass) family, and is an important
cereal crop worldwide [11]. A large variation in Zn accumulation has been previously
reported among barley genotypes [12–14]. Zinc accumulation in plants is thought to be
regulated by a plethora of mechanisms involving root Zn uptake [15,16], root-to-shoot
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Zn transport [17], subcellular compartmentalisation of Zn [18], and remobilisation of
stored Zn from leaf to developing grain [19]. Several studies have attempted to identify
quantitative trait loci (QTL) for Zn accumulation in barley grains; using a biparental
mapping population (Clipper and Sahara 3771), some overlapping QTL for grain Zn
were identified on chromosomes 2H and 4H while QTL on chromosomes 1H, 3H and 5H
were inconsistent [20–22]. Another mapping approach using a genome-wide association
study (GWAS) has validated the involvement of genomic regions on the chromosomes
2H and 4H in grain Zn regulation [23–25]. Several additional QTL associated with Zn
accumulation were also detected on chromosomes 1H, 3H, 5H, 6H and 7H [23,24,26–28].
Metal tolerance protein (MTP5) and squamosa promoter binding-like protein (SPL) are the
potential candidate genes for increasing Zn accumulation in barley [24,26]. Tiong et al. [29]
also demonstrated six genes from the ZIP gene family that are associated with enhanced
uptake and root-to-shoot translocation of Zn in barley.

Comprehensive knowledge regarding macro- and micronutrient concentration is
important to understand their relationships and assess elemental profile of food crops.
However, only a few studies [12,28,30] have focused on the elemental concentrations in bar-
ley, and no studies used both adequate and deficient Zn growing conditions to investigate
QTL for Zn accumulation. This study used shoot Zn accumulation as a selection criterion
for grain Zn to screen barley genotypes, as shoot Zn has been shown to have a significant
correlation with grain Zn [14]. This study aimed to: (i) investigate the differences in the
accumulation of minerals (including Zn) and shoot biomass among different genotypes
under different Zn supply; (ii) identify QTL for the accumulation of minerals (including
Zn) and shoot biomass under different Zn supply; and (iii) determine relationships among
mineral accumulations and biomass.

2. Results
2.1. Zinc Accumulation in Barley Cultivars

Initially, the screening of ten barley cultivars was performed to determine the most
suitable parental genotypes for QTL identification. Shoot Zn accumulation varied between
the cultivars under both adequate and low Zn conditions, ranging from 0.42 to 0.48 mg/pot
at adequate conditions (Figure 1). Brindabella was the cultivar with the greatest shoot
Zn accumulation at adequate conditions, followed by cv. Zhepi-2 and Clipper, whereas
cv. CM72 had the lowest shoot Zn accumulation. The cultivars showed variation in Zn
accumulation when grown at different Zn supplies. Sahara (0.05 mg/pot) showed the
lowest difference in shoot Zn accumulation followed by cv. Yerong (0.06 mg/pot), whereas
the highest difference was observed in cv. Franklin (0.16 mg/pot). This indicates that cv.
Sahara and Yerong are probably more tolerant to Zn deficiency than cv. Franklin, which
showed a greater change in plant Zn accumulation due to Zn supply.
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Figure 1. Zinc (Zn) accumulation in shoots of barley cultivars at adequate (black bars) and low Zn
(white bars) supply. A mapping population of Yerong × Franklin (shown in red font) was further
used for QTL identification. Mean ± SE (n = 3).
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2.2. Shoot Mineral Accumulation and Biomass of Barley Double Haploid Lines

Mineral accumulation of all the studied elements in shoots and biomass production
of DH lines, including the parents, are summarised in Table 1 and presented in detail in
Supplementary Tables S1 and S2. Normal frequency distribution of mineral accumulation
in shoots and biomass was observed. As expected, shoot Zn accumulation was greater
under adequate Zn conditions than at low Zn conditions (Figure 2).
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supply in nutrient solution. Accumulation of minerals in shoots and shoot dry biomass is presented
per pot containing three individual plants. Arrows indicate the position of both parents for each trait
in the histogram.



Int. J. Mol. Sci. 2023, 24, 14333 4 of 12

Table 1. Shoot mineral accumulation and dry biomass (per pot) of the parental accessions (Franklin
× Yerong) and the DH population in low and adequate Zn conditions. There were three individual
plants per pot, and the number of pots for each genotype per treatment (i.e., biological replicate) was 3.

Trait Zinc Level in Growing Media
DH Parents (Mean) DH Lines

Franklin Yerong Range Mean

Biomass (g/pot) Adequate 8.00 8.02 5.80–8.99 7.25
Low 7.50 8.05 5.70–9.04 7.14

Phosphorus (g/pot) Adequate 0.06 0.07 0.05–0.08 0.06
Low 0.05 0.07 0.05–0.08 0.06

Potassium (g/pot) Adequate 0.79 0.76 0.52–0.94 0.70
Low 0.74 0.78 0.53–1.08 0.74

Calcium (g/pot) Adequate 0.09 0.09 0.06–0.13 0.09
Low 0.11 0.11 0.07–0.15 0.09

Manganese (mg/pot) Adequate 0.75 0.77 0.56–1.33 0.79
Low 0.71 0.67 0.37–0.93 0.65

Iron (mg/pot) Adequate 0.88 0.84 0.56–1.33 0.79
Low 1.05 0.91 0.61–1.31 0.84

Zinc (mg/pot) Adequate 0.46 0.46 0.29–0.73 0.47
Low 0.30 0.38 0.21–0.52 0.34

Cadmium (µg/pot) Adequate 0.30 0.30 0.17–0.55 0.31
Low 0.26 0.46 0.14–0.77 0.37

Consistent with the results of the preliminary experiment, cv. Yerong showed a
higher shoot Zn accumulation than cv. Franklin under −Zn conditions. Under low Zn
supply, shoot Zn accumulation in cv. Franklin measured almost half that of the plants
grown at adequate Zn conditions. Meanwhile, shoot Zn accumulation in cv. Yerong
plants when grown at low Zn supply were only 18.3% less than those at adequate Zn
conditions. Likewise, Franklin cultivar showed relatively lower shoot biomass under low
Zn (−6.6%) than under adequate Zn conditions, whereas cv. Yerong did not exhibit any
biomass reduction.

For the DH population, the average shoot Zn accumulation was found to be 38.9%
less under low Zn supply than the plants with adequate Zn. Similarly, the plants supplied
with low Zn also had 5.6% less biomass production than plants supplied with adequate Zn
(Figure 3).
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Figure 3. Effect of zinc nutrient supply on (a) Zn accumulation and (b) biomass production in
barley DH lines (Franklin × Yerong). The diamonds in the chart represent the mean of shoot Zn
accumulation (left) and biomass production (right), whereas the number shows the percentage
change in shoot Zn accumulation of plants due to the change in the level of Zn supply.
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2.3. Correlation between Traits

The correlations between biomass and accumulation of different elements were more
consistent across different Zn supplies. Importantly, shoot biomass showed a significant
positive relationship with all the element accumulations in shoots (Figure 4). Accumulations
of P, K and Ca showed strong positive correlations with each other under both adequate
and low Zn supplies (Figure 4). Shoot Mn accumulation had the highest positive correlation
(R2 = 0.75) with Zn accumulation, suggesting that the mechanisms for uptake and trans-
porters of these minerals might be common in barley [31,32]. Overall, Cd had the lowest
correlation with other studied elements.
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Figure 4. Correlations among mineral accumulations in shoots and dry shoot biomass identified in
Franklin × Yerong DH population at adequate and low Zn conditions. BIO: biomass production; (left):
plants grown under adequate Zn supply; (right): plants grown under low Zn supply. * Significant at
p < 0.05, ** significant at p < 0.01, *** significant at p < 0.001.

2.4. Identification of QTL

One major QTL each was identified for Zn, Fe, Ca, K and P accumulation and shoot
biomass on chromosome 2H between 31.91 and 73.12 cM of barley genome (Table 2;
Figure 5); however, this study did not find any QTL for Mn and Cd accumulation. The
QTL for shoot biomass and mineral accumulations including Zn, Ca, and P were detected
at both +Zn and −Zn conditions, while QTL for Fe and K were only detected at −Zn
conditions. The total phenotypic variance explained (PVE) by the QTL ranged from
9.9 to 12.1 for shoot Zn accumulation and 19.3–27.3 for biomass production across the
two different Zn levels. The PVEs by the QTL were estimated between 8.9 and 21.1 for
the rest of the mineral accumulations in shoots. All the QTL for Zn, Fe, Ca, K and P
accumulation were mapped on a hotspot of chromosome 2H between flanking markers of
bPb-8750 (31.91 cM) and Bmac0093 (73.12 cM) (Figure 5). A major QTL for shoot biomass
was also detected within the same locus on chromosome 2H between flanking markers of
bPb-4875 (44.04 cM) and Bmac0093 (73.12 cM). This result suggests that a similar mechanism
might be involved in the shoot accumulations of Zn, Fe, Ca, K and P and biomass in barley.
A QTL for shoot biomass was also detected on the chromosomal region of 2H. Overall,
the QTL for accumulation of the minerals and biomass production showed a greater LOD
value at low Zn than adequate Zn conditions, which suggests that the candidate genes
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regulating mineral accumulation and biomass production are more pronounced under low
Zn conditions than adequate Zn.

Table 2. QTL for mineral accumulation and shoot biomass detected in the Franklin × Yerong DH
population under low and adequate Zn conditions.

Trait Chr Position (cM) Closest Marker LOD R2 (%)

BmA 2H 73.12 Bmac0093 7.92 19.3
BmL 2H 44.04 bPb-4875 11.77 27.3
ZnA 2H 59.15 bPb-3572 3.79 9.9
ZnL 2H 72.67 Bmag0518 4.63 12.1
FeL 2H 31.91 bPb-8750 3.45 8.9
CaA 2H 73.12 Bmac0093 4.52 11.5
CaL 2H 44.24 bPb-9682 8.76 21.1
KL 2H 44.24 bPb-9682 7.75 18.9
PA 2H 71.58 bPb-3056 5.45 13.7
PL 2H 31.97 bPb-8750 4.48 11.4

The letter (L or A) in QTL name indicates substrate Zn concentrations: A = adequate, L = low, and Bm is
shoot biomass.
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Figure 5. Genetic map of the Franklin × Yerong DH population with identified QTL for shoot biomass
and mineral accumulations grown under adequate and low Zn conditions. Bars and letters represent
the QTL for the specific trait identified on chromosome 2H of barley. The QTL was named following
the nomenclature recommended by McCouch and Cgsnl [33], with initial letters representing the
symbol of element and Bm for shoot biomass, whereas the last letters A and L represent adequate
and low Zn conditions, respectively, at which QTL is reported.

3. Discussion

This study demonstrated strong effects of genotype and Zn supply on the mineral
accumulation (especially focusing on Zn) and shoot biomass in barley. Interestingly, the
differences in Zn accumulation and biomass yield between cv. Franklin (low Zn accumulat-
ing) and Yerong (high Zn accumulating) were detected only at low Zn conditions (Figure 2).
This suggests that the molecular mechanisms underlying Zn accumulation and homeostasis
may vary between the genotypes [34]. Although cv. Franklin and Yerong did not differ
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substantially in shoot mineral accumulation and biomass production under adequate Zn
conditions, large segregations of these traits were observed in their progenies (Table 2). The
frequency distributions of Zn accumulation and biomass yield showed transgression in
both directions, suggesting that both parents carried genes with alleles contributing to an
increased or decreased accumulation of the traits studied. A previous study also found a
similar distribution trend of shoot Zn accumulation in the DH lines of Sahara × Clipper [22],
indicating the complexity of molecular mechanism underlying shoot Zn accumulation
mechanism, as well as the involvement of strong genotype × environment interaction.
These results suggest that, despite the effectiveness of genotypes, the availability of Zn in
growth medium remains a limiting factor that may reduce Zn accumulation (up to 38.9%)
and shoot biomass (up to 5.6%) in barley (Figure 3).

One major QTL was identified for Zn accumulation on chromosome 2H between
31.91 and 73.12 cM. By comparing the closely linked markers [35], the QTL identified in
this study is in a different position to that previously reported which is located at 10–30 cM
on 2H [21,22]. The QTL Zn accumulation was also co-located with the QTL for elemental
accumulation of Fe, Ca, K and P. This may not be surprising, as maintaining ion homeostasis
requires a network of ion uptake, transportation, trafficking, and sequestration mechanisms,
and not all genes in this regulatory network will be ion-specific. This present study found
substantial colocalization of P QTL with cation QTL. P is a component of key molecules
of plants such as ATP, nucleic acids, and the form of P most readily accessed by plants,
inorganic P, is likely co-transported with positively charged ions [36]. Colocalization of a P
QTL with a cation QTL in our study might thus reflect co-transport of P and cations at the
transcriptional level. Few cation transporters annotated for A. thaliana were demonstrated
previously in the P QTL intervals, including high-affinity K+ transporter, ZIP metal ion
transporter family, and Ctr copper transporter family [37]. Additionally, this study also
identified co-location between QTL for mineral accumulations and biomass. This type of
colocalization has been previously demonstrated in rice grains [38]. Alternatively, there is
also a possibility that all these colocalizations of QTL are coincidental and/or simply due
to multiple linked genes. Therefore, we suggest that further investigations may help for
an in-depth understanding of the relationships between genetic factors for elemental and
yield-related traits in barley.

The release of plant genomes has enabled the identification of putative ionomic
genes [39,40], which has opened the way for their detailed characterisation, with some
of the genes already validated for their roles in ion cellular import/export and intracel-
lular trafficking [41,42]. Multiple genes have been previously reported for regulating ion
homeostasis in plants, which belong to the Zn and Fe-Regulated Transporter-Like Protein
(ZIP), Metal Tolerance Protein (MTP), Heavy Metal ATPase (HMA), Natural Resistance-
Associated Macrophage Protein (NRAMP), Vacuolar Iron Transporter (VIT), Yellow Stripe-
Like Protein (YSL), basic-loop-helix (bHLH) and ATP-binding cassette (ABC) transporter
gene families [34,43,44].

The present study detected 16 potential candidate genes within the identified QTL re-
gions influencing shoot elemental concentrations. These genes include four ZIP,
three BHLH, three ABC, three potassium transporters, two HMA and one cation calcium
exchanger gene (Supplementary Table S3). Previously, Reuscher et al. [45] and Detterbeck,
Nagel, Rensch, Weber, Borner, Persson, Schjoerring, Christov and Clemens [24] revealed
zinc transporter gene 8 (HORVU2Hr1G025400), a homolog of the A. thaliana ZIP1 gene
and rice OsZIP3 gene, in the specified region of chromosome 2 at 725,227,365 bp. This
gene is a member of ZIP family, which is known to enhance Zn uptake and translocation
of Zn between root and shoot. Additionally, two YSL and one MTP gene have been also
previously identified in barley, contributing to grain Zn accumulation [24]. Furthermore,
IDI7, a Fe-regulated ABC transporter, has been shown to be involved in Fe sequestration in
barley roots and leaves [46], and a gene annotated as a member of the BHLH transcription
factor family plays a critical role in Zn and Fe homeostasis in barley [26,47]. The HMA gene
family is also known to play significant roles in metal trafficking in plants. For example,
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functional validation of HMA genes revealed their involvement in transporting Zn and
Cd into the roots and shoots [48] and the mobilisation of Cu and Zn within the plastids
and aleurone cells in barley [49]. Lastly, potassium transporter genes have been previously
identified as participating in the uptake and translocation of K+ to leaves [50]. In the present
study, the potential candidate gene for regulating shoot biomass is flowering-promoting
factor 1 (FPF1) [51]. We suggest that the candidate genes identified in this study can be
targeted for future fine-mapping research in barley.

The Cd accumulation identified in the plant samples of this study did not exceed the
levels (100 µg/kg) considered toxic for human consumption [52,53]. More importantly,
only a weak correlation (R2 = 0.19) was identified between shoot Zn and Cd accumulation
in this study (Figure 4). These results suggest that selecting cultivars based on higher Zn is
not likely to increase Cd accumulation in plants, which contradicts the findings of Hussain,
Khan and Rengel [10] for wheat grains. There is also a possibility that this relationship
might be dependent on other variables, e.g., genotype [54] and soil conditions, such as the
pH [55] and organic matter content [56]. This study identified a strong positive correlation
(R2 = 0.75) between Zn and Mn, which is in agreement with a previous study where strong
correlations were also found between those elements in introgression lines of barley [45].
Strong correlations between accumulations of P, Mn, Ca and Fe were also observed. This
may be related to the stored forms of P after binding with cationic elements as phytates [57].
Kumar et al. [58] demonstrated that the flag leaves store P and distribute it to the grains
through vascular bundles [58]. Moreover, shoot biomass was found to have a significant
positive relationship with the accumulation of all the studied elements in shoots. This
observation suggests that the pathways underlying K, P, Ca, Zn, Mn and Fe accumulations
all contribute to increased shoot biomass.

4. Materials and Methods
4.1. Plant Material
4.1.1. Experiment 1

Ten barley varieties, Sahara, Clipper, Franklin, Brindabella, CM72, Yerong, TX9425,
Skiff, Unicorn, and Zhepi-2, were used to determine their Zn accumulation in shoots.
Among them, Sahara and Clipper were used as controls for Zn use efficient and inefficient
cultivars, respectively, according to the findings of previous studies [22,59].

4.1.2. Experiment 2

As Franklin and Yerong showed contrasting shoot Zn concentration and biomass in
Experiment 1 (Figure 1), a double haploid (DH) population consisting of 176 lines derived
from a cross between these two varieties, which are constructed by the anther culture
method [60], was used to map the QTL for the accumulations of Zn and other minerals
under different Zn supply [35]. All barley seeds used were obtained from the University of
Tasmania double haploid collection.

4.2. Substrate Material and Experimental Design

Four seeds of each genotype were sown in each pot filled with approximately
320 g sand and perlite mix (70:30) under glasshouse conditions, with mean day/night
temperatures of 25/15 ◦C and relative humidity of 65–75%. Three seedlings were kept after
germination. All the pots were placed on a large tray containing nutrient solution to grow
plants in semi-hydroponics conditions. Both experiments used a randomised complete
block design, where there were three large trays for each of the two Zn treatments: adequate
Zn (full strength Hoagland’s solution containing Zn; pH = 7) and low Zn (full-strength
Hoagland’s solution minus Zn; pH = 7). Each tray contained a set of all the genotypes,
three pots as biological replicates for each genotype × Zn treatment. To minimise bias,
placement of the pots for same genotypes was different in each tray. The measured Zn
concentrations in the nutrient solutions were 0.5 ppm for low Zn (−Zn) and 5 ppm for
adequate Zn conditions (+Zn). The nutrient solution was renewed weekly and aerated
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with a pump. There were three individual plants per pot and the number of pots for each
genotype per treatment (i.e., biological replicate) was three. The design and conditions
used in both the experiments of this study were the same. The above-ground parts (whole
shoots) of plants were harvested after six weeks (at stage 47 based on Zadok’s scale) and im-
mediately oven dried at 60 ◦C for 72 h. After drying, the biomass of samples was recorded,
then the shoots were ground using a coffee grinder and stored in plastic bags until analysis.
Mineral accumulation (Equation (1)) in barley shoots of plants was calculated as follows:

Mineral accumulation = shoot dry weight × shoot Zn concentration (1)

4.3. Sample Preparation for Elemental Analysis

Approximately 0.1 g of each shoot sample was digested by adding 2 mL of 50% (v/v)
nitric acid (HNO3; Fisher Scientific, Hampton, NH, USA), and the samples were then
heated at 120 ◦C for 3 h using an aluminium block heater (Dry ThermoUnit, Taitec Corp.,
Tokyo, Japan) followed by cooling down to room temperature for 30 min. The digested
samples were then diluted to a final volume of 50 mL by adding Milli-Q water. Each
sample had three analytical replicates. Finally, P, K, Ca, Mn, Fe, Zn and Cd concentrations
were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES;
Optima 8000, Perkin Elmer). A certified reference material (CRM; NIST 1547 peach leaves)
was included in each digestion batch for quality assurance and the recovery for each of the
minerals of interest was above 90% in the CRM.

4.4. QTL Mapping and Candidate Gene Search

The biomass and mineral accumulation of P, K, Ca, Mn, Fe, Zn and Cd in shoots were
used as traits/indicators to detect the associated QTL in barley. The genetic linkage map
assembled by Li and Zhou [61] was used in this study for identifying genetic regions closely
associated with traits. This linkage map consists of 28 microsatellites and 196 diversity
arrays technology (DArT) markers. QTL mapping was performed using the MapQTL 6.0
software [62], where interval mapping (IM) function was used and a logarithm of the odds
(LOD) threshold value of 3 to declare a significant QTL. The QTL were named following
the nomenclature recommended by McCouch and Cgsnl [33]. Graphical representations
of linkage groups and QTL were carried out using MapChart 2.2 [63]. In addition, the
annotation file for barley (Morex V3) was accessed from the Ensembl Plants database:
http://plants.ensembl.org/ (last accessed on 13 September 2023). Based on the classifica-
tion of gene functions, we searched for genes related to mineral accumulation and biomass
production located within the 1.5-LOD confidence intervals of the detected QTL that were
regarded as candidate genes, as described previously [64].

4.5. Statistical Analysis

The frequency distribution of the data was plotted as histograms and the normality
was estimated using a Shapiro–Wilk in R [65]. Spearman correlation coefficients between
the traits were calculated and constructed using the PerformanceAnalytics R package [66].
The confidence interval was set at p < 0.05.

5. Conclusions

This study identified a major QTL hotspot for Zn, Fe, Ca and K accumulation and
biomass yield in barley shoots. This QTL was stable under both low and adequate Zn
conditions, but more pronounced (i.e., greater LOD value) at low Zn supply. There was
a considerable decrease in shoot Zn accumulation and biomass when the amount of Zn
decreased from adequate to low in the nutrient solution. A positive correlation was
demonstrated between all traits studied here in barley shoots, including P, K, Ca, Mn, Fe
and Zn accumulation and biomass. The results of this study increase our understanding of
the genetic basis for regulating shoot mineral accumulation and biomass in barley.

http://plants.ensembl.org/
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