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Abstract: CD300a is differentially expressed among B cell subsets, although its expression in im-
munoglobulin (Ig)M+ B cells is not well known. We identified a B cell subset expressing CD300a
and high levels of IgM (IgMhiCD300a+). The results showed that IgMhiCD300a+ B cells were
CD10−CD27+CD25+IgDloCD21hiCD23−CD38loCD1chi, suggesting that they are circulating marginal
zone (MZ) IgM memory B cells. Regarding the immunoglobulin repertoire, IgMhiCD300a+ B cells
exhibited a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a− counterpart.
Moreover, the shorter complementarity-determining region 3 (CDR3) amino acid (AA) length from
IgMhiCD300a+ B cells together with the predicted antigen experience repertoire indicates that this
B cell subset has a memory phenotype. IgM memory B cells are important in T cell-independent
responses. Accordingly, we demonstrate that this particular subset secretes higher amounts of IgM
after stimulation with pneumococcal polysaccharides or a toll-like receptor 9 (TLR9) agonist than
IgM+CD300a− cells. Finally, the frequency of IgMhiCD300a+ B cells was lower in people living with
HIV-1 (PLWH) and it was inversely correlated with the years with HIV infection. Altogether, these
data help to identify a memory B cell subset that contributes to T cell-independent responses to
pneumococcal infections and may explain the increase in severe pneumococcal infections and the
impaired responses to pneumococcal vaccination in PLWH.
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1. Introduction

Human CD300a is a transmembrane protein, with an immunoglobulin (Ig)V-like
extracellular domain and a cytoplasmic tail containing immunoreceptor tyrosine-based
inhibitory motifs (ITIMs), providing the receptor with an inhibitory capacity [1,2]. The
relevance of the CD300a molecule in several pathological conditions has been highlighted by
multiple studies [3–7]. Among others, CD300a has been related to bacterial, parasitic, and
viral infections [4,8–15]. For instance, after cecal ligation and puncture peritonitis in mice,
the absence of CD300a induced a more effective bacterial clearance and prolonged mice
survival by increasing mast cell inflammatory response and neutrophil recruitment [16,17].
CD300a is broadly expressed on myeloid and lymphoid cells, and its expression is known
to be differentially regulated depending on the cell type [11–15,18–23]. Regarding B cells,
besides some aspects of the expression and function of CD300a on several human B
cell subsets, its relevance in B cell leukemogenesis, and its potential relevance in viral
infections [23,24,24–26], its role is not completely known.

In humans, B cells have a central role in adaptive immune responses, having different
contributions depending on the B cell subset [27]. Immune memory is a key factor in the
protection from recurring infections and, among their diverse compartments, memory B
cell subsets expressing IgM are particularly interesting due to their role against specific
pathogens, such as encapsulated bacteria, and also as a source of long-lived memory, as
switched memory B cells [28–37]. In peripheral blood, human circulating IgM memory
B cells, mostly characterized by the expression of CD27, can be divided into two subsets
according to the expression of IgD: IgM+IgDlo and IgM+IgDhi B cells [38]. Gene-expression
studies revealed that IgM+IgDlo are analogous to marginal zone (MZ) B cells and, after
different in vitro stimuli, these circulating B cells showed higher proliferation and dif-
ferentiation to antibody-secreting cells but lower IgG class switching than IgM+IgDhi B
cells [30,34,37–45]. Importantly, the lack of IgM memory B cells has been associated with
impaired production of pneumococcal-specific antibodies [46]. Moreover, a reduction in
the frequency of this cell subset has been found in people with an increased susceptibility
to encapsulated bacterial infections, for example, in congenitally asplenic and splenec-
tomized individuals [46] and patients with common variable immunodeficiencies [47]. A
reduction of IgM+IgDlo B cells that did not recover with antiretroviral therapy (ART) has
been also observed in people living with HIV-1 (PLWH) [28]. Furthermore, PLWH with
decreased IgM+IgDlo memory B cells displayed impaired pneumococcal IgM vaccination
responses [28].

In this work, a previously undetermined human B cell subset was identified, which
was positive for CD300a and displayed high levels of IgM. Through a phenotypical char-
acterization and the analysis of the Ig repertoire, we propose that IgMhiCD300a+ B cells
are circulating MZ B cells. Notably, we identified the capacity of the IgMhiCD300a+ B cell
subset to respond to pneumococcal polysaccharides. Lastly, we found a decrease in the
frequency of IgMhiCD300a+ B cells in PLWH compared to healthy donors.

2. Results
2.1. CD300a Identifies an IgM-Expressing Memory B Cell Subset

CD300a is an inhibitory receptor with the capacity to suppress B-cell receptor (BCR)-
mediated B cell activation and proliferation [25]. We and others have previously described
that CD300a is differentially expressed among B cell subpopulations so that while naïve cells
express low levels of CD300a, memory B cells and plasma cells show variable levels and
germinal center (GC) B cells are negative for this receptor [23,25]. However, its expression
in IgM+ B cells has not been studied so far. When we analyzed the expression of CD300a
among human peripheral blood IgM+ B cells, we identified a circulating B cell subset
expressing CD300a and high levels of IgM (hereafter IgMhiCD300a+ B cells) (Figure 1A).
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Figure 1. IgMhiCD300a+ B cell phenotype from peripheral blood of healthy donors. (A) Pseudocolor
plots showing the gating strategy to distinguish IgM+CD300a− (red) and IgMhiCD300a+ (blue) B cell
subsets from peripheral CD19+ B cells from healthy donors. (B) Three UMAP projections defining
IgM+CD300a− (red) and IgMhiCD300a+ (blue) B cell subsets and showing the relative expression of
CD300a, IgM, CD10, CD20, CD21, CD27, IgD, CD23, CD38, CD1c, CD10, CD20, CD38, CD25, CD86,
and HLA-DR. (C) Dot-bar graphs showing the median fluorescence intensity (MFI) of CD27, IgD,
CD23, CD38, CD1c, CD25, CD86, HLA-DR, CXCR4, CCR6, and CD62L and the percentage of CXCR3+

cells in IgM+CD300a− (red) and in IgMhiCD300a+ (blue) B cell subsets. Data are presented as the
mean of 20 individual donors. Statistical significance was determined using a t-test or Wilcoxon
matched-pairs signed rank test. * p < 0.05, **** p < 0.0001, ns: not significant.

In order to characterize the IgMhiCD300a+ B cell subset, using multiparametric flow
cytometry, we performed a comprehensive phenotypical study in peripheral blood samples
from healthy donors, comparing them with circulating IgM+CD300a− B cells (Figure 1B,C).
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We observed that all IgMhiCD300a+ and the majority of IgM+CD300a− B cells were CD10
negative and positive for CD20 and CD21 (Figure 1B), indicating that they are mature B
cells. However, they differ in the expression levels of the memory marker CD27, whose ex-
pression is significantly higher in IgMhiCD300a+ B cells compared to IgM+CD300a− B cells
(Figure 1B,C). We also analyzed IgMhiCD27+ cells and, interestingly, we found that this sub-
set includes both CD300a+ and CD300a− cells (Figure S1A). We also studied the expression
of different receptors on IgMhiCD27+CD300a− cells compared with IgMhiCD27+CD300a+

cells and the results revealed that, although very similar, they do not express the same
levels of CD10, CD20, CD21, CD23, CD25, CD38, IgD, and HLA-DR (Figure S1B). This
suggests that IgMhiCD300a+ and IgMhiCD27+ cells, although overlapping, do not identify
the same B cell subset.

The levels of IgD were significantly lower in IgMhiCD300a+ B cells than in IgM+CD300a−

cells (Figure 1B,C). On the other hand, we found that the expression levels of CD23, the
low affinity receptor for IgE whose expression is reduced upon memory B-cell differen-
tiation [48,49], and CD38, which regulates B cell activation and is highly expressed by
antibody-secreting cells [45,50], were significantly lower in IgMhiCD300a+ B cells than in
IgM+CD300a− B cells. Conversely, the IgMhiCD300a+ B cell subset showed higher levels
of CD1c, which is highly expressed by the splenic and circulating MZ B cells [45,51,52]
(Figure 1B,C).

We also analyzed the expression of several surface receptors and co-stimulatory molecules
related to B cell activation and memory phenotype. We observed that IgMhiCD300a+ B cells
express significantly higher levels of CD25 and CD86, while the expression of HLA-DR was
lower than on IgM+CD300a− B cells (Figure 1B,C). Finally, we analyzed the expression of
CXCR4, CCR6, CXCR3, and CD62L, receptors that play a fundamental role in B cell migration
to the lymph nodes, inflammation sites, and different tissues, and whose expression has
been described in circulating B cells, including memory and naïve B cells [53–57]. Regarding
these homing receptors, we observed a higher percentage of CXCR3-expressing cells in the
IgMhiCD300a+ B cell subset than in the IgM+CD300a− subset (Figure 1C). In addition, while
IgMhiCD300a+ B cells expressed slightly higher levels of CCR6, they exhibited lower levels of
CXCR4 and similar levels of CD62L than IgM+CD300a− B cells (Figure 1C).

As IgM+CD300a− B cells show a high variability in IgM expression, we decided
to divide them into IgMloCD300a− and IgMintCD300a− B cell subsets (Figure S2A) and
compared the expression of previously analyzed markers in the three subsets on a new
cohort of donors. In addition to the expected continuing increase in IgM expression, we
observed a similar trend in CD1c expression, together with an inverse tendency in HLA-DR,
CD23, and CXCR5 expression, from IgMloCD300a− to IgMintCD300a− to IgMhiCD300a+

populations (Figure S2B,C), and similar expression of CCR6. Interestingly, IgMintCD300a−

B cells expressed the highest levels of IgD and CD38, and IgMhiCD300a+ B cells expressed
the lowest levels of IgD (Figure S2B,C). Finally, the IgMhiCD300a+ B cell subset expressed
significantly higher levels of CD27 and CD25 compared to the other two subsets. The
expression of CD27 and higher expression of CD86 and CXCR3, together with the lower
levels of IgD, indicate that this population displays a memory phenotype.

In short, our results showed that IgMhiCD300a+ B cells are CD10−CD27+IgDloCD21hi

CD23−CD38loCD1chi, suggesting that CD300a could be distinguishing circulating MZ
B cells among all IgM-expressing B cells [27,32,43,45]. Furthermore, we showed that
this subpopulation is phenotypically distinct from IgMloCD300a− and IgMintCD300a− B
cell subsets.

2.2. Higher Mutation Frequencies of IgH Receptor in IgMhiCD300a+ B Cells Compared to
IgM+CD300a− B Cells

As human splenic MZ B cells have been shown to carry somatic mutations [32,58],
we characterize the IgH gene repertoire of IgMhiCD300a+ B cells in order to validate our
hypothesis that they are circulating MZ B cells. Sorted IgM+CD300a− and IgMhiCD300a+

B cells were obtained from eight different donors in order to analyze the Ig VH-repertoire.
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A total of 75.474 sequences from IgM+CD300a− and 47.430 sequences from IgMhiCD300a+

sorted cells were obtained with similar frequencies of functional sequences, although
diversity, VH1 rearrangements, and complementarity-determining region (CDR)3 length
were decreased in IgMhiCD300a+ B cells (Table 1 and Figure 2A). In contrast, higher somatic
mutation rates were observed in IgMhiCD300a+ B cells compared to IgM+CD300a− B cells
(Figure 2B), as described by human splenic MZ B cells [32]. Analysis of the nature of the
somatic mutations (replacement, R; silent, S) and their distribution in framework regions
(FWRs) and CDRs revealed a preferential distribution in R mutations in CDR regions.
Somatic hypermutations produced by the activation-induced cytidine deaminase (AID)
preferentially target RGYW and WRCY motifs located at CDRs [59]. As shown in Table 1,
both AID-motifs from IgMhiCD300a+ B cells were more mutated than IgM+CD300a− B
cells, denoting selection. Antigen selection strength was quantified using the BASELINe
algorithm, which compares the expected mutations based on the random distribution of the
observed mutations (Figure 2C). As it is shown in the figure with one representative donor,
the selection strength was higher in the CDR region than in FWR from IgMhiCD300a+

B cells.
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Figure 2. Higher mutation frequencies of IgH receptors in IgMhiCD300a+ B cells compared to
IgM+CD300a− B cells. VH-IgM repertoires from sorted cells obtained from eight donors were
determined after specific RT-PCR specific amplification. The sequences were processed, cleaned,
paired, and analyzed as described in Section 4 and a summary was depicted in Table 1. Each dot
represents the repertoire of a single sorted population, IgM+CD300a− (red) and IgMhiCD300a+

(blue). (A) Left, frequencies of VH-1,-2,-3 and -4 rearrangements on both cell sorted subsets. Right,
AA length of CDR3. (B) Left, median frequencies of total mutations. Right, ratios obtained of
replacement mutations versus silent mutations (R/S) on FWRs and CDRs regions. (C) Selection
strength representations using the BASELINe algorithm from a representative donor (#1) on both
cell-sorted populations, IgM+CD300a− (left) and IgMhiCD300a+ (right). Data are presented as the
mean of 8 healthy donors for each cell compartment. Statistical significance was determined using a
t-test or Mann–Whitney non-parametric test. ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Table 1. Summary of the analyzed sequences.

IgM+CD300a− IgMhiCD300a+

Donor Sorted
Population

Num.
Seq.

Seq Functionality %
(Total/Functional)

Seq Diversity %
(Unique/Functional)

RGYW
%

WRCY
%

Sorted
Population

Num.
Seq.

Seq Functionality %
(Total/Functional)

Seq Diversity %
(Unique/Functional) RGYW % WRCY %

#1 126 18,670 93.15 91.92 15.1 10.8 127 967 83.87 62.56 20.8 14.5

#2 128 12,121 94.1 93.51 14.9 12.6 129 114 98.25 71.93 18.6 18.1

#3 130 9341 93.07 89.63 14.8 10.8 131 8446 93.84 89.78 20.9 16.4

#4 132 10,137 94.54 91.73 19.3 14.6 133 4396 93.63 91.22 21.2 15.9

#5 134 9047 94.86 93.03 19.2 14.8 135 11,449 93.85 90.81 21.7 16.1

#6 136 7226 94.77 92.29 14.9 12 137 9514 93.26 89.1 21.4 15.8

#7 138 4196 91.2 90.36 16.1 11.8 139 9041 92.01 89.45 21.3 16

#8 140 4736 92.8 89.25 12.3 10.9 141 3503 90.24 82.47 22.7 15.5

TOTAL 75,474 TOTAL 47,430

Average 93.5 ± 0.4 91.47 ± 0.4 15.83 ±
0.8

12.29 ±
0.5 Average 92.37 ± 1.4 83.42 ± 3.7

*
21.08 ± 0.4

****
16.05 ± 0.3

****

Samples obtained from PBMCs of eight healthy donors were sorted on the basis of CD19+IgMhiCD300a− or CD19+IgMhiCD300a+. After extraction of RNA, conversion to cDNA and
VHµ-PCR were performed as described in Section 4. A summary of the sequences obtained by NGS is presented in the table. Statistical significance for the single-group comparison was
determined using a paired t-test. * p < 0.05, **** p < 0.0001.
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2.3. T Cell-Independent Response in IgMhiCD300a+ B Cells

It has been proposed that IgM memory B cells generated in the absence of GC give rise
to extra-follicular thymus-independent responses and produce natural antibodies [60–66].
These antibodies, mostly IgM, are found in individuals without known prior antigenic
experience [61,67,68], being important in T cell-independent B cell immune responses
against encapsulated bacteria [28,47]. To test the functional capacity of IgMhiCD300a+ B
cells, sorted IgMhiCD300a+ and IgM+CD300a− B cell subsets from different donors were
stimulated with 10 µg/mL of each pneumococcal polysaccharides (PPS) strains (3, 14, and
17F) for 7 days. We observed that IgMhiCD300a+ B cells produce higher amounts of IgM
in response to PPS than IgM+CD300a− B cells, which barely respond to PPS stimulation
(Figure 3A, left panel). On the other hand, PPS stimulation did not induce any IgG
production (Figure 3A, right panel), suggesting that there was no class switching. We also
observed a significantly higher spontaneous production of IgM in IgMhiCD300a+ cells
than in IgM+CD300a− B cells in the eleven tested donors (Figure 3B), a fact that has been
previously described by other authors regarding MZ B cells [46,69]. Moreover, among
circulating B cells, MZ B cells have been shown to be the main producers of IgM after toll-
like receptor 9 (TLR9) ligation with CpG [70]. TLR9 expression was higher in IgMhiCD300a+

than in IgM+CD300a− B cells (Figure 3C), which is associated with a higher IgM production
in response to CpG class B (ODN 2006) by IgMhiCD300a+ B cells (Figure 3D, left panel),
while there was no IgG production (Figure 3D, right panel).
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B cells than in IgM+CD300a− B cells. (A) Dot-bar graphs showing the concentration (ng/mL) of IgM
(left panel) and IgG (right panel) produced by sorted IgM+CD300a− (red) and IgMhiCD300a+ (blue)
B cells after 7 days in the absence (−) or presence (+) of pneumococcal polysaccharides (PPS) (strains
3, 14, 17F). Each dot represents a donor (n = 8). (B) Dot-bar graph showing the concentration (ng/mL)
of IgM produced by unstimulated sorted IgM+CD300a− (red) and IgMhiCD300a+ (blue) B cells. Each
dot represents a donor (n = 11). (C) Dot-bar graph showing the MFI of TLR9 in IgM+CD300a−

(red) and IgMhiCD300a+ (blue) B cells. Each dot represents a donor (n = 6). (D) Dot-bar graphs
showing the concentration (ng/mL) of IgM (left panel) and IgG (right panel) produced by sorted
IgM+CD300a− (red) and IgMhiCD300a+ (blue) B cells after 7 days in the absence (−) and presence (+)
of CpG class B (ODN 2006) (3µM). Each dot represents a donor (n = 3). Data are presented as the
mean ± SD. Statistical significance for multiple group comparisons was determined using one-way
ANOVA and for single-group comparisons was determined using paired t-test. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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2.4. Lower Frequencies of IgMhiCD300a+ B Cells in PLWH

We finally determined if the frequency of this cell subset is altered during disease.
Considering that PLWH has an increase in invasive pneumococcal infections as well as
an impaired response to the immunization with pneumococcal vaccine compared with
healthy people [28,71], we hypothesized that it could be associated with a decrease in the
frequency of circulating IgMhiCD300a+ B cells. In fact, we observed that the percentage of
circulating IgMhiCD300a+ B cells tended to be lower in ART naïve PLWH than in healthy
donors, and this difference was statistically significant when PLWH were under ART
(Figure 4A). Preliminary results, with a small cohort of donors, showed that there were no
significant changes in the phenotype of IgMhiCD300a+ B cells in PLWH, with the exception
of an increased expression of CD38, suggesting a more activated phenotype, and a small
decrease in CD27 and CXCR5 expression levels (Figure S3A). The percentage of circulating
IgMhiCD300a+ B cells did not correlate with the viral load or patients’ age and years
with ART (Figure S3B–D), but there was a significant negative correlation with the time
since the diagnosis of HIV infection (Figure 4B). These results, together with those from
the functional assays, suggest that IgMhiCD300a+ B cells could be associated with the
impaired responses to pneumococcal vaccination in PLWH and the increase in invasive
pneumococcal infections.
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Figure 4. Decreased frequency of IgMhiCD300a+ B cells in PLWH. (A) Dot-bar graphs showing
the percentage of IgMhiCD300a+ B cells in healthy donors (HD) (white), ART-naïve PLWH (HIV)
(green), and PLWH under ART (PLWH ART) (purple). Each dot represents a donor (n = 20, 20, 22),
mean ± SEMs are shown. Statistical significance was determined by the Kruskal–Wallis test.
* p < 0.05, *** p < 0.001, ns: not significant. (B) Graphs showing the association between the percentage
of IgMhiCD300a+ with the months since HIV infection in ART naïve PLWH (PLWH, green squares)
and PLWH under ART (PLWH ART, purple triangles). A Pearson test was performed, r = −0.448,
** p = 0.0029.

3. Discussion

In this work, we identified and characterized a previously unknown B cell subset ex-
pressing the inhibitory receptor CD300a and high levels of IgM. According to the phenotypic
analysis, IgMhiCD300a+ B cells are CD10−CD27+CD25+IgDloCD21hiCD23−CD38loCD1chi.
On the one hand, the absence of CD10, a marker of immature B cells, indicates that this is
a subpopulation of mature B cells. On the other hand, these cells express both CD25 and
CD27, molecules whose expression has been previously described in memory cells [34,72],
in addition to a higher expression of CD86 and increased frequency of CXCR3+ cells than
IgM+CD300a− cells. IgM memory B cells are approximately 20% of peripheral blood B cells
and 50% of all memory B cell compartments. In humans, peripheral blood IgM memory B
cells were initially defined as IgM-only and IgM+IgD+ B cells, both expressing CD27 and
representing 5% and 15% of peripheral blood B cells, respectively [32,38,42]. A recent work
by Bautista et al. redefined the IgM+IgD+ population into two subsets, IgMhiIgDlo and
IgMloIgDhi B cells, which exhibit different phenotypes and functions in vitro. IgMhiIgDlo
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subset express higher levels of CD27, CD69, CD1c, and CD45RB and lower levels of
CD38, IL21R, B-cell activating factor receptor (BAFFR), CD23, CD184, and CD5 compared
to IgMloIgDhi [38]. Similarly, Sanz et al. classified the IgMhiIgDlo subset as memory
unswitched IgMhiIgDloCD1c+ compared to the IgM+IgD−, defined as pre-switched [45].
Furthermore, they described that this unswitched IgMhiIgDlo subset is the MZ equivalent
and has natural memory properties [45]. In our analysis, IgMhiCD300a+ B cells express
lower levels of IgD, CD23, and CD38, together with higher levels of CD27 and CD1c, and
represent around 5% of peripheral blood B cells, suggesting that this subset could corre-
spond to the IgMhiIgDlo [38] or unswitched [45] memory B cells. In fact, the absence of the
CD23 marker, a molecule that drives proliferation and survival during early stages of GC
reactions, together with a high CD1c and low IgD expression, characteristic of cells located
in the splenic MZ, suggests that these cells could be circulating memory IgM+ B cells from
the splenic MZ [32,40,43,45,52,73–76]. In line with this notion is the observation that the
numbers of this memory IgM+ B cell subset in blood are reduced after splenectomy [77]
and in children younger than 2 years of age, when mature MZ B cells are also absent in the
spleen [78–80].

To determine the potential of this B cell subset to migrate and interact with other cell
subsets, such as T cells, we analyzed the expression levels of co-stimulatory molecules
and chemokine receptors that regulate leukocyte trafficking by promoting the homing to
inflammation sites (CXCR3), to secondary lymphoid tissues (CD62L) or to bone marrow
(CXCR4) [53,56,81]. In comparison with IgM+CD300a− cells, the IgMhiCD300a+ B cell
subset expresses lower levels of HLA-DR [82] and CXCR4, together with higher levels
of CD86, a CD4+ T cell co-stimulatory molecule constitutively expressed on memory B
cells [83], and CXCR3, a receptor expressed on GC B cells which facilitates the migration to
the dark zone [84]. This differential expression pattern suggests that the IgMhiCD300a+ B
cell subset may have an increased potential to migrate to inflammation sites and a role in
the co-stimulation of T cells. Nevertheless, more studies are required to fully characterize
this B cell subset regarding these latter properties.

Human splenic MZ is a unique B-cell compartment that contains B cells with a high
surface expression of IgM and complement receptor 2 (Cr2 or CD21) and exhibits a fast acti-
vation and Ig secretion in response to blood antigens [85]. We found that IgMhiCD300a+ B
cells harbor a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a−

counterpart. Furthermore, the shorter CDR3 AA length from IgMhiCD300a+ B cells com-
pared to IgM+CD300a− together with the predicted antigen experience repertoire, aligns
this novel B cell compartment with a memory phenotype [86]. The origin of IgM memory
B cells is under discussion, and some studies have proposed that IgM+IgD+ circulating MZ
or unswitched IgM memory B cells are generated from GC reactions as is substantiated by
high mutation rate of IgHV genes and high expression of Bcl6 gene [42]. Other findings
suggest that MZ B cells also carry somatic hypermutation and that these cells are generated
through a GC-independent mechanism [29,31,42,87], probably involving TLR-mediated
signals [31,70]. In this regard, it has been demonstrated that IgM memory B cells can be
generated from transitional B cells through in vitro stimulation with the TLR9 ligand CpG
class B (ODN 2006), which induces proliferation, increased AID expression, and acquisition
of somatic mutations. This process led to the differentiation into IgM memory cells and the
production of IgM natural antibodies directed against capsular polysaccharides of bacteria
such as Streptococcus pneumoniae [70,87,88]. On this point, our data show an increased
presence of the AID motifs (RGYW and WRCY) in IgMhiCD300a+ B cells. This capacity to
accomplish T cell-independent responses against encapsulated bacteria or natural mem-
ory has been described by several authors [30,31,42,45,89]. Our in vitro experiments with
sorted IgMhiCD300a+ B cells revealed that this population produces IgM in response to
pneumococcal polysaccharides and CpG class B (ODN 2006), and express higher levels of
TLR9, corroborating their ability to perform T cell-independent responses.

It has been proposed that, in contrast to switched memory B cells that embody the
highly specific adaptive memory, IgM memory B cells may instead act as a first line of
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defense [29]. Capsular polysaccharides are T cell-independent B cell antigens, and due to
their capacity to induce protective antibody responses, are used for vaccination [30,90]. In
fact, an altered response to polysaccharide vaccines, as well as an increased susceptibility
to bacterial infections has been described in different groups of people with a reduced fre-
quency of IgM memory B cells, e.g., newborns [30,31,42,46,47,91,92], congenitally asplenic
and splenectomized individuals [29,46] or patients with common variable immunodefi-
ciency [47,93]. In this regard, our results showing that the IgMhiCD300a+ B cells produce
IgM in response to pneumococcal polysaccharides suggest that this subset may have an
important role against bacterial infections. The exact mechanism of how PPS activates
IgMhiCD300a+ B cells to induce the secretion of IgM is not known. It has been shown that
PPS complexed with C3d is able to bind to CD21 [94]. Therefore, it may be possible that
PPS/C3d simultaneously engages the CD19/CD21 complex and the BCR, regulating the
signaling threshold [95]. On the other hand, a TLR-dependent mechanism may also induce
the secretion of IgM. In fact, several TLRs such as TLR2, 4, and 9 are known to contribute to
the immune recognition of S. pneumoniae [96] and IgMhiCD300a+ B cells expressed high
levels of TLR9. Certainly, in-depth studies are necessary to understand the mechanism
underlying PPS-induced IgM secretion by IgMhiCD300a+ B cells. On the other hand, it
remains to be investigated whether the inhibitory receptor CD300a could play a role in
the regulation of IgM production by these cells, as it was previously observed regarding
BCR-mediated B cell activation [25].

Another circumstance characterized by impaired pneumococcal IgM vaccination
responses and increased susceptibility to bacterial infections is HIV-1 infection. PLWH
has previously been reported to have decreased levels of IgM memory B cells [28,71], as
well as altered CD300a receptor expression in certain B cell subpopulations [25]. When
we analyzed the percentage of IgMhiCD300a+ B cells in PLWH, we observed a decrease
compared to values observed in healthy individuals, especially in those PLWH under
ART treatment. These results are in line with previous studies, where the percentages
of circulating memory IgM B cells observed in PLWH were significantly lower than in
healthy donors, levels that were not reversed by ART [28,97]. Nevertheless, it would be
interesting to further study whether the differences observed between PLWH under ART
and non-treated ones are due to the treatment or to the time elapsed since the infection. In
our cohort, the time since the diagnosis of HIV infection is significantly higher in PLWH
under ART than in non-treated individuals, and negatively correlates with the percentage
of IgMhiCD300a+ B cells. In contrast, no correlation was observed with years of ART,
suggesting that the decrease in this B cell subset is more related to the time of infection than
the treatment. Otherwise, considering the ability of IgMhiCD300a+ B cells to produce IgM
antibodies, we believe that it would be interesting to analyze the frequency of this B cell
subset in patients with selective IgM deficiency, which present different infections (bacteria,
viruses, fungi, and protozoa) [69,98].

There are no clear markers to delineate IgM memory B cells. Here we propose CD300a
as a marker for the identification, among IgM+ B cells, of circulating MZ memory B cells
with the capacity to respond to encapsulated bacteria such as Streptococcus pneumoniae.
Altogether, our results might contribute to a better characterization of IgM memory B cells
and their function against encapsulated bacteria, demonstrating that CD300a could be a
good marker for the identification of MZ B cells among the circulating IgM memory B cells.
Importantly, CD300a might be a useful marker to easily analyze the frequency of IgM mem-
ory B cells in PLWH, which may allow us to predict a higher susceptibility to pneumonia or
a lower vaccine response against pneumococcus in these patients. Future studies, including
single-cell gene profiling and more thorough analysis of T cell-independent responses in
humans, may help to decipher the complexity of the unswitched memory B cell population
and its contribution to immune defenses.



Int. J. Mol. Sci. 2023, 24, 13754 11 of 18

4. Materials and Methods
4.1. Subjects and Samples

In this study, freshly isolated peripheral blood mononuclear cells (PBMCs) from adult
healthy donors (n = 28) and cryopreserved PBMCs from healthy donors (n = 20) were
analyzed. Blood samples (buffy coats) from healthy donors were collected through the
Basque Biobank. The Basque Biobank complies with the quality management, traceability,
and biosecurity, set out in the Spanish Law 14/2007 of Biomedical Research and in the
Royal Decree 1716/2011. This study was approved by the Basque Ethics Committee for
Clinical Research (PI2016112; version 3). All donors provided written and signed informed
consent in accordance with the Declaration of Helsinki. PBMCs were freshly isolated from
healthy donors’ blood in our laboratory by Ficoll Paque Plus (GE Healthcare, Chicago, IL,
USA) density gradient centrifugation.

In addition, cryopreserved PBMCs from healthy donors (n = 20), ART naïve PLWH
(n = 20), and PLWH under ART (n = 22) were provided by the HIV Biobank that works
together with the CoRIS cohort (Supplementary Information). Samples were processed
following current procedures and frozen immediately after their reception. All patients
participating in the study gave their informed consent and protocols were approved by
institutional ethical committees.

All HIV-1 infected patients were asymptomatic, were not co-infected with hepatitis
C virus, and had more than 200 CD4+ T cell/mm3 when the sample was obtained, and
the patients had never been diagnosed with AIDS. ART naïve HIV-1 infected subjects had
detectable viremia (>10,000 HIV-RNA copies/mL) and they had never been treated with
ART, while patients under ART had undetectable viremia and had been treated with ART
at least for 6 months. Clinical data of HIV-1 infected patients, which are shown in Table 2,
were obtained from the CoRIS database.

Table 2. Clinical data of PLWH.

Naïve PLWH PLWH on ART

Median Range
(Min–Max) Median Range

(Min–Max) p-Value

Sex Male: n = 20
Female: n = 0 - Male: n = 20

Female: n = 2 -

Age (years) 27.5 (22–49) 38.5 (25–60) *

Months since
HIV+ 6 (0–59) 40 (15–123) ****

ART (years) - - 1 (1–5) ****

Viral load
(RNA copies/mL) 18,245 (10,471–125,892) <20 - ****

CD4+ T cells/mm3 502.5 (292–995) 570 (344–1157)

B2M (mg/L) 2.16 (1.28–3.05) 2.15 (1.47–3.58)

CRP (mg/L) 1.24 (0.15–7.22) 1.56 (0.17–8.43)

Mann–Whitney test. * p < 0.05, **** p < 0.0001.

4.2. Flow Cytometry

B cell subsets were phenotypically characterized by flow cytometry. For that, the follow-
ing fluorochrome-conjugated monoclonal mouse anti-human antibodies were used: PerCP-
Cy5.5 anti-CD10 (HI10a), PE-Cy7 anti-CD20 (2H7), APC anti-CD38 (HIT2), BV421 anti-CD21
(B-ly4), BV510 anti-CD19 (SJ25C1), PerCP-Cy5.5 anti-HLA-DR (G46-6), APC anti-CD25 (M-
A251), BV421 anti-CD86 (2331 (FUN-1)), PerCP-Cy5.5 anti-CXCR3 (IC6), PE-Cy7 anti-CXCR4
(12G8) and BV421 anti-IgD (IA6-2) from BD Biosciences (Franklin Lakes, NJ, USA); APC-Cy7
anti-CCR6 (GO34E3), BV421 anti-CD62L (DREG-56), PE-Cy7 anti-CD1c (L161), PerCP-Cy5.5
anti-CD23 (EBVCS-5) and BV421 anti-TLR9 (S16013D) from Biolegend; FITC anti-IgM (SA-
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DA4) and APC-ef780 anti-CD27 (O323) from eBioscience (San Diego, CA, USA); and PE
anti-CD300a (E59.126) from Beckman Coulter. For extracellular staining, 106 PBMCs were
incubated with the specific antibodies for 30 min at 4 ◦C in the dark. Cells were washed
with PBS containing 2.5% of bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO,
USA), were resuspended in 350 µL of PBS and then samples were acquired within a FAC-
SCanto II flow cytometer (BD Biosciences). For the detection of TLR9, after extracellular
staining, PBMCs were washed with PBS containing 2.5% of BSA and were permeabilized
and fixed using Cytofix/Cytoperm Plus Kit (BD Biosciences) following the manufacturer’s
instructions. Then, they were incubated with BV421 anti-TLR9 for 30 min at 4 ◦C in the dark.
2 × 106 cryopreserved PBMCs from both healthy donors and PLWH were also incubated
with LIVE/DEAD Fixable Near-IR Dead Cell Stain reagent (Invitrogen, Waltham, MA, USA)
before the extracellular staining to detect dead cells following the manufacturer´s protocol.
Lastly, cells were washed, resuspended in 250 µL of PBS, and acquired in an LSRFortessa
X-20 flow cytometer (BD Biosciences). For analysis, lymphocytes were electronically gated
according to their forward (FSC-A) and side scatter (SSC-A) parameters. Next, singlets were
selected by SSC-A versus SSC-H. Then, B cells were identified by the expression of CD19, and
subsets were selected based on the expression of IgM and CD300a receptors (IgMhiCD300a+)
or (IgM+CD300a−) (See Figure 1A and Figure S2A).

For flow cytometry data analysis FCS 3.0 files were exported from the FACSDiva
software v8.0.3 and imported into FlowJo v.10.7.1. for subsequent analysis. The following
plug-ins in FlowJo were used: DownSample (1.1) and Uniform Manifold Approximation
and Projection (UMAP). Manual and automated analyses were performed. For the au-
tomated analysis, events were first downsampled to 7000 cells from the gate of interest
(CD19+ B cells) across all samples. Then, downsampled populations were concatenated
for the analysis. UMAP was run using the marker expression indicated in each figure and
represented as a heatmap and density plot.

4.3. Cell Sorting and RNA Extraction

B cells were enriched from freshly isolated PBMCs (300–400 × 106 cells) by negative
selection using the B cell Isolation Kit II Human (Miltenyi Biotec) following the manufac-
turer’s protocol. 20–30 × 106 B cells were stained for 15 min at room temperature in the dark
with the anti-IgM and anti-CD300a antibodies mentioned above and PE-Cy7 anti-CD19
(SJ25C1) from BD Biosciences. Cells were washed with PBS containing 2.5% of BSA and
were resuspended at a concentration of 5 × 106 cells/mL for cell sorting. IgMhiCD300a+

and IgM+CD300a− B cells were sorted with a FACSJazz flow cytometer (BD Biosciences) in
the Achucarro Basque Center for Neuroscience. Post-sorted analysis yielded an efficiency
of over 95%. Some sorted cells were used for functional assays and other cells for RNA
extraction and analysis of VH repertoire. The RNA was extracted from sorted cells using
RNeasy Plus Micro Kit from Qiagen (Hilden, Germany) following the manufacturer’s
instructions and RNA samples were stored at −80 ◦C.

4.4. Analysis of the VH Repertoire

The VH repertoire of the IgMhiCD300a+ and IgM+CD300a− B cell subsets was ana-
lyzed using state-of-the-art generation sequence methodology in the National Center of
Microbiology, Carlos III Health Institute (Majadahonda, Madrid, Spain) as described [99].
Briefly, PCR amplifications to analyze VDJ-C were performed using 1U Supreme NZYTaq
II DNA polymerase from NZYTech (Lisboa, Portugal) in a PTC-200 DNA Engine cycler
from Bio-Rad (Hercules, CA, USA). Rearranged alleles were amplified using a degenerate
V primer (comprising IGHV1 to IGHV7 families) including multiple identifier sequences
(MID) and CH-specific primers in separate tubes. Amplicons were prepared with the
Nextera XT Index kit v2 kit from Illumina Inc. (San Diego, CA, USA) as described by the
manufacturer. Libraries were obtained by 500 bp paired-end sequencing on the MiSeq
platform (Illumina). Bioinformatic processing included preprocessing with VDJPipe [100]
(sequence fusion by filtering with a minimum average quality of 35, a maximum homopoly-
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mer of 20, and collapsing into files with total fasta sequences) using the VDJ-server Release
1.1.2 (https://vdjserver.org/). Once the sequences had been successfully matched, they
were submitted to IMGT/HighV-Quest Release 3.4.17 [101] for annotation of the CDR3 and
full-length VDJ regions. The IMGT output files were analyzed in ARGalaxy [102].

4.5. Functional Assays

Pneumococcus- and CpG-induced antibody secretion was determined. B cell enrich-
ment and the sorting of IgMhiCD300a+ and IgM+CD300a− B cell subsets were carried
out as explained above. Then, 2 × 105 cells/well were cultured in 200 µL of complete
RPMI (cRPMI) in 96-well plates. cRPMI is composed of RPMI 1640 medium supplemented
with GlutaMAX (Gibco), 10% Fetal Bovine Serum (FBS) HyClone from Fisher Scientific
(Madrid, Spain), 1% non-essential amino acids (Gibco), 1% Sodium Pyruvate (Gibco) and
1% Penicillin-Streptomycin (Gibco). Purified B cells were stimulated with 3 µM of CpG
class B (ODN 2006) (InvivoGen, San Diego, CA, USA) or 10 µg/mL of each pneumococcal
polysaccharide (strains 3, 14, 17F) (ATCC) for 7 days at 37 ◦C. A non-stimulated condition
was also included as a negative control. Then, the supernatant was collected and stored
at −20 ◦C. The total IgM secretion was measured using an IgM Human ELISA Kit (In-
vitrogen) following the manufacturer’s protocols. The pneumococcus-specific IgG was
analyzed in the Immunology Service of Cruces University Hospital using the VaccZymeTM

Anti-PCP IgG Enzyme Immunoassay Kit (The Binding Site Group, Birmingham, UK) fol-
lowing the manufacturer’s protocol. The positive control was a specific serum provided by
the manufacturer.

4.6. Statistical Analysis and Data Representation

GraphPad Prism v.8.4 was used for graphical representation and statistical analysis.
Normality tests were performed to determine the distribution. The Wilcoxon matched-pairs
test was applied to study the differences between IgM+CD300a− and IgMhiCD300a+ B
cell subsets. The comparison of 4 parametric groups of data was performed using a one-
way ANOVA test and 2 parametric groups of data were compared using a paired student
t-test. For the analysis of VH-IgM repertoires, statistical significance was determined using
a t-test or Mann–Whitney non-parametric test. To compare healthy donors, ART-naïve
HIV-1 infected subjects, and patients under ART, the Kruskal–Wallis test was used. Finally,
the Pearson or Spearman tests were performed in correlation studies with parametric or
non-parametric data, respectively.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms241813754/s1.
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