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Abstract: The tumor niche is an environment rich in extracellular ATP (eATP) where purinergic
receptors have essential roles in different cell subtypes, including cancer, immune, and stromal cells.
Here, we give an overview of recent discoveries regarding the role of probably the best-characterized
purinergic receptor in the tumor microenvironment: P2X7. We cover the activities of the P2X7
receptor and its human splice variants in solid and liquid cancer proliferation, dissemination, and
crosstalk with immune and endothelial cells. Particular attention is paid to the P2X7-dependent
release of microvesicles and exosomes, their content, including ATP and miRNAs, and, in general,
P2X7-activated mechanisms favoring metastatic spread and niche conditioning. Moreover, the
emerging role of P2X7 in influencing the adenosinergic axis, formed by the ectonucleotidases CD39
and CD73 and the adenosine receptor A2A in cancer, is analyzed. Finally, we cover how antitumor
therapy responses can be influenced by or can change P2X7 expression and function. This converging
evidence suggests that P2X7 is an attractive therapeutic target for oncological conditions.
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1. Extracellular ATP and Its Receptors in the Tumor Microenvironment

Extracellular ATP (eATP) is an established tumor microenvironment (TME) compo-
nent that can be released following tumor and adjacent tissue necrosis via active release,
mediated by proteins such as those of the ABC cassette family, or inside vesicles released
from the tumor, immune, and stroma cells [1,2] (Figure 1). The live measurement of eATP
in murine models was made possible by the development of the luciferase-based probe
pmeLUC that, thanks to its specific placement at the extracellular facet of the plasma
membrane, allows for distinguishing it from intracellular ATP [3–5]. Several studies, taking
advantage of either pmeLUC or similar probes, have demonstrated eATP abundance in the
TME, and that different treatments, including chemotherapy and caloric restriction, can
affect its levels [6–9]. These data led Kamata-Sakurai and colleagues to develop a CD137
targeting antibody endowed with an ATP binding domain allowing for its specific release
only at tumor sites, thus preventing systemic drug toxicity [10]. eATP is the natural ligand
of two families of purinergic receptors: ionotropic P2Xs and metabotropic P2Ys [11]. Both
classes of proteins are expressed at different levels by the cells of the TME and activate
signaling pathways favoring growth, invasion, angiogenesis, and chemotherapy resis-
tance, but also regulate, in a tumor-promoting or tumor-eradicating fashion, the immune
system [1,2,12,13]. This overview focuses on the role of probably the most studied ATP
receptor in cancer: P2X7. Converging evidence supports the view that P2X7 is the receptor
for eATP most heavily involved in tumor–host interactions [14]. In the TME, ligands and
receptors are involved in a positive feedback loop as eATP ligates P2X7 and triggers P2X7-
mediated responses, among which is release of ATP; therefore, P2X7 can upregulate the
concentration of its agonist [15]. Here, we cover the involvement of P2X7 in cancer growth,
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neovascularization, interactions with the immune system, and metastasis, concentrating
on recent discoveries related to the release of miRNA-containing vesicles and the crosstalk
among P2X7/CD39/CD73 and A2A receptors.

2. The P2X7 Receptor and Its Splice Variants

The P2X7 receptor is a low-affinity ATP-gated channel mediating, upon ligand en-
gagement, the cellular influx of sodium and calcium and the efflux of potassium ions.
P2X7-dependent potassium flux is associated with probably the best-known function of the
receptor: activation of the NLRP3 inflammasome followed by maturation and secretion of
the pro-inflammatory cytokines IL-1β and IL-18 [16–18]. Prolonged stimulation of the P2X7
receptor with high concentrations (mM range) of ATP also mediates the opening of large
non-selective macropores permeable to solutes, such as ethidium, propidium, and lucifer
yellow [19,20]. Macropore opening is associated with cell death by necrosis, apoptosis, or
pyroptosis, depending upon the involved cell type [17,21]. However, basal stimulation of
the receptor with subthreshold concentrations of the agonist, such as those in the TME,
was also associated with trophic properties [1,22]. The functional P2X7 receptor is a ho-
motrimer [23] formed by subunits of 595 amino acids whose tridimensional structure was
recently identified and exploited for identifying and designing new receptor ligands [24–30].
The P2X7 subunit is formed by a short N terminal domain, two transmembrane regions, a
large extracellular domain with ligand binding sites, and a long intracellular C terminal tail.
The C terminal domain is responsible for macropore formation [31] and interactions with
several proteins [32,33]. In humans, the gene for P2X7 is located on chromosome 12 [34]; it is
highly polymorphic and, upon alternative splicing, can give rise to several variants [35,36].
The fully functional receptor is termed P2X7A. Among the other splice variants, P2X7B,
P2X7H, and P2X7J have also been associated with oncogenic conditions [37–44]. The P2X7B
isoform gives rise to a functional ion channel that lacks the pore-forming and apoptotic
activity associated with P2X7A [37,45]. The alternative splicing is due to the retention of an
intron between exons 10 and 11 of the full-length receptor that determines the addition of
18 extra amino acids after residue 346, followed by a stop codon leading to truncation of
the entire C tail [37]. Moreover, when associated with P2X7A in a heterotrimer, P2X7B is a
potentiating subunit upregulating both the channel and macropore activity [39,45].

On the contrary, P2X7J does not give rise to a functional protein but behaves as an
antagonizing subunit toward P2X7A [38]. P2X7H, also called P2RX7-V3, generates a long
non-coding RNA endowed with tumor-promoting activities [40]. Clinical studies with a
blocking antibody specifically recognizing the so-called non-functional P2X7 (nfP2X7) [46]
have been carried out by the Biosceptre company, showing promising results both in human
and feline patients [14,47]. Although, probably for propriety reasons, we do not know the
exact nature of the nfP2X7 variant, we do know that it does not entirely lose the channel
activity. At the same time, it is not functional as an ion macropore [46]. Recent studies and
overviews have addressed the role of alternatively spliced P2X7 isoforms in health and
disease—we refer the reader to the literature for further detail on their activity [35,36,48,49].

3. The P2X7 Receptor in Cancer Growth and Immune Responses

The notion that the P2X7 receptor, under particular circumstances (i.e., low ATP
concentrations or certain cell types not able to form cytolytic pores), could also exert
trophic activity dates back to approximately twenty years ago [22,50,51] when we demon-
strated that the receptor upregulates mitochondrial and reticular calcium levels, leading
to increased metabolic activity [22,52]. However, many scientists were sceptical about
the ability of a cytotoxic receptor to facilitate cancer growth until in vivo proof clearly
emerged [53]. Since then, many papers have confirmed P2X7-dependent cancer-promoting
activity and associated the expression of the receptor with increased cell metabolism, neo-
vascularization, and, in general, poor patient prognoses [1,14,54–59]. Several solid and
liquid cancer types overexpress P2X7, for which P2X7-targeting drugs are potential thera-
peutic tools; these include acute myeloid and chronic lymphocytic leukemia [9,42,60–63],
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melanoma [43,64,65], glioma [66–68], neuroblastoma [41,44,55,69,70] prostate, breast, bone,
and colorectal cancer [71–77]. As the above-cited literature demonstrate, P2X7 growth-
promoting roles have been covered elsewhere; therefore, its extensive characterization is
beyond the scope of the present overview. The wealth of observations on P2X7 in such a
plethora of cancers suggest that the receptor acts as a positive regulator of tumor formation
and evolution and, therefore, that its pharmacological blockade could be advantageous
for oncological patients [14,78]. However, in the TME, P2X7 is expressed not only by
cancer cells but also by many components of the innate and cell-mediated immunity, and
it plays a role in both pro-inflammatory and tolerogenic responses [12,13]. Indeed, P2X7
activation increases inflammatory responses favoring cancer immune eradication but can
even promote tolerance by causing TGF-β release from myeloid-derived suppressor cells
(MDSCs) [79]. Hence, the impact of P2X7 on cancer growth versus tumor immune control
is complicated. Indeed, we and others demonstrated that a lack of host P2X7, for example
in null mice, could favor tumor growth by significantly reducing immune infiltrates and
pro-inflammatory cytokines and increasing intratumoral Tregs and adenosinergic pathways
related to immune suppression [15,80–84]. However, even in P2X7 null-hosts, when an im-
planted tumor expresses P2X7, the administration of P2X7 antagonists causes a significant
reduction in neoplastic growth accompanied by a substantial increase in CD4+ infiltrates,
and also a decrease in the expression of the fitness marker CD73 in Tregs [15]. On the
contrary, in tumor models where the expression of P2X7 is mainly restricted to immune
cells, a P2X7 positive allosteric modulator, if administered with anti-PD-1 molecules, could
prove beneficial [85,86]. Moreover, specific cytokine profiles affected by P2X7 activation
could be either antitumoral or tumor-promoting, depending on the TME context [8,87].

This picture is further complicated by the effects that, via P2X7, eATP exerts on differ-
ent T cell populations, including effector and regulatory T cells, their ability to survive as
memory cells, and exhaustion or senescence processes [12,13,88]. For example, two research
groups proposed exploiting P2X7 activity in tumor-infiltrating cytotoxic T cells to improve
adoptive cell therapy potential, but achieved opposing results [14,89]. Romagani and
colleagues suggested that a lack of P2X7 could be beneficial to overcome tumor-infiltrating
lymphocyte (TIL) senescence [14]. At the same time, Wanhaimer and collaborators pro-
posed that in the same cellular and tumoral model, P2X7 plays a central role in maintaining
the mitochondrial fitness of TILs and controlled activation of the receptor before injection
can even increase the antitumoral activity of these lymphocytes [89]. Although these con-
trasting results could be partially reconciled by the different cytokine cocktails administered
to TILs before reinjection [89], they suggest caution when considering the administration
of P2X7-targeting compounds in therapeutic settings. In general, a personalized medicine
approach with negative or positive allosteric modulators of P2X7, derived from preventive
evaluation of the receptor in tumor samples, including cancer and immune cells, would be
advisable from our point of view.

4. P2X7 and Metastasis

Metastatic cancer forms still represent one of the leading causes of tumor-related death.
Metastasis formation is a multistep process that requires gaining a series of mutations or
other acquired abilities from tumor cells that lead to dissemination, local invasion, systemic
resistance to immune cells, pre-conditioning, and colonization of secondary sites, also
known as the metastatic niche. The advancement of metastasis is strongly influenced by
the ability of transformed cancer cells to co-opt the host immune system and transition
to distinct states, a fact attributable to their stemness capabilities [90]. Among the first
reports relating P2X7 to cancer pathogenesis are those that demonstrated the receptor
favoring cancer cell migration and dissemination [91–94] and reported its influence on
epithelial–mesenchymal transition (EMT) [95–98]. EMT is a process of cell transdifferentia-
tion originally adopted during embryogenesis and co-opted during metastasis, causing
an increase in cancer cell migration linked to loss of cell polarity and down-regulation of
adhesion molecules [99]. This mechanism was confirmed as the basis of P2X7-mediated
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invasiveness in recent publications covering the negative prognostic role of the receptor in
oncological conditions as different as neuroblastoma [44], triple-negative breast cancer [100]
and muscle-invasive bladder carcinoma [101]. In addition to EMT, metastasis is favored by
signaling pathways and mechanisms implicated in tissue regeneration, wound healing, and
adaptation to stress [90] that have been associated with P2X7 activity both in cancer and
other physio-pathological conditions [17,53,55,84,96,102–108]. Among those pathways acti-
vated by the P2X7 receptor, the HIF1α/VEGF axis is one of the best studied [53,84,109,110].
Moreover, P2X7 is associated with increased Myc expression in cancer [42,111], a condi-
tion promoting metastasis by increasing the invasion and survival of cancer cells in the
bloodstream [112]. Finally, P2X7 promotes autophagy [17,44,106–108] and unfolded pro-
tein responses [113], which help confer metabolic and immune evasive plasticity in solid
cancers [90]. Given the involvement of the P2X7 receptor in the aforementioned metastasis-
promoting signaling pathways and mechanisms, it is not surprising that overexpression of
the receptor was associated with metastatic stages of multiple cancers [43,55,101,114–118].
Accordingly, P2X7 antagonism proved efficacious in reducing the in vivo dissemination of
cancer cells in animal models of metastasis [41,43,78,91,92,96,119].

Interestingly, an increasing amount of evidence tends to associate the metastatic prop-
erties of P2X7 with its isoform B. As previously mentioned, P2X7B is a splice variant, present
only in humans, which retains the calcium channel properties of P2X7 but lacks the activity
of the macropore [37]. We first associated the expression of this isoform with increased
metabolic activities in HEK293 cells [45] and a stem-like proliferation-associated phenotype
in osteosarcoma cells and patients [39]. Subsequently, Lameu and colleagues demonstrated
that the metastatic properties conferred by bradykinin treatment to neuroblastoma cells
could be reverted by blocking P2X7B [41]. The same authors later confirmed that in the
absence of bradykinin, P2X7 isoform B was central in conferring a series of pro-metastatic
features to neuroblastoma cells, including the acquisition of a stem-like phenotype, the
suppression of autophagy and induction of EMT [44]. These data are in line with those
obtained by Tattersall and colleagues who examined osteosarcoma murine models, where
they demonstrated that P2X7B expression could reduce cell adhesion, promote invasion,
and upregulate a genetic axis, including FN1/LOX/PDGFB/IGFBP3/BMP4 [75]. The same
study also proved that P2X7B could increase osteosarcoma’s propensity to spread in mouse
lungs, and that administration of its antagonist A740003 could abrogate cancer-associated
ectopic bone formation [75]. More recently, P2X7B overexpression was also reported in
cohorts of metastatic melanoma [43] and prostate cancer patients with bone metastases [76].
In this latest study, Wang and colleagues also suggested that P2X7 truncated variants can
double bone skeletal tumors, thus strongly reducing survival in metastatic mice models via
a bone tropism-related mechanism, including the production of IL-6 [76].

5. Role of the P2X7 Receptor in Cancer-Associated Vesicle Release

The release of vesicles from cells is an essential process in cell–cell communication
during physiological and pathological processes. Extracellular vesicles (EVs) comprise
double membranous particles of different sizes and composition. They can derive from
the direct budding of cell membrane cell or the fusion of the intraluminal vesicles with the
membrane. EVs can carry proteins, lipids, and nucleic acids, thereby affecting microenvi-
ronment composition and cell behavior [120]. Moreover, EVs released from cancer cells can
promote pre-metastatic niche formation in organs distant from primary tumors [121–123].
Different stimuli can induce the release of vesicles and ATP through its receptors—P2X7 is
one such receptor [124] (Figure 1). Activation of the receptor by ATP induces Ca2+ influx,
eliciting the exocytosis of EVs in the extracellular space [125]. P2X7-dependent release
of vesicles was initially demonstrated in immune cells such as macrophages [126,127],
dendritic cells [128,129], and microglia [130] (Figure 1).
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Figure 1. P2X7-dependent vesicle release. Upon ligation with extracellular ATP, P2X7 triggers the
release of vesicles of different dimensions and natures from immune, cancer, neuronal, and glial cells.
The figure represents vesicles released from tumor cells, including microvesicles/particles ranging in
size from 100 to 1000 nm and containing ATP, miRNAs, mitochondria, and ATP synthase [43,58,131],
and also exosomes ranging in size from 50 to 150 nm and containing miRNAs [43]. P2X7 activation
increases the content of miRNAs, including miR-495-3p, miR-6730-3p, and miR-376c-3p in both
vesicular fractions, while antagonism can block their release [43]. Some of these miRNAs have been
shown to increase melanoma cells’ proliferation and migratory ability [43]. By carrying mitochondria
and ectopic ATP synthase, microparticles can produce internal ATP [58,131]. Finally, vesicles also
retain P2X7 on their surface, thus possibly facilitating the release of their content in areas rich in eATP.

These vesicles contain inflammatory cytokines and are central players in phlogistic
reactions [129,132,133]. In recent years, several studies have focused on this cellular pro-
cess, demonstrating the release of EVs following P2X7 stimulation from different cancer
types, such as neuroblastoma [131,134], lung [131], prostate [135], breast cancers [131,136],
and also melanoma [43,58]. EVs contribute to tumor progression, cell migration [43,136],
and pre-metastatic niche conditioning [136]. P2X7 activation can induce the release of
heterogeneous small and large vesicles [43,131], which different authors have identified as
microvesicles, microparticles, exosomes, and oncosomes; therefore, exploring their contents
can help to elucidate their biological effects. P2X7 stimulation can induce the release of vesi-
cles containing ATP, thereby increasing its concentration in the TME [58]. ATP is loaded into
vesicles thanks to the vesicular nucleotide transporter (VNUT) [137]. However, ATP can
also be generated inside EVs in the extracellular environment thanks to glycolytic enzymes
located inside the vesicles released from cancer cells [138]. In line with these data, analysis
of the content of EVs released upon P2X7 activation demonstrated that they contain other
essential players in ATP production: mitochondria [58] and the ectopic ATP synthase [131].
Vesicular ATP can also activate P2X7 in neighboring or distant cells, favoring a positive
P2X7-dependent EV release loop [131,134,139]. Additionally, it can support several cellular
processes involved in cancer progression, among which cell migration is fundamental for
metastatic spread [124,140]. P2X7 can be delivered in vesicles [43,130,137] and, together
with ATP, reach distant sites to potentially induce a pro-tumoral microenvironment and
metastatic niche formation. The role of P2X7 expressed on the surface of EVs is not clear
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yet; however, it is possible to hypothesize that the receptor, via macropore formation, could
trigger the release of EV content in eATP-rich areas, such as those associated with inflam-
mation or the TME itself [58]. Together with ATP, other molecules, such as microRNAs
(miRNA), are carried by EVs and can potentially modify cell behavior [141]. miRNAs
are small non-coding RNA molecules that negatively regulate gene expression. Vesicle
miRNA expression changes with cancer types and can promote diverse effects [141]. P2X7,
through the interaction with the RNA-binding protein FMR1 can select the miRNA content
of small EVs [142]. In line with these data, we demonstrated that microvesicles and exo-
somes released upon P2X7 stimulation contained a miRNA expression profile profoundly
different from vesicles collected from unstimulated cells. Among the miRNAs upregulated
in EVs released following P2X7 activation, miR-495-3p, miR-376c-3p, and miR-6730-3p
showed proliferation and migration-promoting effects. Treatment of cells with the P2X7
antagonist A740003, before stimulation of EV release, reduced the expression of all three
miRNAs [43], thus suggesting P2X7 antagonism as a possible pharmacological strategy to
prevent pro-tumoral effects associated with vesicular release.

6. P2X7R and Its Crosstalk with the Adenosinergic Axis in Cancer

Recent data by us and other groups revealed an interplay between P2X7 and the
adenosinergic axis formed by ectonucleotidases and adenosine receptors in the TME. This
is unsurprising as eATP and its hydrolytic derivative adenosine are constituents of the
TME [1]. As mentioned above, in the TME, eATP promotes tumor growth and immune-
mediated tumor eradication, mainly via the P2X7 receptor [1]. Adenosine, generated from
eATP via CD39 and CD73 ectonucleotidases, is an immune suppressant facilitating tumor
escape, acting as an immune cell “don’t eat me” signal mainly via its activity at the A2A
receptor (A2AR) [84,143–145]. However, the effects of both eATP and adenosine are not
limited to immune cells, as often through the same receptors expressed by cancer cells, they
can also promote cancer growth, vascularization, and metastasis [56] (Figure 2). To further
complicate the picture, the effect of purines on immune cells is not always clearly pro- or
antitumoral; for example, both ATP and adenosine are possibly required to produce the
primary tumor-eradicating cytokine: IFN-γ [146]. Indeed, ATP and adenosine cooperatively
stimulate the upregulation of the major histocompatibility complexes in dendritic cells, thus
favoring the activation of T cells designated to IFN-γ secretion [125]. As mentioned above
in the TME, the activity of the ectonucleotidases CD39 and CD73 closely controls eATP
concentration. P2X7 can interfere with this process by modulating the expression of CD73
and CD39 in cancer-infiltrating immune cells and influencing the level of PD-1 in Tregs [15].
The overexpression of ectonucleotidases is one of the mechanisms causing a reduction in
eATP in the TME in tumor-bearing P2X7 null mice [15]. The importance of the crosstalk
between P2X7 and CD39 in the TME is further confirmed by the finding that CD39-targeting
antibodies require a functional P2X7 receptor in immune cells to work appropriately as
antitumoral agents in primary and metastatic murine tumor models [82,83]. These data are
further corroborated by a recent study from Casey et al. demonstrating that P2X7 signaling
was essential for the favorable effects of CD39 blockade in diffuse large B-cell lymphoma.
Indeed, antagonism of CD39 caused an accumulation of eATP that acted on macrophage
P2X7, favoring lymphoma cell phagocytosis. eATP-activated P2X7-dependent phagocytosis
reinforced the activity of the lymphoma-targeting antibodies rituximab and daratumumab
and facilitated therapy resistance [147].
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Figure 2. Molecules of the purinergic/adenosinergic axis are expressed by cancer and immune cells
in the TME. The TME is rich in eATP due to necrosis and active release of the nucleotide. eATP acts
on P2X7 and is then degraded by CD39 and CD73 to adenosine (ADO) acting as the primary source
of this purine in the extracellular milieu [1,2]. The P2X7 receptor, the ectonucleotidases CD39 and
CD73, and the A2A receptor are expressed by different immune cells involved in both tumor immune-
eradication and suppression. In dendritic cells, eATP through P2X7 favors immune stimulation and
MHC increase, which are also positively affected by ADO. In macrophages, adenosine sustains M2
polarization, while CD39 blockade, which causes eATP accumulation, stimulates phagocytosis via
P2X7. Both eATP and ADO favor myeloid-derived suppressor cell (MDSC) activity [79,144]. ADO,
produced in Tregs thanks to CD39/CD73, blocks the proliferation of effector CD4+ and CD8+ T cells
via A2AR, contemporarily upregulating immune suppressive activity in Tregs. On the contrary, ATP
via P2X7 reduces Treg numbers in tumor infiltrates [15]. P2X7 positively affects tumor infiltration via
CD4+ T helper effector cells [15]. ADO via A2AR reduces cytotoxic cell activity [148,149], while P2X7
increases their metabolic activity, thus sustaining responses mediated by memory cells [88].
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Recent data from our laboratory and others also point to an interaction between P2X7
and the A2AR in the TME. Indeed, tumors growing in P2X7 null mice overexpressed
A2AR [84], possibly due to altered adenosine levels deriving from reduced eATP levels and
increased ectonucleotidase activity in the TME [15]. Overexpression of A2AR is not limited
to tumors but also affects spleen cells, leading to a systemic immune suppressive phenotype
with a significant reduction in circulating IL-1β, TNF-α, IL-6, IL-12, IL-17, and IFN-γ levels,
and an increase in TGF-β [84]. Interestingly, inside tumors, A2AR was incremented in
necrotic areas, thereby increasing neovascularization, and its blockade caused a substantial
reduction in VEGF production in tumor-bearing P2X7 null mice [84]. In a similar vein, a
recent study reported upregulation of the P2X7 receptor in melanoma-bearing mice treated
with the A2AR antagonist istradefylline [150].

Interestingly, this A2AR blocker increased P2X7 inside the tumors and in lymphoid
organs and showed an effect on P2X7 expression even in the absence of cancer [133]. All
the described evidence suggests that when developing anti-cancer treatments targeting
single components of the P2X7/CD39/CD73/A2AR axis, scientists should consider their
effects on the other members of the pathway that might reinforce or impair the efficacy of
single protein-targeting drugs. New therapeutic approaches involving multiple targeting
strategies could help overcome this issue.

7. P2X7 Receptor in Antitumoral Therapy Resistance

An increasing number of studies have associated P2X7 and its splice variants with
either reinforcement or resistance to standard antitumoral therapeutic regimes [2]. eATP
levels in the TME may be substantially increased by cytotoxic interventions, such as radio
or chemotherapy, while certain antitumoral drugs, such as doxorubicin, daunorubicin,
and oxaliplatin were even shown to induce extra release of ATP, which correlated with
the onset of immunogenic cell-death-related tumor-eradicating immune responses [8,151].
In this context, opening P2X7A macropores in cancer cells can increase the efficacy of
cytotoxic therapies, leading to better prognoses following treatments [42,44,67,152,153].
On the contrary, P2X7B, due to its different gating properties, may be positively selected
by eATP and increased in the TME by these treatments, to sustain therapy resistance and
relapse [42,44,152]. P2X7-dependent amplification of therapy efficiency was linked to
the facilitation of daunorubicin intracellular load in AML blasts [42], increased cytotoxic
activity of temozolomide in glioma cells [153], and enhanced differentiating efficacy of
retinoic acid in neuroblastoma cells [44]. P2X7A overexpression is also a positive predictor
of therapy responses in RAS-mutated melanoma patients, where it is associated with
prolonged overall and progression-free survival and in general, early drug responses [65].
In this context, it is envisaged that the administration of positive allosteric modulators of
P2X7A, in combination with standard therapy to reinforce their efficacy, can be followed by
anti-P2X7B drugs to prevent resistance and relapse after classic therapy cycles [2,42,44,152].

8. Conclusions

Since the first publications proving the direct involvement of the P2X7 receptor in
liquid and solid cancer growth [53,60,69], the number of studies analyzing its role in
oncogenesis has increased tremendously, reaching more than 700 publications in PubMed
(as of August 2023). Both the previous and recent literature strongly suggest that the P2X7
receptor is a suitable therapeutic target for oncological conditions, depending on the type
of tumor, the splice variants of the receptor expressed, and the adenosinergic context. Old
and recent literature strongly suggest the P2X7 receptor as a suitable therapeutic target in
oncologic conditions. Depending on the type of tumor, the splice variants expressed and
the adenosinergic context, P2X7 could be exploited to develop new therapeutic strategies
based on its antagonism or agonism. Additionally, P2X7 targeting drugs could be or
co-administered with traditional or innovative anti-cancer treatments to improve their
efficacy. Finally, P2X7-blocking drugs could facilitate the development of novel therapeutic
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strategies to block the release of EVs from cancer or immune cells or alter their content to
combat their metastasis-promoting activities.
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