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Abstract: The mammalian cerebral cortex undergoes a strictly regulated developmental process. De-
tailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies
significantly enhance our understanding of brain development and related disorders. This review
introduces basic techniques and recent advancements in in vivo electroporation for investigating the
molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively
used to visualize and modify these processes, including the forced expression of pathological mutants
in human diseases; thus, this method can be used to establish animal disease models. The advent
of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic
editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools.
These tools include the iON expression switch for the precise control of timing and copy numbers
of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce
the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach,
as a novel genome-editing technique that has accelerated brain development exploration. These
advanced in vivo electroporation methods are expected to provide valuable insights into pathological
conditions associated with human brain disorders.

Keywords: in vivo electroporation; in utero electroporation; genome editing; IUE; iON; TEMPO;
iGONAD

1. Introduction

The mammalian cerebral cortex undergoes a tightly regulated developmental process.
At the early stage of development, most neural progenitor cells (neural stem cells) undergo
proliferative division to expand their population. At the onset of neurogenesis, they start
to undergo asymmetric division to produce a neuronally differentiating cell—a neuron or
an intermediate progenitor cell (IP). These neuronal progenies initiate basal migration to
position themselves within a specific cortical plate (CP) layer, where they adopt a mature
morphology to establish proper neuronal circuits. At a later stage, neural progenitor
cells gradually shift from neurogenesis to gliogenesis [1–3]. The regulatory mechanisms
involved in these dynamic processes of neural progenitor cells and their progenies, such as
proliferation, migration, differentiation, axon elongation, dendrite development, and the
formation of neural circuits, are the fundamental basis for normal brain function [4–6]. An
accumulating body of evidence demonstrates that pathogenic somatic mutations that occur
during development have a role in human cortical malformation during development [7].
Therefore, the detailed visualizations and imaging of these dynamic processes in situ,
coupled with functional studies of the related genes in vivo, significantly enhance our
understanding of brain development and the pathology of brain developmental disorders.
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In utero electroporation (IUE), a kind of in vivo gene delivery method has been
widely applied to such visualization and functional studies in developing and postnatal
brains [8–10]. The recent advent of advanced techniques such as spatiotemporal gene
regulation [11] and genome editing [12,13] have been applied to IUE and further expanded
our investigative toolbox. In addition to IUE, the iGONAD method, a newly developed
genome-editing approach by intragonadal electroporation, is an accelerated method to
explore brain development [14,15]. It has become possible to create genome-edited animals
without the need for the in vitro manipulation of fertilized eggs.

In this review, we present an overview of the numerous in vivo electroporation tech-
niques, especially recent advanced techniques that can be applied to investigate the molec-
ular mechanisms underlying cerebral disorders and diseases.

2. Basic Technique for IUE

In the basic IUE strategy (Figure 1), a pregnant mouse is anesthetized, and the plasmid
DNA vector solution is injected into the embryo’s lateral ventricle using a glass micro-
capillary through the uterine wall. Then, the forceps-type electrodes apply the electrical
pulses to derive DNAs into the inside of the cells aligned to the ventricular surface [8,9].
Post-electroporation, the uterine horns are reinserted for normal embryonic development.
The introduction of plasmid vectors usually targets the dorsolateral cerebral area, although
other cortical areas can also be targeted by adjusting the electrode angle [16,17].
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Figure 1. Basic steps for IUE to mouse embryos.

IUE exhibits a preference for the induction of exogenous genes into cells whose cell
bodies lie on the surface of the ventricles. These cells are neural progenitor cells and
daughter cells that are newly born at the time of electroporation. This property implies
that when the different plasmid vectors are mixed and introduced, they are introduced into
almost the same cells [8,9]. As such, the co-electroporation of an EGFP expression vector is
commonly used to label cells that have undergone electroporation.

2.1. Developmental Stage and Animals

IUE protocols have been optimized for each developmental stage, including the size
of the electrode and the applied voltage. For mouse embryos, IUE has been reported
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to be applicable from embryonic day (E) 12 to E17 [9] and from E11 to E15 [8]. IUE to
E9 and E10 mouse embryos can be successfully performed by introducing an improved
light source that enhances the visibility of embryos through the uterine wall [18]. While
electroporation parameters may vary across different research laboratories, we performed
under the condition of: voltage: E10–11, 50 V; E12–E14, 32–35 V, 50 msec ON, 450 msec
OFF, 4–5 pulses, with electrode size: E10–11, 1 mm; E12–E14, 3 mm [19,20]. IUE was also
used to introduce the plasmid vectors at various times (for example, two times at different
embryonic stages of the same embryo) [21]. After birth, postnatal brain analysis is also
feasible [9].

In addition to mice and rats, electroporation techniques can also be applied to the
embryonic brains of other animals, including in ovo applications to birds [22,23] and
reptiles [24,25], in pouch applications to dunnarts [26], in utero applications to guinea
pigs [27] and ferrets [28,29].

2.2. Selection of Promoters for Exogenous Gene Expression
2.2.1. Ubiquitous Promoters

IUE is frequently used to visualize the cells in the developing brain or induce gene
expression to study its function. Ubiquitous promoters, such as the CAG promoter, the hu-
man elongation Factor 1 α (EF1α) promoter, and the cytomegalovirus (CMV) promoter [9],
are commonly employed for these purposes. It is worth noting subtle differences, however,
as the CAG promoter shows a slightly higher level of functionality in neurons than in
neural progenitor cells when compared to EF1α [20]. Additionally, the CMV promoter is
silenced in mature neurons in postnatal brains [9].

2.2.2. Specific Promoters

Cell type-specific promoters are also used in IUE. For target neural progenitor cells,
the Nestin promoter or enhancer [30], the BLBP promoter [31,32], and the human glial
fibrillary acidic protein (GFAP) promoter have been used, while the mouse GFAP promoter
is often utilized for labeling astrocytes [33].

To start gene expression in the earliest neuronally differentiating cells in the embryonic
cerebral walls, researchers can use a Gadd45-gamma promoter [34]. The Tubulin alpha
1 promoter has been used to target early neuronally differentiating cells, including IPs [35].
The NeuroD promoter starts to work slightly later [36]. The Tbr1 promoter [37] starts in
more differentiated neurons than the NeuroD promoter [36].

In all cases, cell type-specific promoters have the problem of leaky expression [38],
whereby the promoter drives gene expression in unintended cell types. Therefore, methods
have been developed for more stringent control of expression in specific cell types and
timing, which will be described in the latter part of this review.

2.3. Pathological Mutant Analysis by IUE

Dynamic processes in neural progenitor cells that are crucial for brain development
are regulated by complex mechanisms. Disruptions can lead to disorders classified as
malformations of cortical development (MCD). In studying human MCDs, IUE experiments
have proven particularly compatible with research into diseases caused by dominant
negative and gain-of-function mutations. One such disorder classified under MCD is
periventricular nodular heterotopia (PNH). PNH, a familial disorder, has been linked to
mutations in the NEDD4L gene, and forced expression of mutant NEDD4L by IUE induces
increased proliferation of neural progenitor cells and impaired neuronal migration and
positioning, indicating the significant impact of NEDD4L mutation on neurodevelopmental
processes [39].

Some somatic mutations occurring during development also have a pathogenic effect
and can contribute to some epileptic malformations of cortical development and autism
spectrum disorder [7]. Thus, the misexpression of such mutant proteins via IUE can be
utilized to generate an animal model for brain diseases. Postzygotic somatic mutations that
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activate the PI3K-AKT-mTOR pathways are found in a wide range of brain diseases, includ-
ing focal malformations of cortical development (FMCDs), which account for the majority of
drug-resistant pediatric epilepsy cases. Introducing the AKT3E17K FMCD-associated mu-
tant into mouse brains by IUE resulted in electrographic seizures and impaired hemispheric
architecture, thereby providing an animal model for FMCDs [40].

Another example is related to de novo tumorigenesis. The exogenous expression of
the human truncated PPM1d, which is found in pediatric high-grade gliomas, by IUE is
sufficient to promote glioma formation in the mouse brain [41].

2.4. Loss-of-Function Studies to Investigate the Pathology of Brain Development Disorders

Loss-of-function studies by RNA interference (RNAi) using IUE have also been used to
elucidate the molecular mechanisms of certain brain pathologies. For example, knockdown
(KD) of disrupted in schizophrenia 1 (DISC1), a gene associated with a variety of psychiatric
conditions, including schizophrenia, bipolar disorder, major depression, and autism [42,43],
by RNAi via IUE, impairs neural progenitor proliferation [44], neuronal migration and
integration [45,46].

Technically, RNAi takes more than a day to downregulate the expression level of the
target protein after IUE, although this can vary depending on the type of protein. Regarding
this point, the direct introduction of double-stranded short interfering RNA (siRNA) exerts
its effect earlier than plasmid vectors expressing short hairpin RNA (shRNA) under a Pol
III-type promoter, such as the human U6 promoter [47] in IUE.

2.5. Application of Electroporation to Organoid Disease Model

Recently developed research methods using human cell-derived organoids could
significantly mitigate the reliance on animal models and serve as accurate models for
human conditions. Electroporation is widely used as a convenient method for introducing
DNA to the organoids.

Brain organoids, derived from human embryonic stem cells (hESCs) or induced
pluripotent stem cells (iPSCs), have emerged as a groundbreaking tool for investigating
the early stages of human brain development [48,49]. Brain organoids offer significant
advantages as disease models, particularly when derived from patient-specific iPSCs, en-
abling a more accurate representation of pathological conditions. Electroporation applies
to the brain or cerebral organoids, wherein a plasmid solution is injected into the organoid,
and electroporation is performed in a cuvette or chamber [50,51]. This method has been
employed in creating glioblastoma models [52], miRNA delivery to study heterotopia [53],
and the visualization of dendritic architecture and axon formation for live imaging analy-
ses [54]. A similar technique has been applied to the human retina organoid for live-cell
imaging [55], expanding its applicability beyond the central nervous system.

2.6. Limitations of IUE

IUE comes with certain limitations. Primarily, controlling the expression levels of
exogenous genes in individual cells using IUE poses significant challenges [56]. This makes
it difficult to perform simple quantitative analysis using reporter gene expression levels.
Therefore, when using Ca2+ indicators such as GCaMP [57,58] or measuring FRET as
reporters expressed by IUE [59], it is necessary to observe changes in the individual cells
and evaluate them in terms of ratios or similar quantitative measures. There have been
efforts to overcome this disadvantage of IUE using the advanced technique, iON [60], as
described in the latter part of this review. Manipulating specific cells, such as microglia
and vascular endothelial cells, which are crucial in studying neurological disorders, also
presents difficulty. Finally, introducing exogenous plasmid DNA could elicit a microglial
response via Toll-like receptor 9 (TLR9) activation [61], a factor that warrants careful
consideration when interpreting microglial behavior post-IUE. However, co-injection of
a TLR9 antagonist, oligonucleotide 2088, with plasmid DNA vectors can mitigate this
response [61].
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3. Genome Editing by IUE
3.1. Knockout (KO)

To bypass the off-target effects of RNAi and ensure the complete removal of the target
protein in neural progenitor cells and their descendants, a knockout (KO) strategy is pivotal.
Genome editing via IUE allows for cell-level knockout in developing brains (Figure 2). This
is effectively achieved through the induction of insertions or deletions (indels) mediated by
the nonhomologous end joining (NHEJ) pathway of CRISPR/Cas9 during IUE [62–64]. In
the experimental steps, typically, plasmid vectors expressing the Cas9 protein and guide
RNA(s) are coexpressed by IUE. When genome editing is successfully performed in neural
progenitor cells, their progeny also become knockouts (Figure 2). Thus, the piggyBac
system is occasionally utilized to visualize electroporated cells and their progeny; in this
system, a ubiquitous promoter with marker gene cDNAs, such as EGFP, is integrated into
the genome [65].
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Similar to in vitro cultured cell genome editing, a crucial point to note is the need to
validate whether the target protein has been effectively knocked out. This validation of
gene perturbation ultimately relies on immunohistochemistry-based analysis using anti-
bodies [66]. However, in the case of IUE, while evaluating the overall efficiency of knockout
is possible, it becomes particularly challenging to definitively assess the knockout status
on a cell-by-cell basis. This difficulty arises from the inherent cell-to-cell variation in the
efficiency of genome editing with IUE and potential instances of partial protein deletion. A
knock-in method is also being used to improve KO efficiency and accuracy, which involves
the insertion of stop codon repeat sequences by homology-directed repair (HDR) [67]. To
better understand the knockout status in each cell, high-throughput genotyping at the
single-cell level is beneficial [68]. However, this approach may only sometimes be feasible
in practice.

Nevertheless, due to its relative simplicity, genome editing by IUE is a feasible strategy
not only in common laboratory animals such as mice and rats but also in other species. As
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long as a degree of genome information is known, this procedure can be implemented in
various species, such as ferrets [19,69].

3.2. Knock-In (KI)

Knock-ins (KI) initiated by Cas9’s double-strand break (DSB) are also conducted
using IUE. While the efficiency is high enough for inserting small tags, there is still room
for improvement regarding the efficiency of long DNA insertions, such as cDNAs for
fluorescent proteins, Cre recombinase, and various other proteins.

Cell cycle-dependent homology-directed repair (HDR) is commonly performed for
KI in neural progenitor cells in vivo via IUE [70–72]. This includes various modified
methods such as microhomology-mediated end joining (MMEJ), which uses a donor with
a sgRNA target site and microhomology arms (5–25 bp), and homology-mediated end
joining (HMEJ), which uses a donor with sgRNA target sites plus long homology arms
(800 bp) [73]. NHEJ-based knock-in has also been applied in IUE [74], in which nucleotides
without homology arms are used as donors (Figure 2).

Several strategies with the donor DNA serving as the template for KI are being
explored. Single-stranded oligodeoxynucleotides (ssODNs) [70], long single-stranded
DNA [75,76], plasmid DNA [71,72], and adeno-associated virus (AAV) vectors [77] are
being utilized. Many efforts are being made to enhance recombination efficiency, such
as by introducing sgRNA target sites to cleave both ends of the donor genes in vivo [78].
It should be noted that unexpected leaky expression from the donor plasmid has been
reported to occur following IUE, leading the authors to develop a leakless targeting vector
to address this issue [71]

Yang et al. conducted comparative analyses of KI efficiencies in IUE mouse embryos
using homologous recombination (HR), MMEJ, HMEJ, and NHEJ. These studies have
provided valuable insights [73,79]. As a cost-effective strategy, they proposed using linear
double-stranded DNA as a donor in Tild-CRISPR [79]. Utilizing this method, Tabata et al.
reported the KI of Cre recombinase at the Olig2 gene locus via IUE [80].

Regarding KIs initiated by Cas9 DSBs, it is important to note that KI does not occur
in all cells. In many cells where KI has not occurred, mutations or deletions at the gene
locus are frequently observed (Figure 2). This is a prevalent problem in KI using Cas9. To
address this, active research is being conducted on inserting DNA at specific sites without
DSBs. This includes DNA sequence insertion using the Prime editor, a type of DNA base
editor [81], the insertion of transposase recognition sequences by the Prime editor and
subsequent transposase recruitment [82], and the use of crRNA-dependent transposase,
which is involved in CRISPR array formation [83,84], for targeted large DNA insertion
into the genome. While there are challenges regarding KI efficiency, the complexity of the
introduced components, and the strict control of insertion sites, the application of these
techniques in IUE is expected in the future.

3.3. In Vivo Epigenetic Editing in a Brain Disease Model

In vivo epigenome editing via IUE has been conducted to study the role of specific
genes and epigenetic marks in brain development and disease. A nuclease-deficient
form of Cas9 (dCas9), bound to a transcriptional activator or repressor, has been used
for this purpose. For instance, Albert et al. expressed dCas9 fused to the H3K27me3
histone methyltransferase Ezh2, along with a guide RNA (gRNA) targeting one of the CpG
islands near the transcription start site of Eomes (Tbr2), a transcription factor involved in
neural development. They introduced this system into neural progenitor cells via IUE and
successfully observed a reduction in the proportion of Eomes-positive cells. This suggests
that their system induces gene repression through the deposition of repressive H3K27me3
marks [85].

To enhance the effectiveness of epigenetic modification, Peter et al. utilized the
SunTag system [86]. The authors found that C11orf46 haploinsufficiency was associ-
ated with hypoplasia of the corpus callosum in humans [87]. Using a dCas9-SunTag



Int. J. Mol. Sci. 2023, 24, 14128 7 of 17

system with C11orf46 binding, they performed epigenome editing of the neurite-regulating
genes Sema6a-A/D, which successfully rescued transcallosal dysconnectivity in a
mouse model [87]. This provides evidence for the therapeutic potential of in vivo
epigenome editing.

4. Spatiotemporal Expression Control and Lineage Tracing by IUE

The need to control spatiotemporal expression utilizing IUE is common across diverse
areas of study. The conventionally employed expression induction methods or conditional
gene expression systems, such as Tet-on, Cre/lox, and CreER combined with tamoxifen,
generally apply in IUE.

Long-term labeling transposon-based methods are often utilized for the lineage tracing
of neural progenitor cells or for examining the long-term effects of gene manipulation.
Transposons, such as piggyBac [88,89], Sleeping Beauty (SB) [90,91], and Tol2 [92], can
be implemented to integrate an exogenous gene into the genome of the host, providing
stable, long-term gene expression. The combination of piggyBac/Tol2 transposition and
Cre/lox recombination expressed by IUE could be utilized for multicolor fate mapping in
the developing brain [93,94]. SB with IUE has been used to induce glioma in the postnatal
mouse brain [95], providing a tool for functional analysis of the candidate genes in glioma.

4.1. Sparse Labeling and Live Imaging

A significantly diluted Cre expression vector plasmid combined with the Cre/lox
system allows for nearly clonal labeling by IUE [96]. We have employed this sparse la-
beling technique with brain slice methodologies [97–99] to conduct live imaging analyses
of neural stem cell behavior [19,100,101]. Live imaging of the neural cells in brain slices
after IUE has also been utilized in various other contexts, such as the analysis of neuronal
migration [9,102], and extended to the subcellular level, such as the study of microtubule dy-
namics using EB3 [103], the Golgi apparatus [104], and visualization of the apical junctional
components and centrosomes [59]. These advanced imaging techniques provide invaluable
insights into human genetic disorders like lissencephaly, furthering our understanding of
their underlying mechanisms.

4.2. iON Expression Switch

Recently, techniques have been developed to control the timing and copy numbers
of exogenous genes more precisely. In IUE with transposon systems such as piggyBac,
the expression from episomal plasmids immediately after introduction was difficult to
control, and there were problems such as the need to wait for dilution to an appropriate
level through cell division and the intense maintenance of expression levels in nondividing
differentiated cells. These problems were addressed by integration-coupled ON (iON)
switch technology, which initiates gene expression upon integration into the genome
(Figure 3) [17,60].

iON utilizes the principle of piggyBac transposase-mediated cleavage of inverted
terminal repeat (ITR) sequences and directional integration, as well as the DNA repair
of cleavage sites in vivo. After cutting the connection between the promoter and the
inverted ORF, repair occurred during directional integration into the genome, resulting in
the inversion and reconstitution of the promoter and ORF, thereby activating expression.
Therefore, iON plasmids with inverted ORFs are not expressed until reconstitution occurs
(Figure 3). Some minimal expression from the upstream ITR of the inverted ORF can be
observed in iON; thus, a refinement over this was achieved with LiON, where the cleavage
site of the connection was located immediately after the ATG start codon. This adjustment
allows the remaining ORF portion to be inverted and expressed, reducing the amount of
expression from episomal plasmids to near zero.
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These systems overcome the disadvantage of IUE, which involves transient overex-
pression. They allow for stable copy numbers integrated into the genome to be inherited
by daughter cells. These improvements prevent toxicity caused by transient overexpres-
sion and abnormal protein localization due to excessive expression. Moreover, they ad-
dress issues such as insufficient expression due to low copy numbers in genome knock-in
mice lines.

Utilizing these properties, stable and random combinations of multiple fluorescent
proteins have been achieved, following the same principle as Brainbow [105,106]. This ap-
proach has improved clonal resolution and has applications in multicolor lineage labeling.

4.3. TEMPO

In brain development, the types of differentiated cells produced from neural stem
cells change over time. Abnormalities arising in neural stem cells can be apparent in a
cell-type-specific manner, potentially leading to the onset of various diseases. Therefore,
robust methodologies that enable the investigation of temporal effects are essential. As the
typical method is to use a CreER mouse line activated by tamoxifen, a valuable approach
exists for modulating and manipulating the expression of target genes within specific
time windows. While sequential IUE methods have been reported [20,21], they are often
associated with technical difficulty and the potential for cumulative surgical interventions.

To overcome these challenges, an innovative technique called TEMPO has been devel-
oped [11] (Figure 4). TEMPO harnesses the CRISPR/Cas9 system to induce DSBs, which
are then repaired using the highly accurate single-strand annealing (SSA) machinery, an
endogenous DNA repair mechanism.

The TEMPO system is composed of gRNA cascades, and the expression cassette
consists of ORFs linked in tandem using a 2A peptide (such as the TEMPO reporter cascade
shown in Figure 4). Initially, the gRNA cascades activate only the first gRNA, while the
others are made inactive through the insertion of a modified RNA pol III transcription
termination sequence. The first gRNA specifically targets the insertion site of the second
gRNA and becomes active upon the removal of this insertion during SSA repair. The
expression cassette includes tandemly linked ORFs using a 2A peptide. Initially, the
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forward ORF is inactive due to frame-shift mutations, with only the final ORF being
expressed (CFP in Figure 4). However, the first gRNA targets the forward ORF and is
precisely repaired through SSA, restoring the correct reading frame and disrupting the
downstream ORF due to the frame-shift mutation. As a result, a switch in expression occurs
from the downstream ORF to the forward ORF (RFP to YFP in Figure 4).
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This innovative system enables the sequential manipulation of molecular factors in
the developing brain. In mice, successful sequential expression of up to four distinct genes
has been achieved with intervals of approximately 24–48 h. The cutting and repair cycles
are influenced by the frequency of cell division, with a reduction in frequency leading to a
decrease in the efficiency of expression switching.

5. iGONAD

A technique similar to IUE can be performed for genome editing of the early stage
embryos in the oviduct (Figure 5). This technique allows rapid, easy preparation to make
the KO animals by NHEJ-mediated indels events and the KI animals by HDR.

Traditional gene-targeted animal generation protocols involve the following three
standard steps: the isolation of embryos (fertilized eggs/blastocysts) from donor females;
the injection of genetic modification reagents (DNA or ES cells) into the embryos by
microinjection followed by brief culture in vitro; and the transfer of treated embryos into
recipient females. iGONAD, improved Genome editing via Oviductal Nucleic Acids
Delivery [15,107], which improved the original GONAD method [108], does not require
any of the three main steps.
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includes the ribonucleoprotein (RNP) complex (Cas9 protein and guide RNA) with a repair DNA
template (in case of KI), is injected into the ampulla of pregnant day 0.7 female mice. Electroporation
was performed to deliver the components into the zygotes.

Figure 5 summarizes the experimental steps involved in iGONAD [109]. The CRISPR
reagent, which includes the RNP complex (complex of Cas9 protein and guide RNA) with a
donor DNA template (in the case of KI), is injected into the ampulla of pregnant day 0.7 fe-
male mide when fertilized eggs exit the oocyte envelope in the oviductal ampulla. Then,
electroporation is performed to deliver the components into the zygotes (Figure 5). Table 1
lists parameters for electroporation under the various experimental conditions introduced
in this review. These procedures can be performed in laboratories lacking sophisticated
microinjection equipment by researchers skilled in small animal surgery. Furthermore,
iGONAD does not require vas deferens removal in males and pseudopregnant females.
This allows female animals to be used multiple times for further GONAD procedures [109],
accelerating the development of genetically engineered animal models. Beyond just mice
and rats, the applicability of these methods extends to other animal models, enhancing
their potential impact by contributing to a more diverse range of genetically engineered
animal lines for research.

Similar to genome editing by IUE, iGONAD also allows for the creation of both KO
embryos through NHEJ-mediated indel events and KI embryos through HDR-mediated
events. Researchers have successfully produced HDR-mediated KI animals via iGONAD
with long ssDNA (−1 kb) and ssODNs as repair template DNA [110]. The efficiency of
generating KI animals by genome editing has improved with the use of ssODN as the
donor nucleic acid [75,111]; however, electroporation remains less efficient than microinjec-
tion [112]. This limitation of iGONAD, especially when aiming for long-sequence knock-ins,
suggests that further refinement is needed in future research.

In practice, precise control over the timing of mating is crucial for the success of
iGONAD. However, this can pose some difficulties at the laboratory level, as mating must
be scheduled during nighttime hours, which often leads to discrepancies of several hours.
Since mosaicism and variation among embryos often occur, when mosaicism is unsuitable
for analysis, these animals need to be bred with wild-type individuals to establish a lineage
for subsequent analyses. Additionally, we are conducting experiments with IUE in F0
embryos generated by iGONAD; however, we cannot ascertain which embryos have been
genome-edited at the time of IUE. The success of the experimental procedure depends
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not only on the timing of mating but also on the target genome sequence. Consequently,
multiple conditions may need to be tested for the best outcomes.

Table 1. Parameters for electroporation.

Animal Species Stage, Sample Voltage
(V)

On Time
(msec)

Off Time
(msec)

Pulse
Number

Electrode Size
(mm) References

Mouse E(embryonic
day) 9–E17 25–50 50 450–950 4–5 1–5 [8,9,18–21]

Rat E13–14 65 1 – – 10 x 5 [58]

Chick HH10 (1.5 dpo [day
post-ovoposition]) 25 50 950 5 0.5 x 1.0 [22]

Chick 4 dpo 30 5 500 5 3 [23]

Snake 4 dpo 30 5 500 5 3 [25]

Turtle 14 dpo 32 50 950 2
needle type
(CUY200S,

NEPAGENE, Japan)
[24]

Gecko 14 dpo 32 50 950 2
needle type
(CUY200S,

NEPAGENE, Japan)
[24]

Dunnart Stage20 (Postnatal
day 8–11) 30–35 100 900 5 1 [26]

Guinea pig E28–37 40–54 50 950 4 5 [27]

Ferret E32 45 100 900 5 10 [19]

Ferret E35–E38 50–100 50 950 5 5 [28,29]

Human brain
organoid 20–40 days in culture 80 50 500–950 5 chamber [51,53,54]

Human brain
organoid 20–40 days in culture – – – –

cuvette (Nucleofector,
A-23 program,
LONZA, USA)

[50]

Human brain
organoid 4 months in culture 45 50 950 5 3 [52]

Human retinal
organoid 27 days in culture 25 50 950 5 chamber [55]

Mouse (GONAD/
iGONAD) step1 E0.7–1.5 50, 10%

decay 5 50 3 3 [14,15,108,109]

Mouse (GONAD/
iGONAD) step2 E0.7–1.5 10, 40%

decay 50 50 3 3 [14,15,108,109]

6. Perspectives

These advanced methods of in vivo electroporation are expected to provide valuable
information that will yield crucial insights that could inform the understanding of patho-
logical conditions linked to human brain disorders. In addition to IUE in embryonic brains,
the refinement of in vivo electroporation techniques for postnatal and adult brains is un-
derway. Using a whole-brain scale with plate electrodes placed around the animal’s head
or microelectrodes inserted into the brain [113–115], exogenous gene expression can be
induced in the neurons, neural stem cells (NSCs), or astrocytes in postnatal and adult brains.
Advanced techniques such as genome editing and spatiotemporal control, as described in
this review, are also basically applicable to these stages.

Coinciding with advances in in vivo electroporation, the development of superreso-
lution microscopy and expansion microscopy techniques has enabled the observation of
molecular localization at the nanoscale level [116–119]. This has enhanced the effectiveness
of molecular tagging by KI. Thus, particularly in brain development research, where there
is sometimes a desire to analyze the localization of molecules at the nanoscale within a
tissue, the KI technique by in vivo electroporation has become an invaluable toolset for
accelerating research.
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The techniques of iGONAD and IUE bear a close resemblance to each other in terms
of experimental procedures, and the equipment used is largely the same. However, gener-
ating transgenic animals using methods like those involving piggyBac systems in IUE still
remains a significant challenge in iGONAD. The prospect of creating transgenic animals us-
ing methods similar to iGONAD, therefore, represents a significant potential advancement
for research tools in the study of neuronal development disorders.

Regarding the lineage tracing of neural progenitors in vivo, a genetic labeling method
has been developed that involves an intraventricular injection of a retroviral library con-
taining genetic barcodes. This approach enables the unique labeling of each transduced cell,
facilitating the study of clonal dynamics [120], such as in glioma progression [121]. With
future technological advancements, IUE may be adopted for genetic barcode labeling and
other recently developed molecular recorders to track various cellular events [122–126].
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