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Abstract: Notch signaling is an evolutionarily conserved pathway which functions between adjacent
cells to establish their distinct identities. Despite operating in a simple mechanism, Notch signaling
plays remarkably diverse roles in development to regulate cell fate determination, organ growth
and tissue patterning. While initially discovered and characterized in the model insect Drosophila
melanogaster, recent studies across various insect species have revealed the broad involvement of
Notch signaling in shaping insect tissues. This review focuses on providing a comprehensive picture
regarding the roles of the Notch pathway in insect development. The roles of Notch in the formation
and patterning of the insect embryo, wing, leg, ovary and several specific structures, as well as in
physiological responses, are summarized. These results are discussed within the developmental
context, aiming to deepen our understanding of the diversified functions of the Notch signaling
pathway in different insect species.
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1. Introduction of the Notch Signaling Pathway

A small number of signaling pathways are iteratively used to regulate cell fate deter-
mination, organ growth and tissue patterning during insect development. One of these
important pathways is mediated by Notch, which functions to distinguish adjacent cells
in numerous developmental processes [1]. The Notch signaling cascade operates in a
remarkably linear manner without the signal amplification steps which are normally found
in other pathways [2]. The core components of the Notch signaling pathway include
the ligands of Delta and Serrate (known as Jagged in vertebrates), the Notch receptor
and the CBF1/Su(H)/LAG1 (CSL) family transcription factors [3]. Both the Notch and
Delta/Serrate (Dl/Ser) proteins contain a large extracellular domain composed of epider-
mal growth factor-like repeats which are pivotal for their direct contact. Notch recognizes
Dl/Ser presented at the surface of neighboring cells and the interaction with ligands trig-
gers the proteolytic cleavage of the Notch protein [4]. This process releases the intracellular
domain of Notch (NICD), which is subsequently translocated into the nucleus. Within the
nucleus, NICD forms a transcription activation complex with Su(H) and the co-activator
Mastermind (Mam) to drive the transcription of downstream target genes [5]. In the ab-
sence of signal input, NICD is not produced and Su(H) recruits the co-repressors CtBP and
Hairless to suppress the expression of Notch targets. Thus, Notch detects signals sent by
neighboring cells, transduces these signals and adjusts the cell state accordingly (Figure 1).

Notch signaling is conserved across the animal kingdom [6–8]. Notch signaling plays
crucial roles in various developmental events, encompassing cell fate determination, cell
cycle progression, cell death and stem cell homeostasis [1–5]. Therefore, it is not surprising
that mutations of genes encoding Notch signaling components contribute to various human
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diseases, including birth defects and malignant tumors [9–12]. Many aspects of the Notch
signaling pathway, such as the signal transduction machinery, the regulatory network, as
well as the involvement in human diseases, have been elaborately reviewed in previous
articles [13–20]. This review will focus on the diversified roles of Notch signaling in insect
development, covering recent findings in various insect species.

Figure 1. A simplified model of the Notch signaling transduction cascade in the fruit fly. The signal
sending cell is in blue and the signal receiving cell is in earthy yellow. Upon binding with the
Delta/Serrate ligands (Step 1), the Notch receptor sequentially processed metalloproteases of the
ADAM/TACE family (Step 2) and the γ-secretase (Step 3), resulting in the release of NICD from the
membrane. In the nucleus, NICD assembles with the CSL family protein Su(H) and the co-activator
Mam to form a complex that regulates target gene expression (Step 4). In cells not receiving the
activation signal, Notch is not processed and Su(H) interacts with co-repressors CtBP and Hairless to
suppress the expression of target genes.

2. A Brief Historical Review of Notch Signaling Studies in Drosophila

More than a century ago, Thomas H. Morgan chose Drosophila melanogaster, the fruit fly,
as a model organism to study the fundamental law of heredity. The discovery of the famous
white eyed mutant fly led to a series of significant advances toward the modern theory of
genetics [21,22]. Alongside the eye color mutants, Morgan and his students isolated and
characterized various mutants affecting body color and wing morphology [23]. In 1911,
Morgan reported the generation of “beaded wings” mutants by radium ray irradiation,
and recorded that the marginal vein and wing blade in these mutants were eliminated
to various degrees [24]. In 1914, John S. Dexter isolated one mutant strain from the
beaded stocks which he named as “Perfect Notched”, and demonstrated that a dominant
sex-linked factor was responsible for the wing notches in the tips [25]. Regrettably, the
“Perfect Notched” stock was lost and Dexter was not able to further examine the factor
underlying the notched wing phenotype. Morgan and his students identified additional
Notch mutants and Calvin B. Bridges mapped the approximate position of Notch in the X
chromosome [23]. In 1919, Otto L. Mohr recovered a novel Notch allele and showed for
the first time that the deficiency of a small region of the X chromosome likely caused the
notched wing phenotype [26]. In the next seven decades, the number of Notch alleles and
related phenotypes continued to grow, while the biochemical nature of the Notch protein
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remained a mystery [27]. In 1983, the Notch gene was cloned and the finding that the Notch
gene encodes a transmembrane receptor inspired subsequent studies regarding cell–cell
interaction and signal transduction [28–31]. Thereafter, detailed molecular genetic analyses
have defined the core components and the canonical signal transduction cascade of the
Notch signaling pathway.

Mutations of Notch pathway components are found to affect a wide array of devel-
opmental events, including cell differentiation, tissue pattern formation and stem cell
self-renew [32–34]. It is now widely acknowledged that Notch signaling plays a pivotal role
in the development of most, if not all, organs in the fruit fly [35–38]. Three primary modes
of Notch actions have been discovered: lateral inhibition, boundary induction and lineage
decision [32]. An early reference to the concept of “lateral inhibition” is found in the study
of cuticle patterning in the bloodsucking bug Rhodnius prolixus [39]. In the dorsal abdomen
of R. prolixus, bristles arise from small mounds of smooth cuticle termed plaques, and each
plaque appears to exert an inhibitory effect that prevents the formation of new plaques
within a certain radius [39]. Lateral inhibition operates within a cluster of cells initially
sharing a similar fate and potential, whereas Notch signaling amplifies minor differences
among them. Consequently, a cell displaying low or no Notch activity acquires a specific
fate and prevents the surrounding cells from adopting the same developmental route [32].
When acting between two cell populations, Notch signaling establishes a boundary to
segregate the two cell groups, a process commonly employed to subdivide developmental
fields during tissue formation. Through the asymmetrical distribution of signaling regula-
tors which leads to differential signaling activity, Notch controls the binary specification
of cell fate between daughter cells in various cell lineages [32]. It has become evident that
Notch functions at different developmental stages and within multiple tissues in the fruit
fly, sometimes employing distinct modes of action within a single tissue. Systematic in vivo
screens have identified extensive sets of genes that are involved in Notch signaling within
diverse developmental contexts [40–45]. The exploration of the molecular functions of
these genes will shed light on how Notch signaling accomplishes such sophisticated roles.

The diversified developmental functions of the Notch signal have been explored in
depth in the model insect D. melanogaster. Recent advances in genomic resources and
genetic tools have allowed investigations of the Notch function among a broad range of
insect species, which will be discussed in the following sections.

3. Notch Signaling in Insect Embryonic Neurogenesis

Donald F. Poulson is generally regarded as the pioneer establishing the connection
between Notch and insect embryo development. In the 1930s, Poulson described a unique
“neurogenic” phenotype in Notch mutant embryos of D. melanogaster. These embryos
failed to develop mesodermal and endodermal tissue while concurrently exhibiting an
overgrowth of the nervous system [46,47]. Subsequent genetic screens discovered that
mutations of core Notch signaling components Dl, mastermind (mam) and Enhancer of
Split (E(spl)), led to similar neurogenic defects [48,49]. Notch signaling acts at multiple
stages to control embryonic nervous system development, including a selection of neural
progenitor cells (neuroblasts; NBs), control of NBs daughter cells proliferation, specification
of neuronal cell fate, glia development and axon pathfinding [50]. The fly embryonic
NBs are selected from a uniform layer of cells, referred to as neuroectoderm, with lateral
inhibition playing a pivotal role [51]. Expression of proneural genes defines stereotypically
spaced “proneural clusters” in the neuroectodermal cell sheet, each proneural cluster
consists of 6–8 cells with similar potential to develop as NBs [52]. Within these proneural
clusters, cellular interactions mediated by a Notch signal culminating in the selection of the
cell with the lowest Notch activity to become NB. The activation of Notch signaling in cells
surrounding the NB results in the expression of transcription factors encoded by the E(spl)
gene complex. The E(spl) proteins directly repress proneural genes, effectively preventing
these cells from adopting a neuroblast fate [52]. In mutants of Notch and many other Notch
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pathway genes, excessive NBs are formed due to the lack of lateral inhibition within the
proneural clusters [53].

NBs were recognized as a distinct population of cells with specific characteristics of
cell size, cell shape, and nuclear position in the embryos of various insect species more
than 130 years ago [54]. A similar pattern of NBs emerged across insects with different
developmental modes and life histories, including D. melanogaster, the bloodsucking bug R.
prolixus, cockroaches (Blatta germanica and Periplaneta americana), locusts (Locusta migratoria,
Melanoplus femurrubrum, Schistocerca americana and Schistocerca gregaria), potato beetle (Lep-
tinotarsa decemlineata), red flour beetle (Tribolium castaneum), stick insect (Carausius morosus),
silverfish (Ctenolepisma longicaudata), tobacco hornworm (Manduca sexta) and yellow meal-
worm (Tenebrio molitor) [54–66]. These observations suggest the possibility of conserved
mechanisms mediating the selection of NBs during insect embryo development [67–69].
The landmark laser ablation experiments conducted in the locust (S. americana) embryos
demonstrated that the enlarging NB enforces lateral inhibition, ensuring the formation
of just one NB within each proneural cluster [59,66]. In cricket (Gryllus bimaculatus) and
cockroach (P. americana) embryos, knock-down of Notch and/or Dl by RNA interference
(RNAi) caused a classic neurogenic phenotype in early stages and subsequent cell apoptosis
in later stages [70–72]. RNAi knock-down of Notch and E(spl) led to neurogenic phenotypes
with an elevated number of NBs in red flour beetle embryos [73]. Computational analyses
suggest a notable conservation of the E(spl) gene family among insects [74–80]. It is possible
that Notch signaling and the E(spl) gene family commonly contribute to determining NB
fate in insect embryos [81].

4. Notch Signaling in Insect Embryo Segmentation

Beyond its ubiquitous role in neurogenesis, Notch signaling is also recognized to
govern diverse embryonic developmental events in different insects. It is evident that
Notch signaling is critical for embryo segmentation in several insect species, while being
nonessential for this process in others [82]. Segmentation is a fundamental process that
divides the developing body into separate units, each capable of undergoing independent
developmental programs [83]. Insects exhibit two distinct modes of embryo segmenta-
tion [84]. In long germ insects such as D. melanogaster, all segments are specified nearly
simultaneously within the blastoderm prior to gastrulation. Conversely, in insects with
short and intermediate germ, only segments of the head region are specified in the blasto-
derm, with the remaining segments arising sequentially from a posterior segment addition
zone using a clock and wave front mechanism akin to vertebrates [84]. Many segmentation
factors originally identified from genetic screens in D. melanogaster exhibit conserved func-
tions among insects with different germ types [82–85]. Notch signaling plays critical roles
during embryo segmentation in vertebrates and several sequential segmenting arthropods,
including brine shrimp, water fleas, centipedes and spiders [82]. It has been hypothesized
that Notch signaling represents ancestral mechanisms governing segmentation in arthro-
pods and vertebrates [86]. However, the extent and manner in which Notch signaling is
implicated in insect embryo segmentation is still under debate.

It has been shown that Notch signaling is dispensable for embryo segmentation in
D. melanogaster. Despite notable neurogenesis defects arising in later stages, the segment
morphology and expression pattern of segmentation factors remained unaffected in Notch
mutant fly embryos [87,88]. In another long germ band insect, the honeybee (Apis mellifera),
Notch signaling was also not implicated in segmentation [89]. In the short germ band
milkweed bug Oncopeltus fasciatus, the expression pattern of Dl was incongruous for regu-
lating embryo segmentation [90,91]. Consistently, RNAi knock-down of Dl in an O. fasciatus
embryo failed to affect the expression pattern of other segmentation factors [92]. Likewise,
in the short germ band red flour beetle, there is no substantial evidence supporting the
role of Notch signaling in segmentation [93]. The fringe (fng) gene, known to encode a
conserved modifier of the Notch receptor [94,95], is essential for segmentation in mice and
chicken [96,97]. Yet, in the short germ locust S. gregaria, fng expression becomes detectable
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only after segment boundaries are established, thereby excluding its involvement in em-
bryo segmentation [98]. The germ band morphology is highly dynamic in the silkworm
Bombyx mori, yet the available molecular data indicate that the majority of segments are not
patterned prior to gastrulation, aligning with the short germ type [84]. In B. mori embryos,
Notch RNAi caused patterning defects without affecting the formation of segments [99].
Conversely, Dl RNAi led to a loss of posterior segments and a disruption of segment bound-
aries in B. mori [100]. The cockroach P. americana, classified as a short germ type, exhibited
segment morphology defects and alterations in the expression pattern of segmentation
factors upon Notch RNAi [72,86]. In the intermediate germ cricket G. bimaculatus, Notch
signaling was maternally required for morphogenesis of embryo segments and formation
of posterior segments [70]. However, a subsequent study contested the necessity of zygotic
Notch signaling for the establishment of segment boundaries. The authors argued that
apoptosis and neurogenesis defects during early stages might lead to secondary effects
in segment morphologies [71]. In conclusion, substantial evolutionary flexibility exists
among the insects regarding how to divide segments in the embryo. There is no definitive
correlation between the germ type and the involvement of Notch signaling in embryo
segmentation.

5. Notch Signaling in Insect Wing Development and Patterning

Insects stand as the sole group of invertebrates to possess wings, a key evolutionary
innovation that propelled them to the forefront of diversity and abundance within the
animal kingdom [101]. While the evolutionary origin of insect wings remains a debated
enigma, the fundamental steps and signaling pathways underlying wing development are
quite conserved among winged insects [101–103]. Insights of how a Notch signal regulates
insect wing development largely come from studies in D. melanogaster. In fruit fly wings,
Notch signaling regulates various developmental events, including wing margin formation,
wing growth, vein patterning and sensory organ specification [104,105].

The Notch gene is named after the phenotype of “one or more incisions at the end of
wings”, which is arguably the most common and prominent defect observed in Notch mu-
tant flies [22]. Yet, it took more than a century to unravel the cellular and molecular mecha-
nisms by which Notch signaling regulates various aspects of fly wing development [23,104].
As a typical holometabolous insect, the fruit fly undergoes complete metamorphosis, im-
plying that the larvae bear no resemblance to the adult and the transformation to adult
occurs during the pupal stage. The precursors of adult wing persist as distinct clusters of
undifferentiated cells called the wing imaginal disc (also known as wing disc) in the larval
stages [105]. Despite the significant difference in cell number, cell size, cell identity and tis-
sue morphology between the wing disc and adult wing, most of the wing patterning events
take place in the wing discs [104]. In the developing wing disc, cells utilize Notch signaling
to establish the boundary between the dorsal and ventral (D/V) compartment. In the adult
wing blade, cells in these compartments emerge as the two apposed epithelial sheets, while
the D/V boundary cells form the wing margin [105]. Notch activation occurs at both sides
of the D/V boundary, facilitated by two different ligands: Dl activates Notch in dorsal
boundary cells and Ser activates Notch in ventral boundary cells [106–108]. Glycosylation
in the extracellular domain by Fng imparts Notch with an affinity for binding with Dl, while
inhibiting its binding with Ser [109–116]. The expression of both Ser and fng is controlled
by the dorsal-specific transcription factor Apterous (Ap), and feedback loops among these
genes further strengthen the D/V boundary [110,117–120]. In the D/V boundary cells,
Notch signaling promotes their proliferation and survival through activating the expression
of target genes such as vestigial (vg), wingless (wg) and cut [106,107,121–131]. Beyond their
cell autonomous functions, Vg and Wg also regulate the growth of cells distanced from the
D/V boundary [106,121,128,129]. Mutations impairing Notch signal activity disrupt the
segregation of the D/V compartment as well as the overall growth in the wing [105].

The fly wing blade consists of two main cell types: vein and intervein. Veins serve as
structural supports for the wing blade and as vessels for trachea, nerves and hemolymph [104].
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Notch signaling promotes intervein fate and inhibits vein fate, thereby establishing the
boundary between the two types of cells [132–135]. Mutations dampening Notch signal
activity during both the larval and pupal stages yield veins with uniformly increased
thickness and deltas at their tips. Conversely, the inappropriate activation of Notch signal-
ing can lead to the loss of adult veins [118,132–134,136]. The wing disc contains a small
number of sensory organ precursor (SOP) cells which will form sensory bristles in the
notum and along the anterior edge of the wing margin in adult flies [105]. The selection
of SOPs is governed by a lateral inhibition process orchestrated by Notch signaling. SOPs
undergo stereotyped asymmetric divisions to form the mechanosensory organ and the fates
of daughter cells are also regulated by Notch signaling [37,122,137–139]. A disruption of
Notch activity at different developmental stages could disrupt bristle pattern and bristle
number, as well as cell lineage specification [1,139]. The aberrations in wing margin, veins
and sensory bristles have become easily recognizable and reliable indicators used in genetic
screens that aim to identify Notch signaling modulators [140–142].

Notch signaling is required for wing development in several Dipterans. In fly species
closely related with D. melanogaster, such as Drosophila hydei and Drosophila virilis, mu-
tant alleles of Notch and other genes in the pathway led to similar wing margin, vein
and bristle defects [143–150]. Mutations displaying nicked wing margins have been iso-
lated in the housefly Musca domestica, which were later mapped as Notch and cut mutant
alleles [151–153]. With the completion of M. domestica genome sequencing and the success
of Cas9-mediated genome editing, further molecular genetics analyses will provide insights
about the roles of Notch signaling in house fly development [154,155]. Many mutations
affecting wing development have been isolated and characterized in the Australian sheep
blowfly, Lucilia cuprina [156–158]. The Scalloped wings (Scl) loss-of-function mutants dis-
played wing notching, vein thickening and bristle abnormalities as well as an embryo
neurogenesis defect, and the Scl gene has been molecularly identified as the homolog of
Notch [159,160].

Lepidoptera insects such as butterflies and moths normally possess two pair of wings
(forewings and hindwings) covered by microscopic dust-like scales. Although the wing
structure and morphology markedly differ from that of the flies, a series of works have
underscored the importance of Notch signaling during B. mori wing development. The
flügellos (fl) mutant of the silkworm produce wingless pupae and moths due to an inability
of wing discs to respond to ecdysone during metamorphosis. The fl mutant wing discs
develop normally until the fourth larval instar, with the defects manifesting in the fifth
larval instar and pupae [161–164]. Molecular mapping and cloning have affirmed that the
fl locus houses the homolog of the fng gene [165]. A whole-mount in situ hybridization in
wing discs revealed a dorsal layer-specific expression pattern of fng and the dorsal-ventral
boundary expression of BmWnt1, the homolog of wg [165,166]. In fl/fng mutant wing
discs, the expression of BmWnt1 was diminished [165]. The microRNA mir-2 was found
to target fng, with an over-expression of mir-2 and somatic mutagenesis of fng using the
CRISPR/Cas9 system, resulting in similar wing morphology defects and BmWnt1 expres-
sion inhibition [167]. Similar as observed in the fruit fly, the selector gene ap is expressed
in the dorsal layer of the wing disc and vg mutants exhibit small wing phenotypes [168].
These findings indicate that B. mori likely employs the same regulatory module, including
the compartment selector (Ap), Notch signaling cascade and downstream targets to govern
D/V boundary formation and wing growth.

Butterflies are renowned for their colorful wings with many types of pattern elements
and colors. In Precis coenia, the buckeye butterfly, ap expression was confined to dorsal
cells while wg was expressed in cells along the future wing margin in the fifth instar wing
discs [169]. This expression pattern resembles that of the fruit fly and silkworm [165,169].
Studies in multiple butterfly species proposed that Notch up-regulation likely represents
an early step in eyespots and the formation of other wing color patterns [170–177]. The
expression pattern of the Notch protein in the pupal wing of Heliconius erato indicates that
Notch-mediated lateral inhibition might underly butterfly wing scale organization [178].
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However, functional studies are required to demonstrate the precise roles of Notch signaling
during butterfly wing development.

The highly specialized forewings, called elytra, are considered as an important trait
driving the successful radiation of Coleoptera insects (beetles) [179]. Differing from the
hindwings, beetle elytra consist of thick, hardened and pigmented cuticles and many
morphologically distinct features. Nevertheless, the expression pattern of key regulatory
genes in the elytra and hindwings of T. castaneum was similar [180]. The expression of Notch
target genes, wg and cut, was found in D/V boundary cells in both elytra and hindwing
discs [180]. RNAi knock-down of Notch pathway genes (vg, nub and ap) led to a wing
growth defect and wing margin truncation [180]. The abrupt gene was found to encode a
novel regulator of Notch signaling essential for wing vein patterning in both the red flour
beetle and fruit fly [181]. Upon ectopic expression in the fly wing disc, E(spl) proteins from
the red flour beetle suppressed the formation of bristles and veins [73]. The red flour beetle
has emerged as an important model insect with elaborate genetic toolkit [182,183]. In the
foreseeable future, studies in T. castaneum will bring up new insights about the roles of
Notch signaling across different insect wing types.

A recent study in the brown planthopper, Nilaparvata lugens, revealed that the plan-
thopper Notch gene encodes multiple protein isoforms by alternative splicing [184]. When
dsRNA targeting different isoforms were injected into the planthopper nymphs, several
Notch variants were found to regulate bristle, vein and wing blade development [184].
While the expression of Notch pathway genes has been detected in the wing discs of various
insect species, their specific functions require further investigation [185,186].

6. Notch Signaling in Insect Leg Development

Notch signaling plays diverse and fundamental roles in leg patterning and growth in
D. melanogaster [187]. The legs of the fruit fly are composed of ten segments, each separated
by a flexible joint. A fusion of leg segments and a reduction in leg growth have been
noticed in Notch, Dl and Ser mutants [188–190]. On the other hand, an ectopic activation
of Notch signaling within the leg was sufficient to induce the formation of extra segment
borders (joints) and cell growth [191–193]. Segment separation in the larval stage is crucial
for proper leg development. Notch, Ser, Dl and fringe are expressed in a segmentally
repeated pattern in the imaginal leg disc [191–194]. Notch is asymmetrically activated
at the distal side of the Ser- and Dl-expressing domains, forming nine rings along the
proximal-distal axis in the leg disc [195]. A continual activation of Notch across segments
leads to shortened legs with segmentation defects [191–193]. Many factors and pathways
interact with Notch signaling to establish the segment boundaries, although the underlying
mechanisms are not fully elucidated [196–209]. Proper Notch pathway activation is also
vital for joint formation and leg growth [210]. The leg joints can be classified into the
proximal “true joints” and the distal “tarsal joints”. True joint morphology varies, while
tarsal joints consist of a proximal “socket” and a distal interlocking “ball” [195]. Both types
of joints are shaped by Notch signaling, with distinct target genes activated in true joints
and tarsal joints [187,195,211]. Notch signaling is essential for the fate specification, cell
shape changes and cell movements necessary for tarsal joint morphogenesis [212,213]. How
Notch controls leg growth is largely unknown, with indications that an interaction with the
Hippo pathway is involved [192,197].

The roles of Notch in leg segmentation, joint formation and leg growth are conserved
across insect species. In D. hydei, Notch mutants exhibited tarsal elements fusion [146]. In
the cricket G. bimaculatus, RNAi knock-down of Notch led to a reduced leg length and loss
of joints [70]. The red flour beetle T. castaneum experienced joint loss but not leg length
reduction after Notch RNAi, while Ser RNAi eliminated joints and reduced overall leg
length [214,215]. The nubbin (nub) gene was expressed in a series of concentric rings in fly
leg discs and a mutation of nub resulted in shortened legs [216,217]. Notch signaling directly
regulates nub expression in fly leg discs [192,203]. The nub homologs were expressed in
the developing legs in several insect species, including the cockroach P. americana, the
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milkweed bug O. fasciatus and the primitively wingless firebrat Thermobia domestica [218].
RNAi knock-down of nub in O. fasciatus embryos led to shortened thoracic legs and the
growth of ectopic appendages on abdominal segments [219]. In the house cricket Acheta
domesticus and the cockroach P. americana, nub was required for leg segment growth and
joint formation [220]. In P. americana, the nub expression level was reduced after Notch RNAi,
suggesting a potential regulatory role of Notch signaling on nub expression [220]. Several
signaling pathways, including Notch, were upregulated during regenerative patterning
and growth in ladybird beetle (Harmonia axyridis) legs [221]. Notch-mediated appendage
segmentation has been proposed as an arthropod defining trait, which could be further
tested in other insect species [222].

7. Notch Signaling in Insect Reproduction

Notch signaling plays essential roles during ovary development in D. melanogaster,
particularly for egg chamber formation and the assembly and maintenance of the ovarian
germline stem cell (GSC) niche [33,223,224].

Oogenesis in fruit flies initiates within the germarium located at the anterior tip of the
ovariole. In the germarium, GSCs undergo asymmetric division to produce cystoblasts.
Each cystoblast undergoes four rounds of incomplete cell division to generate a germline
cyst containing 16 interconnected cells. Somatic follicle cells encapsulate the germline cyst;
the collection of germline and follicle cells at this point is known as an “egg chamber.”
Within the egg chamber, one germline cyst cell becomes the oocyte while the other cyst
cells become nurse cells that contribute RNAs and proteins to the oocyte. The egg chamber
progresses through numerous developmental stages and moves toward the posterior of
the ovary before becoming a mature egg [224]. Temperature-sensitive mutant alleles
of Notch and Dl significantly reduced the number of eggs laid by female flies. These
mutations resulted in defects in follicle cell development and oocyte anterior-posterior (A-P)
polarity [225]. Subsequent studies showed that Notch activity in follicle cells is essential
for their transition from mitosis to endocycling, a process regulated by Dl expressed in
germline cells [226–238]. The egg chamber possesses intrinsic A-P polarity, with nurse cells
at the anterior and oocyte at the posterior [239]. Interestingly, this A-P polarity emerges
through a relay mechanism that propagates asymmetry from older cysts to younger cysts.
During early oogenesis, a germline cyst signals through the Dl-Notch pathway to induce
the formation of anterior polar cells as it buds from the germarium. The anterior polar
cells express the JAK/STAT signaling ligand unpaired, prompting the adjacent anterior
stalk/polar precursor cells to adapt the stalk cell fate. The stalk guides the positioning of the
oocyte at the posterior pole of the neighboring younger cyst through adhesive interactions.
As oocyte positioning takes place, a new round of Dl-Notch signaling in the younger cyst
induces anterior polar cells [240,241]. Thus, each cyst imparts polarity to the next cyst
through a series of posterior to anterior induction events [242,243].

The concept of stem cell niche was proposed around half a century ago to describe
the tissue microenvironment supporting the self-renew and maturation of haemopoietic
stem cells, later extended to other stem cell-containing tissues. However, the ability of the
niche to support stemness was first demonstrated in studies of fly ovarian GSC [244]. At
the germarium’s anterior tip, the terminal filament cells and cap cells form the niche that
sustains two to three ovarian GSCs. Proper Notch signaling is critical for the development
of both terminal filament cells and cap cells [244–253]. The strength of Notch signaling
also dictates the size of the ovarian GSC niche. The hyperactivation of Notch signaling
yields more cap cells and larger niches, supporting more GSCs. Conversely, reduced Notch
signaling results in decreased cap cell numbers and niche size, and less GSCs [246]. In
mature adult flies, Notch signaling also conveys the impact of diet and age on GSC niche
activity and GSC maintenance [254–258].

Two types of ovarioles, panoistic ovarioles and meroistic ovarioles, are present in
insects. In panoistic ovarioles, all progenies of germline stem cell become oocytes and
nurse cells are absent. Meroistic ovarioles contain nurse cells and can be further classified
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into polytrophic ovarioles and telotrophic ovarioles. In polytrophic ovarioles, nurse cells
are found within the egg chamber and transport mRNA and proteins to oocyte through
ring canals. While in telotrophic ovarioles, nurse cells reside in the germarium and are
connected to early stage oocytes by nutritive cords [259]. Although it is generally believed
that panoistic ovaries represent the ancestral type from which meroistic types had derived,
there is no precise correlation between ovariole type and phylogenetic position [260]. In the
panoistic ovariole of the cockroach Blattella germanica, inhibiting Notch signaling caused
defects in stalk formation, follicle cell proliferation and follicle cell differentiation [261–264].
In the telotrophic ovariole of T. castaneum, Notch signaling is vital for stalk formation,
follicle cell proliferation and establishing an A-P axis [265,266]. Interestingly, the role of
Notch signaling in follicle cells varies significantly across different insect species. In D.
melanogaster, Notch promotes the switch from mitosis to endocycle in follicle cells, whereas
in B. germanica and T. castaneum, Notch signaling is essential for maintaining the mitotic
cycle. The connection between Notch’s role in follicle cells and ovariole structure remains
an open question. Notch was found to regulate vitellogenesis in the L. migratoria fat body, a
process critical for oocyte maturation and ovarian growth [267]. Vitellogenesis is generally
required for insect oogenesis and egg production; whether Notch signaling plays a role
in this basic physiological event in other insects could be further examined [268]. In the
honeybee A. mellifera, Notch signaling represses oogenesis in the germarium of worker
bees [269,270]. In honeybee queens, Notch pathway genes were dynamically expressed in
the ovariole, but their functions have not been examined [271,272]. Abundant Notch-like
proteins were identified in the early stage Bactrocera dorsalis ovary, indicating a potential
role in oriental fruit fly oogenesis [273]. Further investigations will help us to understand
how Notch carries out specific roles in distinct cell types, developmental stages and insect
species during ovary development and reproduction.

8. Notch Signaling in Insect Physiological Activities

Recent studies have discovered that Notch signaling is involved in regulating insect
physiological activities across various conditions. Nutrition is one of the most important
environmental variables impacting insect life history. Insects adjust their physiological
activities and metabolic programs in response to changes in food quality and quantity [274].
The insulin pathway functions as a nutrition sensor, orchestrating metabolic requirement
and other biological events [268]. In female insects, reproduction requires a massive
input of nutrition resources to produce eggs enriched with nutrient reserves [275]. The
insulin pathway transmits the diet’s impact on reproduction via the regulation of Notch
signaling in the D. melanogaster ovary [254–256,258,276]. In somatic tissues, such as the gut,
muscle and neuronal system, insulin signaling influences Notch activity through diverse
mechanisms [277–279]. A recent study found that dietary cholesterol influences the level
and duration of Notch signaling by modulating Dl and Notch stability and trafficking,
which in turn impacts cell differentiation in fly adult midgut and alters the metabolic
program [280]. The expression of Notch pathway genes was upregulated upon provision of
a high-quality diet to the honeybee A. mellifera [281]. In the larval guts of the Asian honey
bee, Apis cerana, the Notch pathway appeared to be targeted by miRNAs and piRNAs at
different developmental stages [282,283]. A supplementation of pterostilbene, fucoxanthin
and a traditional Chinse herb Cistanche tubulosa extended the lifespan of fruit fly adults and
increased the expression of Notch pathway genes [284–286]. These studies highlight the
roles of Notch signaling in responding to nutrition status in insects.

Many viruses pose significant threats to human health and can be transmitted by
vector insects such as mosquitoes [287]. Following infection with the alphavirus Sindbis,
expression of Notch pathway genes increased in S2 cells, suggesting that Notch signal-
ing may be involved in the establishment of virus persistence in insect cells [288]. The
induction of Notch pathway genes was also observed upon Dengue virus infection in
Aedes albopictus cells [289]. Infections with Dengue virus and Chikungunya virus led to
up-regulation of Notch pathway genes and midgut cell division in the vector mosquito
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Aedes aegypti [290–292]. Knocking-down of Dl expression by RNAi inhibited the infection-
induced midgut cell division, while significantly enhancing the susceptibility of the refrac-
tory Aedes aegypti strain to Dengue virus [293]. The human malaria parasite Plasmodium
berghei also induced midgut cell division and activated the Notch pathway in the mosquito
vector Anopheles albimanus [294,295]. In the midguts of Anopheles gambiae, Plasmodium
falciparum infection induced changes in chromatin status within regulatory elements of
Notch pathway genes, but the significance of these observations needs to be further ex-
plored [296]. In the larval midgut of the wild silk moth Antheraea yamamai, a pathogenic
nucleopolyhedrovirus infection induced up-regulation of Notch pathway genes [297]. The
inhibition of Notch signaling was associated with midgut development defects in locust
L. migratoria and the yellow fever mosquito Aedes aegypti [298,299]. In the fruit fly midgut,
Notch signaling drives asymmetric division in the intestine stem cells, governing tissue
homeostasis and responses to various stimulations [300–304]. Whether virus and pathogen
infection would trigger Notch-related responses in the intestinal tract could be further
tested in other insects.

Notch plays crucial roles in the determination of hematopoietic cell fate and the
maintenance of larvae lymph gland, a vital organ of the immune defense system in D.
melanogaster [35,305–308]. In response to fungal infection and wasp parasitization, a reduc-
tion in Notch signaling activity triggers specific immune responses in fruit flies [308,309].
Gram-negative bacteria stimulation led to up-regulation of Notch pathway genes in honey
bee workers [310]. Several lncRNAs were identified as regulators of immune priming in T.
castaneum, likely acting through the modulation of Notch pathway gene expression [311].
These studies suggest that Notch signaling might be involved in specific immune responses
upon pathogen infection in insects.

Using the developing wing as a model system, it has been observed that the anthrax
toxins and cholera toxins inhibit endocytic trafficking of Notch signaling components and
impair Notch activity in D. melanogaster [312,313]. In a Zika virus infection model, the non-
structural virus protein NS4A was found to restrict fly eye growth through regulation of
JAK/STAT signaling and to inhibit wing growth by affecting Notch activity [314]. Exposure
to the heavy metal mercury resulted in neurogenesis defects in the embryo and marginal
nicks in the wing, primarily through inhibiting NICD production in the fruit fly [315].
Treatment with methylmercury, an organic form of mercury easily absorbed by the intestinal
trac and a common environmental pollutant, increased Notch signaling activity in fly
cells and embryos [316–319]. The response of Notch target genes to mercury exhibited
variations in different cell types, upon treatment with organic or inorganic forms and at
times, independently of the Notch receptor [316–319]. Pesticide exposure also impacts
Notch signaling in various insects. For instance, feeding fly larvae sublethal doses of
chlorfenapyr resulted in developmental defects in the wing and leg and a disruption
of Notch signaling activity [320]. Exposure to adverse environmental factors like a low
dose of gamma-irradiation, formaldehyde, toluene and dioxin impaired Notch signaling
in adult flies [321]. Harmine, a natural β-carboline, impaired fruit fly development by
influencing Notch and other signaling pathways [322]. In the stingless bee Partamona
helleri, fipronil exposure decreased Notch signaling activity in the brain and Malpighian
tubules [323,324]. Although a sublethal level of fluralaner impaired larval development
and led to wing notches in the common cutworm Spodoptera litura, the impact on Notch
signaling remains unexamined [325]. Moreover, Notch signaling showed responsiveness
to ultraviolet irradiation and metamorphosis oxidative stress in B. mori [326]. Collectively,
these results suggest that Notch signaling may be involved in the response to hazardous
factors in insects.

Insects can experience functional hypoxia when the oxygen supply is insufficient for
metabolism demands and respond to hypoxia through diverse strategies [327]. In the
fruit fly, Notch signaling regulates hypoxia tolerance, as flies with impaired Notch activity
exhibit reduced hypoxia tolerance, whereas those with hyperactivated Notch signaling
display the opposite effect [328–332]. It would be intriguing to explore whether such effects
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of Notch signaling in hypoxia tolerance are also present in other insects, particularly those
experiencing environmental hypoxia at specific stages of their life cycle.

9. Notch Signaling in Less Studied but More Interesting Tissues

Insects have evolved to develop a multitude of captivating novel structures while
keeping a steady basic body plan and the mechanisms responsible for the evolution of
such morphological novelties remain puzzling [333]. From a developmental biology per-
spective, considering Notch signaling as one of the fundamental regulatory units of tissue
development and growth, its involvement in shaping these morphological novelties is not
surprising at all.

The bull-headed dung beetle Onthophagus taurus and numerous other scarab beetle
species exhibit rigid projections of the exoskeleton from the thoracic and head regions
referred to as horns. Beetle horns are highly diversified and have been viewed as an
evolutionary novelty due to a lack of visible homology with existing structures. A previous
study has found that beetle thoracic horns evolved from wing serial homologs [334]. Notch
pathway genes were expressed in developing dung beetle horns [335,336]. Importantly,
Notch signaling is a key regulator responsible for the dramatic diversity of male horn sizes
and shapes within and across Onthophagus species [337]. In the Asian rhinoceros beetle
Trypoxylus dichotomus, Notch RNAi disturbed horn primordial furrow depth, leading to
defects in the horn shape [338].

The dorsomedial and the abdominal support structure are two types of body wall
projections commonly observed in scarab beetle pupae. A study in Onthophagus taurus has
revealed that these structures are indeed wing serial homologues and Ser RNAi disrupted
the formation of both structures [339]. Another intriguing example is the “gin-trap”, a
structure exclusively found on pupae of the closely related beetle families Tenebrionidae
and Colydiidae. Gin-traps are believed to be evolved after the radiation of holometabolous
insects and function as pupae defensive organs to grasp the appendages of predators. In
the beetle T. castaneum, RNAi knock-down of Notch pathway components disrupted the
formation of gin-traps [340].

In dung beetles, the fore tibia has transformed into a specialized digging tool that
facilitates access to the compacted soil as a habitat. This fore tibia exhibits a flattened and
enlarged configuration, possessing four to five prominent tibial teeth which enhance the
digging performance. RNAi of Ser and downstream genes of Notch pathway resulted in a
reduction in tibial teeth and a fusion of leg segments in Onthophagus taurus [341]. These
findings underscore the recurrent utilization of Notch signaling in the development of
evolutionarily novel morphological structures in beetles.

The insect antennae, serving as the principal olfactory sensory organs, are critical for
locating food resources, finding mating partners, choosing oviposition sites, as well as for
evading predators and toxic substances. The insect antennae exhibit remarkable diversity in
shapes, structures and sizes [342]. In D. melanogaster, the antenna cell fate is determined by
several selector genes, while Notch signaling regulates cell proliferation, tissue growth and
the formation of boundaries between antenna segments [192,203,343–345]. In the beetle T.
castaneum, Ser RNAi resulted in a strong reduction in antenna length and a complete absence
of joints, whereas Notch RNAi led to the absence of antennal joints without significantly
affecting antenna growth [346]. Interestingly, Notch RNAi, rather than Ser RNAi, decreased
the density of sensory bristles on the antenna [346]. In the cricket G. bimaculatus, the Notch
and Dl expression pattern suggested a potential role in antennal segmentation [70]. The nub
gene, a down-stream target of Notch signaling during leg development in D. melanogaster
and P. americana, also plays a role in antenna development [220]. In the milkweed bug
O. fasciatus, nub RNAi resulted in sensory bristle defects without a significant impact on
antenna segmentation and growth [219]. In Acheta domesticus and P. americana, a depletion
of nub by RNAi led to the fusion of antenna segments [220]. Expression of the Notch target
gene E(spl)mβ was detected in specific segments in B. mori larval antennal primordium,
which develops into the feathery antenna seen in adults [347]. RNAi knock-down of Notch
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led to a significant fusion of antenna segments, an extensive reduction along the PD axis
and milder defects such as lateral branch fusion in B. mori [348]. These observations support
a general requirement of Notch signaling in insect’s antenna growth and segmentation.

Insects exhibit a remarkable diversity of mouthpart morphologies, yet the genetic
regulatory network governing mouthpart development is not completely understood.
RNAi knock-down of Dl in the silkworm and honeybee resulted in mild alterations in
embryonic labrum shape [89,100]. Knock-down of two components of the Notch pathway,
Ser and mib1, led to loss of the labrum in T. castaneum larvae presumably due to defects in
cell proliferation [215]. RNAi of Notch and Dl also disrupted sensory organ development
within the T. castaneum labrum [349]. The role of Notch signaling during mouthpart
construction in the fruit fly and other insects has yet to be reported.

The diverse color patterns of insects often serve as camouflage to protect them from
predators [350]. In the case of the Asian swallowtail butterfly, Papilio xuthus, young larvae
exhibit black and brown patterns resembling bird droppings, transitioning to mimic host
plants during their final instar. This change in color pattern is initiated by the juvenile
hormone at the early fourth instar. Both Dl and E(spl)mβ were specifically expressed in the
epidermis of the particular regions responsible for color markings during this transition
phase [351,352]. A functional analysis demonstrated that Notch signaling defines the edge
and pigmentation area of the final color patterns [353]. RNAi knock-down of Notch and Dl
resulted in an expansion of the pigmentation area and a disruption of border lines in the
fifth instar larvae. A similar but rather subtle change in larval color pattern was observed in
Papilio machaon, a species closely related to Papilio xuthus, following Dl knock-down. In the
silkworm L mutant larvae, which displays pairs of black brown twin spots on each body
segment, knockdown of Notch but not Dl, Ser or fringe caused pigmentation loss in the twin
spots [353]. These findings underscore the pivotal role of Notch signaling in the adaptive
evolution of camouflage formation in caterpillars, motivating further exploration of the
contributions of Notch signaling in color pattern development across diverse insect species.

10. Conclusions

Over a century has passed since the discovery of the first Notch mutant in the fruit
fly, and this small insect has served as a prominent model system for dissecting the devel-
opmental roles of Notch signaling. Comprehensive studies in this little bug have yielded
remarkable advancements in understanding the mechanisms of Notch signaling. The
crucial components, the signal transduction cascade and the principal modes of action of
the Notch pathway appear to be conserved across insect species. The participation of Notch
signaling in the development of diverse insect tissues has been substantiated (Table 1).

Table 1. Roles of Notch signaling across insect species.

Tissue/Organ Biological Event Species

Embryo Neurogenesis

Drosophila melanogaster
Gryllus bimaculatus

Periplaneta americana
Gryllus bimaculatus
Tribolium castaneum

Lucilia cuprina

Embryo segmentation
Bombyx mori

Periplaneta americana
Gryllus bimaculatus a
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Table 1. Cont.

Tissue/Organ Biological Event Species

Wing D/V boundary formation and wing
margin integrity

Drosophila melanogaster
Drosophila hydei
Drosophila virilis
Musca domestica
Lucilia cuprina
Bombyx mori

Tribolium castaneum
Precis coenia b

Wing growth

Drosophila melanogaster
Drosophila hydei
Drosophila virilis
Musca domestica
Lucilia cuprina
Bombyx mori

Tribolium castaneum

Vein formation

Drosophila melanogaster
Drosophila hydei
Drosophila virilis
Musca domestica
Lucilia cuprina
Bombyx mori

Tribolium castaneum
Nilaparvata lugens

SOP selection and sensory bristle
development

Drosophila melanogaster
Drosophila hydei
Drosophila virilis
Lucilia cuprina

Nilaparvata lugens
Scale organization Heliconius erato b

Leg Leg segmentation

Drosophila melanogaster
Drosophila hydei

Gryllus bimaculatus
Acheta domesticus

Periplaneta americana
Onthophagus taurus

Joint formation and morphogenesis

Drosophila melanogaster
Gryllus bimaculatus
Tribolium castaneum

Acheta domesticus
Periplaneta americana
Onthophagus taurus

Leg growth

Drosophila melanogaster
Gryllus bimaculatus
Tribolium castaneum
Oncopeltus fasciatus
Acheta domesticus

Periplaneta americana
Onthophagus taurus

Leg regeneration Harmonia axyridis b
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Table 1. Cont.

Tissue/Organ Biological Event Species

Ovary Follicle cell differentiation and
proliferation

Drosophila melanogaster
Blattella germanica

Tribolium castaneum

Germline stem cell niche assembly
and maintenance

Drosophila melanogaster
Apis mellifera

Bactrocera dorsalis b

Oocyte anterior-posterior polarity Drosophila melanogaster
Tribolium castaneum

Vitellogenesis Locusta migratoria

Physiological
activity

Nutrition response in adult intestinal
tract

Drosophila melanogaster
Apis mellifera b

Apis cerana b

Pathogen infection response in adult
intestinal tract

Aedes aegypti
Aedes albopictus b

Anopheles albimanus b

Anopheles gambiae b

Antheraea yamamai b

Specific immune responses
Drosophila melanogaster

Apis mellifera b

Tribolium castaneum b

Mercury and pesticide toxicity

Drosophila melanogaster
Partamona helleri b

Spodoptera litura b

Bombyx mori b

Hypoxia tolerance Drosophila melanogaster

Other
organs/tissues Beetle horn development Onthophagus taurus

Trypoxylus dichotomus
Dorsomedial and the abdominal
support structure development Onthophagus taurus

Gin-trap development Tribolium castaneum
Digging tibia development Onthophagus taurus

Antenna growth and morphogenesis

Drosophila melanogaster
Tribolium castaneum
Gryllus bimaculatus
Oncopeltus fasciatus
Acheta domesticus

Periplaneta americana
Bombyx mori

Mouthpart development Drosophila melanogaster
Tribolium castaneum

Color pattern formation

Papilio xuthus
Papilio machaon

Bombyx mori
Butterfly wing eyespots b

a Whether Notch signaling directly regulates cricket embryo segmentation is under debate. b Conclusion is based
on gene expression pattern, functional studies are required.

Nevertheless, numerous fascinating developmental phenomena that are absent in
the fruit fly exist across various insect species [58,84,342,350,354,355]. Recent advances
in functional genetics tools such as genome editing in ‘non-model’ insect species have
made it feasible to uncover novel factors and evaluate the roles of Notch signaling in
diverse developmental phenomena. Future studies will undoubtedly help us to better
understand the extensive roles of Notch in shaping insect tissues and could also reveal
novel regulators, functions and signaling mechanisms. Importantly, these insights could be
readily harnessed for the design of genetic control strategies such as RNA pesticides [356],
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genetic sexing [357] and gene drive systems [358], with the aim of safeguarding crops and
humans against insect pests.
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