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Abstract: Primary and secondary non-response affects approximately 50% of patients with Crohn’s
disease treated with anti-tumour necrosis factor (TNF) monoclonal antibodies. To date, very little
single cell research exists regarding drug repurposing in Crohn’s disease. We aimed to elucidate
the cellular phenomena underlying resistance to anti-TNF therapy in patients with Crohn’s disease
and to identify potential drug candidates for these patients. Single-cell transcriptome analyses were
performed using data (GSE134809) from the Gene Expression Omnibus and Library of Integrated
Network-Based Cellular Signatures L1000 Project. Data aligned to the Genome Reference Consortium
Human Build 38 reference genome using the Cell Ranger software were processed using the Seurat
package. To capture significant functional terms, gene ontology functional enrichment analysis
was performed on the marker genes. For biological analysis, 93,893 cells were retained (median
20,163 genes). Through marker genes, seven major cell lineages were identified: B-cells, T-cells,
natural killer cells, monocytes, endothelial cells, epithelial cells, and tissue stem cells. In the anti-
TNF-resistant samples, the top 10 differentially expressed genes were HLA-DQB-1, IGHG1, RPS23,
RPL7A, ARID5B, LTB, STAT1, NAMPT, COTL1, ISG20, IGHA1, IGKC, and JCHAIN, which were
robustly distributed in all cell lineages, mainly in B-cells. Through molecular function analyses, we
found that the biological functions of both monocyte and T-cell groups mainly involved immune-
mediated functions. According to multi-cluster drug repurposing prediction, vorinostat is the top
drug candidate for patients with anti-TNF-refractory Crohn’s disease. Differences in cell populations
and immune-related activity within tissues may influence the responsiveness of Crohn’s disease
to anti-TNF agents. Vorinostat may serve as a promising novel therapy for anti-TNF-resistant
Crohn’s disease.
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1. Introduction

Crohn’s disease (CD) is a chronic inflammatory condition affecting the entire gastroin-
testinal tract; it has a variable disease course and wide spectrum of severity. Thus, it greatly
influences the quality of life [1–3].

Although the exact pathogenesis of CD is not completely understood, an aberrant
immune response driven by innate immunity triggers the release of proinflammatory
mediators, such as tumour necrosis factor-alpha (TNF-α) and interleukin, resulting in not
only the activation of the adaptive immune system but also tissue damage [4–6].

Currently, non-biological conventional drugs, including 5-aminosalicylic acid, corticos-
teroids, and the purine analogues azathioprine and 6-mercaptopurine, remain the mainstay
of treatment for CD. However, for the last few decades, biologic agents, such as anti-TNF-α

Int. J. Mol. Sci. 2023, 24, 14099. https://doi.org/10.3390/ijms241814099 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241814099
https://doi.org/10.3390/ijms241814099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8988-7423
https://orcid.org/0000-0002-5710-7672
https://doi.org/10.3390/ijms241814099
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241814099?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 14099 2 of 9

inhibitors, have exhibited successful treatment outcomes and have thereby changed the
paradigm of CD treatment.

However, although TNF-α is a key factor in immune-mediated inflammatory diseases,
therapeutic strategies maximizing the benefit to most CD patients are currently unavailable
owing to its complex aetiology [7]. Therefore, many patients experience primary non-
response to these agents or a loss of response over time, which consequently lead to disease
flare-ups during scheduled maintenance therapies in CD [8].

Accordingly, other therapeutic options with different mechanisms of action that can
induce clinical remission in patients with anti-TNF-refractory CD are required.

In the present study, we aimed to investigate developmental features resulting from
the heterogeneity of cell populations at the cellular level constituting the diseased tissue
using single-cell network biology and to identify suitable drug candidates for patients with
CD resistant to anti-TNF therapy.

2. Results
2.1. Extracting Single-Cell Transcriptomic Profiles

In total, 93,893 cells were retained for biological analysis, with a median of 20,163 genes.
After normalization of gene expression and PCA, we used graph-based clustering to parti-
tion the cells into 14 clusters, indicating the underlying biological differences (Figure 1A).
Through marker genes, seven major cell lineages were identified: T-cells (49,609 cells, 52.8%,
marked with IL7R, CCR7, CD3D, CD3E, and CD3G); B-cells (28,711 cells, 30.6%, marked
with CD79A, CD74, IGHM, MS4A1, and CD19); natural killer (NK) cells (4706 cells, 5.0%,
marked with GNLY and NKG7); monocytes (4590 cells, 4.9%, marked with CD14); tissue
stem cells (2395 cells, 2.6%, marked with ATP4A); epithelial cells (2070 cells, 2.2%, marked
with EPCAM, KRT18, and KRT8); and endothelial cells (1812 cells, 1.9%, marked with
PECAM1, CD34, CDH5, VWF, and CDH5) (Figure 1B).
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UMAP dimensionality reduction technique in ileal tissues in CD.

2.2. Immune Cellular Heterogeneity between Different Anti-TNF Responsiveness

The proportion of each cell cluster within the intestine after anti-TNF therapy varied
significantly between the two groups (inflamed tissue vs. normal tissue) (Figure 2A,B).
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Figure 2. Cellular differences (A) and cluster differences (B) using the UMAP dimensionality reduc-
tion technique between the inflamed colonic tissue (Involved) and normal colonic tissue (Uninvolved)
during anti-TNF therapy in CD.

Compared with normal tissue, monocytes and B-cells in inflamed tissue were signifi-
cantly increased (log-fold changes of 0.173 and 0.092, respectively; p < 0.001; Supplementary
Figure S1). However, the proportions of T-cells (log FC of −0.031; p < 0.001), NK cells,
and endothelial cells significantly decreased (log FC of −0.123; p < 0.001), as did those
of epithelial cells (log FC of −0.223; p < 0.001) and tissue stem cells (log FC of −0.224;
p < 0.001).

2.3. Transcriptional Landscape Heterogeneity of Cells Associated with Anti-TNF Therapy Resistance

To understand the biological differences in anti-TNF responsiveness, we identified
the genes that were highly differentially expressed between the two groups. A total of
7679 genes were identified as differentially expressed between tissues with and without
anti-TNF responsiveness to CD. Specifically, we identified 2268, 1706, and 1697 DEGs in
endothelial, tissue stem, and epithelial cells across the cell types, respectively. The following
cells showed a relatively smaller number of genes that were differentially expressed be-
tween the two groups: 918 DEGs in monocytes, 558 DEGs in T-cells, 382 DEGs in NK cells,
and 150 DEGs in B-cells. In anti-TNF-resistant samples, the top 10 DEGs were HLA-DQB-1,
IGHG1, RPS23, RPL7A, ARID5B, LTB, STAT1, NAMPT, COTL1, and ISG20; DUSP1, FABP6,
SPRY1, RGS1, CITED2, CD96, KLRD1, PRMT9, PPP1R15A, and RGCC were significantly
highly expressed in normal tissues (Figure 3). A group of distinct DEGs was identified for
each of the seven cell lineages (Figure 4). We found that IGLC2, JCHAIN, IGKC, and IGHA1
were robustly distributed in all cell lineages, mainly in B-cells (Figure 4).



Int. J. Mol. Sci. 2023, 24, 14099 4 of 9Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. Heatmaps of commonly dysregulated genes associated with anti-TNF therapy resistance 
in Crohn’s disease. The light blue block and dark blue block in upper strata represent samples from 
inflamed colonic tissue (Involved) and normal colonic tissue (Uninvolved), respectively; the top 10 
DEGs for each cluster and their corresponding normalized expression are shown in rows; the black 
coloured block and orange coloured block in the left side represent the results from the unsuper-
vised clustering. 

 
Figure 4. Differentially expressed genes by cell types for different levels of anti-TNF responsiveness. 

2.4. Functional Analysis and Drug Repositioning  
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Figure 3. Heatmaps of commonly dysregulated genes associated with anti-TNF therapy resistance
in Crohn’s disease. The light blue block and dark blue block in upper strata represent samples
from inflamed colonic tissue (Involved) and normal colonic tissue (Uninvolved), respectively; the
top 10 DEGs for each cluster and their corresponding normalized expression are shown in rows;
the black coloured block and orange coloured block in the left side represent the results from the
unsupervised clustering.
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Figure 4. Differentially expressed genes by cell types for different levels of anti-TNF responsiveness.

2.4. Functional Analysis and Drug Repositioning

We then performed GO functional enrichment analysis on the overrepresented genes
to compare the transcriptomes of normal and inflamed tissues (Figure 5).

Through molecular function analyses, we found that the biological functions of both
the monocyte and T-cell groups mainly involved the immune-mediated function category,
which was consistent with the results from both edgeR and limma analyses (Figure 5).
Monocyte lineages were strongly enriched for chemokine activity, chemokine binding
activity, cytokine activity, cytokine receptor binding, and immune receptor activity; in
contrast, in T-cells, these signals were relatively diminished, but the associated genes
functioned more widely for immune-related activity (Figure 5).

Therapeutic drug scores were estimated using the significance of reversing the differ-
ential gene expression pattern based on consistent DEGs and cell type proportions from
the biological pathway. Using multi-cluster drug repurposing predictions, 626 drugs were
predicted for patients with anti-TNF-refractory CD. Among them, vorinostat was identified
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as the top drug candidate (FDR < 0.05, overall drug score > 0.99 quantiles) for patients with
anti-TNF-refractory CD (Table 1 and Supplementary Figure S2).
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Table 1. Cellular coverage and drug score of vorinostat for anti-TNF-resistant CD.

Cell Type Coverage within Cell Type Drug Score FDR

Limma
Endothelial cells 1.59 56.23 <0.0001
Tissue stem cells 1.93 56.23 <0.0001
Epithelial cells 1.67 56.23 <0.0001

T-cells 51.04 56.23 <0.0001
EdgeR

Endothelial cells 1.59 54.56 0.0002
T-cells 51.04 54.56 0.0009

Tissue stem cells 1.93 54.56 0.0015
Abbreviation: FDR, false discovery rate.
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3. Discussion

To the best of our knowledge, this is the first study to identify potential drug candidates
by evaluating the biological processes underlying anti-TNF therapy resistance, using single-
cell profiling in patients with CD.

Researchers have suggested that anti-TNF resistance in patients with CD may arise
through various biological mechanisms. A recent German study suggested that augmented
IL-23 production by CD14+ monocyte/macrophages within the intestinal mucosa blocks
anti-TNF-induced apoptosis during treatment, thereby inducing apoptosis-resistant in-
testinal TNFR2 + IL23R+ T-cells in CD [9]. Another experimental study revealed that
activated STAT3 drives T-cell resistance against apoptosis in CD [10]. These studies suggest
that the activation or expansion of immune cells, such as monocytes/macrophages and
T-cells, in anti-TNF non-responders confers resistance against T-cell death via IL-23. Our
previous results demonstrated that anti-TNF therapy resistance in patients with CD may
be attributed to low immune cell activation due to the differential gene expression status of
IL-17A/IL-17F produced by CD4+ T-cells [11].

In summary, T-cells and monocyte/macrophage lineages within the intestinal mucosa
of patients with CD play a central role in tuning the response to anti-TNF therapy via
cytokines and co-stimulatory signals.

From this perspective, we investigated the molecular variability at the cellular level
for anti-TNF resistance in CD, and the results were in agreement with this concept.

Our results show higher B-cell and monocyte lineages and, thereby, identify the
differences in immune-mediated pathways within tissues as key microenvironmental
signatures for anti-TNF therapy resistance in CD. Interestingly, the actual transcript levels
of T-cells were significantly higher in anti-TNF-resistant samples despite the relatively
small number of T-cells.

This may be the basis of mechanism-based target identification for drug repurposing.
Additionally, Martin et al. showed that a prominent immune feature consisting of B-
cells and inflammatory monocytes/macrophages correlated with anti-TNF resistance in
tissue samples of CD, and hypothesised that a unique module consisting of stromal cells,
monocytes/macrophages, activated T-cells, and B-cells, not just one type of cell lineage,
may influence the responsiveness to anti-TNF agents [12].

On the basis of these results, we investigated potential drug candidates targeting key
signalling pathways, by analysing genes expressed by the derived major cell lineages using
a computational approach.

We estimated the drug score, which predicts drug efficacy, using the proportions of
seven cell types, the significance of reversed differential gene expression patterns, and the
ratio of reversed significantly deregulated genes over single-cell clusters associated with
anti-TNF resistance. We found that vorinostat has a strong therapeutic potential to reverse
the immune response within T-cell clusters, with the highest drug score across all patients.

Therefore, vorinostat is a potential novel therapeutic option for the management of
patients with anti-TNF-resistant CD.

Vorinostat, a histone deacetylase inhibitor (HDACi), is an anti-cancer agent that
has recently been reported to modulate the immune system; however, the mechanisms
underlying its activity are largely unknown [13,14].

Several studies have demonstrated that vorinostat ameliorates inflammation by re-
ducing monocyte activation and modulating T-cell immune responses. Vorinostat has
been shown to inhibit the differentiation, maturation, and endocytosis of human CD14(+)
monocyte-derived dendritic cells and further inhibit their stimulation of allogeneic T-cell
proliferation, thereby ameliorating experimental autoimmune encephalomyelitis [15]. An-
other study has suggested that vorinostat may considerably inhibit monocyte/macrophage
activity by repressing Th1 and Th17 cells and reducing the TNF-α level in autoimmune
diseases [16]. The results of graft versus host studies have demonstrated that vorinostat
has a strong T-cell-suppressive effect [17].
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A recent Australian study demonstrated that B-cell function is particularly sensitive
to HDACi modulation. In vitro, HDACis are capable of altering diverse aspects of the
B-cell response in an HDACi-class-dependent manner that is maintained for both T-cell-
dependent and T-cell-independent activation [14].

In this study, we provide comprehensive insights into cell-type-specific gene reg-
ulation across different levels of anti-TNF responsiveness via single-cell transcriptome
analysis, which allows for the detailed analysis of cell-to-cell variability in gene expression.
Furthermore, our concordantly expressed gene-based drug repurposing approach presents
a higher probability of identifying promising repurposed drugs, thereby enabling the
advancement of personalized therapy for CD.

Nevertheless, our study has certain limitations. First, the sample size is relatively
small. To overcome this problem, a dropout experiment method within the algorithm
was applied to calculate the drug score. Second, our in silico findings alone, without
experimental validation, do not fully explain the biological mechanisms underlying the
responsiveness to anti-TNF-α therapy in patients with CD. However, our findings are
consistent with cumulative experimental evidence, and they may have relevant implications
for the prediction of treatment response to anti-TNF agents in CD. Furthermore, our
findings may facilitate a more accurate stratification of patients with CD through evaluation
of the immune microenvironment before and/or during anti-TNF therapy.

In conclusion, our results reveal that the modulation of T-cell and monocyte lineages
might serve as a promising approach to achieve an optimal response in anti-TNF-refractory
patients with CD. Vorinostat, an HDACi inhibitor, may be a novel therapeutic option for
patients with anti-TNF-refractory CD. However, further prospective, detailed experimental
studies are required for verifying these findings.

4. Materials and Methods
4.1. Description of Datasets

The datasets analysed in this study were retrieved from the National Center for
Biotechnology Information GEO database (http://www.ncbi.nlm.nih.gov/geo/, accessed
on 24 August 2023). We analysed the single-cell RNA sequencing profiles of the ileal
specimens of 22 patients with anti-TNF-refractory CD from the GSE134809 dataset, which
included information from 11 inflamed tissues and 11 noninflamed adjacent tissues.

4.2. Processing of Single-Cell RNA Sequencing Data

Data aligned to the Genome Reference Consortium Human Build 38 (GRCh38) refer-
ence genome using the Cell Ranger software (v4.0.2) [18] were processed using the Seurat
package [19]. We first generated Seurat Objects using all gene expression matrices and
filtered them to exclude cells with fewer than 200 genes, more than 6000 genes, and more
than 10% mitochondrial genes, and then constructed a combined Seurat Object. After nor-
malization and scaling of the merged Seurat Objects, the top 2000 highly variable features
were selected for further clustering analysis. To reduce dimensionality, principal compo-
nent analysis (PCA) using the Uniform Manifold Approximation and Projection (UMAP)
algorithm was performed based on the features, and t-distributed stochastic neighbour
embedding (t-SNE) was used for visualisation of the top 15 principal components.

4.3. Identification of Marker Genes and Enrichment Analysis

The transcriptional markers of cell clusters were identified using the Seurat ‘FindMark-
ers’ function. Using both limma and edgeR analyses, the differentially expressed genes
(DEGs) between the putative clusters were selected as those with a percentage of cells with
an expression higher than 0.25, an average log fold change (log FC) larger than 0.25, and
adjusted p values less than 0.05.

Cell types for each cluster were annotated using canonical marker genes, and cell cycle
phase-specific changes were identified in different cell clusters based on the cell cycle score.

http://www.ncbi.nlm.nih.gov/geo/
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To allow for cell cycle phase assignment at all stages of the cell cycle, a mitotic cell
population was identified. To capture the significant functional terms, gene ontology
(GO) functional enrichment analysis was performed on the marker genes, considering a
threshold-adjusted p-value of <0.01.

4.4. Drug Repurposing

To identify potential candidate drugs for repurposing, we used the ASGARD pack-
age [20], which represents the effect of reversed differential gene patterns of the drugs/
compounds, by linking to the Library of Integrated Network-Based Cellular Signatures
(LINCS) L1000 project [21]. The large intestine-specific drug score across all clusters of
cells was calculated at the individual sample level; this enabled the prediction of the effi-
cacy of the captured drug/compound using the cell type proportion, the significance of
the reversed DEG pattern, and the ratio of reversed significantly deregulated genes over
resistance-related single-cell clusters.

4.5. Statistical Analyses

The p-values < 0.05 were considered to indicate statistical significance. All data
processing and statistical analyses were performed using R software (version 4.0.5) and
Python (version 3.7.1). The analyses were run on a server with an Intel Xeon processor (2×
Six-Core), 128 GB memory, and two-GPU Nvidia TITAN X. Ethics approval was obtained
from the Institutional Review Board of the Kyung Hee University Hospital at Gangdong,
Seoul, Republic of Korea (KHNMC IRB 2023-02-016).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms241814099/s1.
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