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Abstract: The calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed through-
out the human body. While primarily recognized as a nociceptive mediator, CGRP antagonists are
currently utilized for migraine treatment. However, its role extends far beyond this, acting as a regula-
tor of numerous biological processes. Indeed, CGRP plays a crucial role in vasodilation, inflammation,
intestinal motility, and apoptosis. In this review, we explore the non-nociceptive effects of CGRP
in various body systems, revealing actions that can be contradictory at times. In the cardiovascular
system, it functions as a potent vasodilator, yet its antagonists do not induce arterial hypertension,
suggesting concurrent modulation by other molecules. As an immunomodulator, CGRP exhibits
intriguing complexity, displaying both anti-inflammatory and pro-inflammatory effects. Furthermore,
CGRP appears to be involved in obesity development while paradoxically reducing appetite. A
thorough investigation of CGRP’s biological effects is crucial for anticipating potential side effects
associated with its antagonists’ use and for developing novel therapies in other medical fields. In
summary, CGRP represents a neuropeptide with a complex systemic impact, extending well beyond
nociception, thus offering new perspectives in medical research and therapeutics

Keywords: calcitonin gene-related peptide (CGRP); migraine; comorbidity

1. Introduction

Calcitonin Gene-Related Peptide (CGRP) is a neuropeptide consisting of 37 amino
acids [1]. It was discovered approximately 40 years ago as a product of alternative splic-
ing of the calcitonin gene mRNA and isolated from the thyroid of patients with thyroid
carcinoma [2]. It belongs to the family of adrenomedullins, calcitonin, and amylin and is
primarily located in the central nervous system, particularly in the hypothalamus, olfactory
system, and gustatory system [1]. In the peripheral nervous system, it is found in type C
and Aδ sensory fibers that play roles both as afferents (nociceptive) and efferents and are
present near blood vessels in all organs of the body [3,4].

CGRP is primarily known for its role in pain perception processes associated with
migraine [5–7]. It is released by the activated trigeminovascular system and is responsible
for both migraine pain perception and the direct induction of migraine attacks [5–7]. This
has generated strong pharmacological interest, and in the 1990s, it was discovered that
triptans, drugs already used for decades in migraine, inhibit CGRP release [8]. Based on
this evidence, drugs with a direct action on CGRP have been subsequently developed, such
as monoclonal antibodies and gepants targeting CGRP and its receptor [1,9].
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In addition to its role as a pain mediator, CGRP is the most potent vasodilator dis-
covered to date [1]. Even the injection of small amounts of CGRP at the cutaneous level
causes massive vasodilation of arterioles and an increase in blood flow in the inoculated
area [10]. These effects indicate an important role of CGRP in the cardiovascular system.
Furthermore, the ubiquitous distribution of CGRP in the body stimulates interest in the
systemic effects that this molecule could have, both physiologically and pathologically. A
comprehensive analysis of CGRP effects is also important, considering the increasing use
of its antagonists in migraines to understand and predict the short-term and long-term
effects of these drugs [11].

The purpose of this review is therefore to summarize the current understanding of
the role of CGRP in the physiology and pathophysiology in different body districts. The
synthesis and release of CGRP, as well as the biological effect of binding to its receptors,
will be analyzed. Subsequently, the non-nociceptive and non-neurological effects of CGRP
on different organs and systems will be examined.

This narrative review included a search of literature through PubMed of articles in
English. We searched for studies that included “CGRP”, “Calcitonin gene related peptide”,
“cardiovascular”, “heart”, “vessels”, “gastrointestinal”, “skin”, “systemic effects”, “im-
munology”, and “musculoskeletal”. We screened abstracts and then extracted information
relevant to this review.

2. CGRP Biology
2.1. CGRP Isoforms

CGRP exists in two main forms, α and β, synthesized from two distinct genes located
at different sites on chromosome 11 in humans [12,13]. The CALC I gene is part of a gene
family that includes adrenomedullin (1 and 2), and amylin, and is responsible for the
production of calcitonin or the alpha isoform of CGRP if alternative splicing occurs [1]. The
CALC II gene determines only the formation of β-CGRP [1]. CGRP α and CGRP β share
approximately 90% homology and exhibit similar biological activities [1].

2.2. Regulation of CGRP Synthesis and Release

The regulation of CGRP synthesis is still poorly understood [1]. It appears to be
enhanced in situations of damage to the nerve endings of C or Aδ sensory fibers or in
the presence of inflammation in tissues adjacent to the fibers [14]. Nerve growth factor
(NGF) is involved in the growth and function of sensory nerves and appears to play an
important role in increasing CGRP production in dorsal root ganglia [15]. Furthermore,
elevated levels of NGF and CGRP are observed in patients with migraines [16]. Other
factors, such as brain-derived neurotrophic factor (BDNF), may influence CGRP release
and activity [17]. The Calcitonin Gene-Related Peptide (CGRP) is co-localized in pain nerve
terminals along with Substance P (SP), which exhibits similar biological effects. SP acts as
a cutaneous vasodilator and increases microvascular permeability, with an earlier release
and less potent and enduring effects compared to CGRP [18]. SP serves as a key mediator
of pain perception in pain modulation and sensation. Additionally, it is also involved in
the regulation of inflammation, nausea, and vomiting, and the modulation of behavioral
disorders [18].

After synthesis, CGRP is stored in dense vesicles within sensory nerve endings and
is released through calcium-dependent exocytosis [19,20]. The release of CGRP occurs
following the activation of TRPV1 and TRPA1 receptors [21,22]. TRPV1 can be activated by
painful thermal stimuli, pH reduction, and inflammation [22].

Additionally, CGRP release also appears to occur in response to vasoconstrictors
such as angiotensin II and noradrenaline, which activate α2 adrenergic receptors with
NGF-induced CGRP release [23].
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2.3. CGRP Receptor

The CGRP receptor consists of two subunits: the calcitonin-like receptor (CLR) and
the receptor activity-modifying protein (RAMP). CLR belongs to the class B of G protein-
coupled receptors (GPCR), which also includes receptors for calcitonin, vasoactive intestinal
peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), and parathyroid
hormone (PTH) [1]. The RAMP protein family consists of three members: RAMP1, RAMP2,
and RAMP3 [1].

The co-expression of CLR and RAMP1 forms a high-affinity receptor for CGRP (CGRP1
receptor), while the dimerization of CLR and RAMP2 creates a receptor highly responsive
to adrenomedullin (AM1 receptor) [1]. The RAMP3 receptor confers a second receptor for
adrenomedullin (AM2 receptor) with some selectivity for CGRP [24,25]. Indeed, although
the true receptor for CGRP is considered to be formed by the CLR/RAMP1 complex,
in vitro studies have shown that CGRP has some affinity for the CLR/RAMP3 complex
(AM2 receptor) [24].

2.4. Intracellular Signaling

The binding of CGRP to the CGRP1 receptor results in increased intracellular cAMP
levels, activation of protein kinase A, and the opening of ATP-sensitive K+ channels [26].
This pathway is primarily responsible for smooth muscle cell relaxation and vasodilation.
Another pathway that leads to endothelium-dependent vasodilation is associated with the
stimulation of nitric oxygen (NO) release [27].

Activation of protein kinase A also induces the expression of the c-fos gene, which
appears to be involved in pain sensitization [28]. CGRP can activate mitogen-activated
protein kinases (MAPK) that promote fibroblast proliferation [29]. Furthermore, it can
stimulate antiapoptotic pathways involving MAPK, ERK1/2, and p38 [30]. Activation of
ERK and p38 also appears to modulate the response to morphine [31].

3. Physiological and Pathophysiological Effect of CGRP
3.1. CGRP in the Cardiovascular System
3.1.1. CGRP as a Vasodilator

CGRP can induce vasodilation and increase blood flow in various organs. For example,
the injection of femtomoles of CGRP causes an increase in microcirculation in the skin, brain,
coronary, and renal regions [10,32]. As previously discussed, the vasodilation mechanism
of CGRP involves both the NO-dependent pathway and the NO-independent pathway [33].

3.1.2. CGRP in the Regulation of Systemic Circulation

CGRP can influence blood pressure regulation. It is believed that CGRP is released in
response to hypertensive stimuli such as angiotensin II activation and postural changes [34]
and plays an important role in modulating baroreceptor reflex sensitivity [35]. Despite
CGRP administration resulting in a reduction in systemic arterial pressure [13,33,36], it is im-
portant to note that it does not act as a hypotensive mediator since it simultaneously causes
a positive inotropic and chronotropic response in the heart, preventing hypotension [37,38].
The function of CGRP, therefore, appears to be that of a regulator and modulator of the
pressor response. This hypothesis is supported by the fact that CGRP antagonists do
not seem to cause a significant pressor effect, likely due to the consequent activation of
vasodilatory mediators such as NO and prostaglandins [39,40]. Furthermore, studies on
genetic polymorphisms in the CALC1 gene have shown an association between specific
genetic variants, such as T-692C, and an increased susceptibility to the development of
arterial hypertension [41].

3.1.3. CGRP Physiologic Effect in the Heart

CGRP plays a cardioprotective role [1]. It is found in fibers innervating coronary
arteries, papillary muscle, and the sinoatrial and atrioventricular nodes [42]. As previously
mentioned, CGRP has a positive effect on cardiac chronotropy and inotropy [43]. Further-
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more, CGRP promotes coronary vasodilation, even if its effect is predominant in the distal
portion of the coronary vessels [44], and is involved in the formation of new blood vessels
in response to ischemic insults [45]. Other beneficial effects of CGRP include reducing
inflammation and macrophage accumulation, decreasing apoptosis, and post-infarction
fibrosis [46]. Indeed, CGRP plays an antiapoptotic role in cardiomyocytes by activating the
ERK1/2 signaling pathway [47].

3.1.4. CGRP in Myocardial Infarction and Heart Failure

Following myocardial infarction or during acute heart failure, increased levels of CGRP
are observed as a response to metabolic stress and reduced coronary vasodilation [48,49].
Endogenous CGRP administration improves coronary circulation in patients with cardiac
pathologies [50–52] and performance during exercise tests [53]. CGRP also plays an im-
portant role in cardiac preconditioning, providing greater resistance of cardiomyocytes
to apoptosis and reducing the inflammatory response [54]. It has also been shown that
individuals with coronary artery disease have lower levels of CGRP compared to healthy
subjects [55]. Importantly, CGRP inhibitors and antagonists do not seem to increase the
risk of ischemia in healthy individuals [56].

3.1.5. CGRP in Atherosclerosis and Vascular Remodeling

Atherosclerosis is characterized by endothelial dysfunction, reduced NO production,
intimal inflammation, and the formation of atherosclerotic plaques [57]. CGRP plays a
protective role on the endothelium by reducing inflammation and promoting neointimal
formation [58–60]. Nevertheless, monoclonal antibodies targeting the CGRP receptor
(i.e., erenumab) did not modify flow-mediated (endothelial-dependent) dilation in treated
patients [61]. Furthermore, CGRP reduces vascular remodeling through increased cAMP
levels [62].

3.2. CGRP in the Skin

CGRP plays various roles in the skin. Physiologically, CGRP can be released not
only by sensory afferents but also by keratinocytes and immune cells [63]. Primarily, it
causes cutaneous vasodilation, increasing blood flow to the affected region in response
to various stimuli [32]. For example, it is a modulator of the “skin axon reflex flare”
phenomenon, which causes cutaneous vasodilation after stimulation of C-fiber nerve roots
and, together with antidromic vasodilation, is responsible for flushing [64]. Increased
plasma and urinary levels of CGRP have been observed in patients with postmenopausal
flushing [65]. Another function appears to be thermoregulation through the regulation
of vasodilation in dermal arterioles [1]. The vasomotor effects of CGRP lead to increased
cutaneous edema formation in response to contusions and wounds, with increased vessel
permeability and leukocyte accumulation in the skin [64,66]. It also plays a role in immune
regulation in atopic dermatitis, reducing the inflammatory response [67].

CGRP in Cutaneous Wound Healing

CGRP enhances wound healing and modulates pain perception [68]. In CGRP gene
knockout mice, a reduction in tissue repair is observed [69]. This effect may be associated
with CGRP’s ability to stimulate vascular endothelial growth factor (VEGF), promoting
neovascularization in the injured area. Furthermore, CGRP appears to promote the prolif-
eration of keratinocytes [70] and fibroblasts [71].

3.3. CGRP in the Respiratory System

CGRP plays various roles in the respiratory system. It is synthesized by pulmonary
neuroendocrine cells (PNECs) and is co-localized with substance P in the sensory C
fibers [72]. It actively contributes to pulmonary homeostasis by causing vasodilation,
and bronchoprotection, modulating the inflammatory response [73] and promoting prolif-
eration of bronchial epithelial cells [74].
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3.3.1. CGRP and Asthma

In the context of asthma, CGRP plays a complex role, having both pro-inflammatory
and anti-inflammatory effects. On one hand, it activates the Th9 response and induces
IL-9 and leukotriene C4 synthesis, leading to bronchial edema [1,73]. On the other hand, it
suppresses eosinophilic inflammatory response, similar to anti-IL-5 monoclonal antibod-
ies [73]. It also inhibits the activation of Th2 lymphocytes, suppressing the synthesis of type
2 cytokines, and stimulates the proliferation of regulatory T lymphocytes [75]. CGRP has
bronchodilatory effects, improving lung ventilation [73]. Studies are underway to evaluate
the effectiveness of a CGRP agonist in bronchial asthma [73].

3.3.2. CGRP and Pulmonary Hypertension

The significant regulatory effect of CGRP on vascular tone also affects the development
of pulmonary hypertension. CGRP appears to have a protective role in the development
of this condition, as evidenced by reduced plasma levels in rats with pulmonary hyper-
tension [76]. This effect may be secondary to the suppression of endothelin-1 (ET-1) and
angiotensin II (ANG2), contributing to the reduction in pulmonary resistance [77]. It has
also been suggested that the degeneration of capsaicin-sensitive sensory nerve fibers due to
the loss of CGRP may contribute to increased pulmonary pressure in rats [78]. The supple-
mentation of CGRP has been proposed for the treatment of pulmonary hypertension [79].

3.3.3. CGRP and COVID-19

The FDA has approved the clinical use of CGRP antagonists to reduce lung inflam-
mation and acute respiratory distress syndrome (ARDS) in COVID-19 patients [75]. It is
believed that CGRP may stimulate IL-6 and polarize the immune response toward Th17
lymphocytes, which represent one of the main pathogenic mechanisms of COVID-19 [75].
However, there are concerns about the effectiveness and safety of these drugs due to the
potential beneficial modulatory role of CGRP in pulmonary inflammation [75].

3.4. CGRP and the Gastrointestinal System

CGRP plays various functions in the gastrointestinal tract. In the gastrointestinal tract,
two main autonomic nerve afferents are present: the parasympathetic component (vagus
and pelvic nerves) and the sympathetic component (splanchnic and hypogastric nerves) [80].
Vagal afferents terminate in the myenteric plexus, circular muscle, and submucosal plexus,
while sympathetic afferents are found in the myenteric plexus, submucosa, and mucosa
surrounding blood vessels [80]. CGRP and substance P are found in the enteric plexus,
interganglionic fibers, muscular layer, and mucosa of both the stomach and intestine. CGRP
seems to regulate motility, inflammation, gastric acid secretion, and inflammation in the
gastrointestinal system [80].

3.4.1. CGRP and the Stomach

CGRP plays a fundamental role in the protection of gastric mucosa [80]. It appears
to inhibit gastric acid secretion and gastric motility [81]. Release from the dorsal roots
of the ganglia and vagal ganglia of splanchnic nerves also leads to increased blood flow
in the gastric mucosa [80]. It exhibits anti-inflammatory and anti-apoptotic effects on
gastric mucosal cells damaged by ischemic processes [80]. CGRP antagonists seem to
increase gastric lesions mediated by indomethacin and ethanol, as demonstrated in studies
conducted on CGRP knockout mice [82]. The release of CGRP through the activation
of TRPV-Q has been shown to improve epigastric pain in patients with dyspepsia and
irritable bowel syndrome [83]. Furthermore, the TRPV1 receptors that stimulate CGRP
release have been analyzed as potential targets to prevent gastric mucosal damage [84].
The effect of CGRP on gastric motility seems to be mediated both by stimulation of CGRP
1 reception and by activation of amylin receptor 1. CGRP inhibits gastrointestinal transit
and gastric emptying [85]. Antagonists of CGRP such as triptans, gepant, and anti-CGRP
antibodies are known to lead to gastrointestinal symptoms such as stomach pain, nausea,
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and vomiting [86,87]. CGRP seems to interact also with Glucagon-Like Peptide-1 (GLP-1)
increasing its values by >60% with a bidirectional regulation as GLP-1 has been shown
to induce secretion of CGRP [88,89]. Anti-CGRP drugs seem indeed to reduce GLP-1
secretion [88].

3.4.2. CGRP and Metabolic Syndrome

CGRP is released in the pancreas, leading to a reduction in insulin release and an
increase in blood glucose levels [90], as well as insulin resistance in muscle. The use of
capsaicin to destroy CGRP-containing sensory nerves results in increased glucose toler-
ance [91]. It also appears to contribute to weight gain, as evidenced by a study on αCGRP
knockout mice, which showed a reduction in diet-induced obesity incidence [92]. The
activity of sensory nerves releasing CGRP appears to be increased in obesity and metabolic
syndrome [1]. Conversely, CGRP has been shown to have a role in appetite reduction. One
hour after a meal, an increase in CGRP release in the central nervous system and intestine
is observed, with functions similar to insulin [93].

3.5. CGRP and the Musculoskeletal System

Elevated levels of CGRP have been found in the synovial fluid of patients with arthri-
tis [12,94–96], suggesting that it may be considered an early mediator of the disease. CGRP
can induce cytokine production by leukocytes and fibroblasts in rheumatoid arthritis and os-
teoarthritis [95,97]. CGRP antagonists inhibit synovial cell proliferation and the production
of pro-inflammatory cytokines [98]. Furthermore, CGRP 8-37, a CGRP antagonist, appears
to inhibit the hypersensitivity of joint nerve endings responsible for arthritic pain [99].
Interestingly, methotrexate, a drug used in the treatment of rheumatoid arthritis, reduces
the presence of CGRP-positive fibers [100]. Although CGRP appears to play a predomi-
nant role in inflammatory arthritis, elevated CGRP expression has also been observed in
neurons of joints affected by osteoarthritis [94]. Additionally, the drug LY2951742, which
neutralizes CGRP, appears to have a protective role in osteoarthritis in mice [101]. Finally,
CGRP also seems to play a role also on bone homeostasis and regeneration [102]. The
Transient receptor potential vanilloid type 1 (TRPV1) activation in the dorsal root ganglion
contributes essentially to the regulation of osteoblast physiology through the modulation
of the production and secretion of CGRP [103].

3.6. CGRP and the Urinary System

CGRP is present in renal fibers, primarily in the muscle layer of the pelvis, as well
as in peri-glomerular and peritubular arteries and arterioles [104]. It is also found in
the ureters and bladder. At the glomerular level, it causes vasodilation and an increase
in renal blood flow, leading to a reduction in mean renal pressure [105] and an increase
in glomerular filtration [106]. At the tubular level, it increases the excretion of sodium,
chloride, potassium, calcium, and phosphates, stimulating urine flow [107,108]. It also
appears to increase renin release, although it is unclear whether it acts directly or through
its pressor effects on the glomerulus [104].

3.7. CGRP and Sex Hormones

The vasodilatory properties of CGRP are exerted also during pregnancy. The cir-
culating CGRP levels increase during gestation while declining rapidly at term and in
the postpartum. In addition, in rats, the sensitivity of various vascular beds to CGRP
increases with advancing pregnancy. This action may be essential in regulating uteropla-
cental blood flow, in addition to other vascular adaptations. Furthermore, the activation
of the CGRP pathway is associated with uterine relaxation, possibly as the consequence
of the upregulation of CGRP receptors. In this light, sex steroid hormones, estrogens, and
progesterone regulate CGRP synthesis and its effects on both myometrial and uterine vas-
cular tissues [109]. CGRP also possibly interacts with oxytocin, another relevant hormone
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with anti-nociceptive properties also relevant to uterine tone [110]. The systemic effects of
CGRP are synthesized in Table 1.

Table 1. CGRP and its antagonists’ systemic effects.

District Function Antagonists’ Effect

Arterial pressure
Vasodilatation in response to hypertensive stimuli (e.g.,
angiotensin II, postural changes) [34]. Protection against
hypertension development [41].

No significant effect on pressure [39,40].

Heart
Chronotropic and inotropic positive response [37,38].
Anti-inflammatory, anti-apoptotic effects [47–49]. Coronary
vasodilatation [44].

No significant increase in myocardial
infarction incidence [56]

Vessel Reduction in endothelial inflammation and vascular
remodeling [58–60,62]. Not known

Skin

Induces flushing [64]. Increases edema formation [64,66]
and stimulates tissue reparation in response to contusion
and wound [69]. Reduction in inflammation in atopic
dermatitis [67].

Not known

Lung

Activates Th9 response [1,73]. Reduces Th2 and eosinophilic
response [75]. Induces bronchodilatation [73]. Induces
bronchial edema [1,73]. Protection from pulmonary
hypertension through suppression of endothelin-1 and
angiotensin II [77].

Not known. Under study anti-CGRP
drugs for COVID-19 [75].

Gastrointestinal tract
Inhibition of gastric acid secretion, gastric, and intestinal
motility [80,81]. Reduce inflammation and apoptosis in
ischemic and alcohol-mediated stomach lesions [80,82].

Can cause nausea, constipation, or
diarrhea and vomiting [86,87]. Seems to
reduce GLP-1 CGRP-induced
secretion [88].

Metabolism Reduce insulin release after meal [90]. Contributes to
weight gain [92]. Reduces appetite [92].

Reduction in diet-induced obesity
incidence [92].

Joint Induces cytokine production in rheumatoid arthritis and
osteoarthritis [95,97].

Inhibits cell proliferation and production
of pro-inflammatory cytokines [98].
Reduces hypersensitivity of joint
nerves [99].

Kidney
Vasodilatation and increase in renal blood flow and
glomerular filtration [105,106]. Increasing excretion of
electrolytes [107,108]. Increase renin release [104].

Not known

Pregnancy Regulation of uteroplacental blood flow [109]. Relaxation of
uterus. Interaction with oxytocin [110]. Not known

4. Discussion

The calcitonin gene-related peptide (CGRP) is a molecule that exhibits considerable
complexity in its biological activities, displaying effects in various body systems that may,
in some cases, appear contradictory. It serves as a molecule that regulates several processes
both directly and indirectly, playing a primarily homeostatic role [1]. This characteristic
may underlie the low incidence of side effects observed with drugs that interact with
CGRP, such as monoclonal antibodies and gepants [87]. The main side effects of these
drugs are predominantly gastrointestinal, where CGRP plays a prominent role, slowing
gastric emptying, interacting with GLP-1, and reducing hydrochloric acid secretion [81,88].
Both gepants and anti-CGRP monoclonal antibodies have shown common side effects of
constipation and nausea [87,111].

Although the main effect of CGRP is to modulate vascular smooth muscle tone, leading
to vasodilation, the incidence of such side effects in drugs that antagonize CGRP’s effects is
minimal [112], as observed in real-life studies [113,114]. As previously mentioned, the use
of CGRP receptor antagonists in mice does not lead to vasoconstriction and arterial hyper-
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tension because there is a concomitant release of molecules such as NO and prostaglandins,
which ultimately induce relaxation of smooth muscle [39,40]. This review highlights that
CGRP’s effect on the vascular system is not exclusively that of a direct vasodilator, but
rather that of a regulator that reduces susceptibility to the development of chronic ar-
terial hypertension, as demonstrated by studies on CALC-1 gene polymorphisms [41].
Similarly, at the cardiac level, CGRP has shown protective roles toward cardiomyocytes,
reducing apoptosis and inflammation and leading to improved coronary circulation [46,47].
Nonetheless, few ischemic side effects have been observed with therapies with CGRP
inhibitors [112]. Studies have demonstrated improved exercise performance after CGRP
infusion, but, on the other hand, a randomized trial did not show differences in terms of
exercise performance during treadmill testing in patients with stable angina undergoing
treatment with anti-CGRP antibodies versus placebo [115]. In the cardiovascular context, it
would be beneficial to analyze the long-term effects of these drugs.

The immune role of CGRP is extremely complex and varied. It appears to have both
anti-inflammatory and anti-apoptotic roles, as well as pro-inflammatory effects. In the
lungs, it directs the immune response toward Th9 lymphocytes while reducing the Th2
response, resulting in increased bronchial edema and, conversely, suppressing eosinophils
and causing bronchodilation. At the cutaneous level, vasodilation mediated by CGRP leads
to increased edema and passage of leukocytes from the circulatory system to the dermis.
On the other hand, CGRP accelerates wound healing processes. It appears to have an anti-
inflammatory role in arthritic and arthrosis conditions. A case series has shown the presence
of inflammatory complications in patients receiving CGRP inhibitors, such as autoimmune
hepatitis, Susac syndrome, DRESS syndrome, Weber syndrome, severe polyarthralgia,
exacerbation of psoriasis, and urticarial eczema, after 1–16 months of treatment [11].

5. Conclusions

CGRP represents a regulator of diverse biological processes, including nociception,
vasodilation, metabolism, inflammation, and gastrointestinal emptying (Figure 1).
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Figure 1. Synthesis of CGRP systemic effects. Icon’s copyright is to Flaticon (Freepik, Futuer, Vitaly
Gorbachev, Smashicon, MindWorlds, England, UK) https://www.flaticon.com/ (accessed on 30 June
2023) Legend: ↑: increase ↓: decrease.
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Many of the effects it exerts also appear to have long-term implications. These as-
pects become even more relevant, considering that migraine, the present indication for
CGRP pathway targeted therapies, is often comorbid with disorders involving the same
systems [115,116]. Therefore, it is crucial to continue investigating CGRP activities and
to be mindful of potential effects resulting from chronic use of its inhibitors especially if
comorbid conditions coexist. In this light, to gain a holistic and cutting-edge perspective
on CGRP’s functions and its potential applications in diverse somatic domains, future
approaches may also include quantitative systems pharmacology modeling, multi-omics
analyses, advanced neuronal manipulation techniques, 3D organoid models, machine
learning predictive modeling, and synthetic biology [117].
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