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Abstract: The endocannabinoid system (ECS) regulates various physiological processes, including
energy homeostasis and kidney function. ECS upregulation in obese animals and humans suggests
a potential link to obesity-induced chronic kidney disease (CKD). However, obesity-induced ECS
changes in the kidney are mainly studied in rodents, leaving the impact on obese humans unknown.
In this study, a total of 21 lean and obese males (38–71 years) underwent a kidney biopsy. Biochemical
analysis, histology, and endocannabinoid (eCB) assessment were performed on kidney tissue and
blood samples. Correlations between different parameters were evaluated using a comprehensive
matrix. The obese group exhibited kidney damage, reflected in morphological changes, and elevated
kidney injury and fibrotic markers. While serum eCB levels were similar between the lean and obese
groups, kidney eCB analysis revealed higher anandamide in obese patients. Obese individuals also
exhibited reduced expression of cannabinoid-1 receptor (CB1R) in the kidney, along with increased
activity of eCB synthesizing and degrading enzymes. Correlation analysis highlighted connections
between renal eCBs, kidney injury markers, obesity, and related pathologies. In summary, this study
investigates obesity’s impact on renal eCB “tone” in humans, providing insights into the ECS’s role
in obesity-induced CKD. Our findings enhance the understanding of the intricate interplay among
obesity, the ECS, and kidney function.
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1. Introduction

Obesity has emerged as a global public health issue, characterized by a rising preva-
lence of overweight and obese individuals. The World Health Organization reports that
over 1 billion people worldwide are presently classified as obese, comprising 650 mil-
lion adults, 340 million adolescents, and 39 million children. Notably, the prevalence of
obesity has nearly tripled since 1975. This surge in body weight is intricately linked to
the development of various chronic health conditions, including chronic kidney disease
(CKD [1–3]).

CKD is a gradually deteriorating condition characterized by a decline in renal func-
tion, and it is estimated that approximately 10% of the global population is affected by
CKD [4,5]. The progression of CKD can eventually lead to end-stage kidney disease (ESKD),
necessitating renal replacement therapies such as dialysis or kidney transplantation. ESKD
significantly impairs quality of life and is associated with a high mortality rate [6–8]. The
association between obesity and CKD is intricate and multifaceted, involving a variety
of mechanisms. These mechanisms include increased glomerular pressure, inflammation,
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oxidative stress, metabolic abnormalities, adipokines, and the involvement of the endo-
cannabinoid system (ECS) [9–11]. Understanding the interplay between these factors is
crucial for comprehending the pathophysiological pathways connecting obesity and CKD.

The ECS is a highly complex signaling system comprising endocannabinoids (eCBs),
cannabinoid-1 and -2 receptors (CB1R and CB2R, respectively), and enzymes responsible
for eCB synthesis and degradation. All these elements play vital roles in various physio-
logical and pathological processes, including appetite regulation, energy metabolism, and
inflammation. The two primary eCBs, anandamide (AEA or N-arachidonoylethanolamine)
and 2-arachidonoylglycerol (2-AG), interact with CB1R and CB2R, which are expressed
in diverse tissues, including the kidney [12,13]. Additionally, this network encompasses
eCB-like compounds, N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA),
which share their catabolic pathway with AEA [14–17].

Studies have consistently demonstrated ECS alterations within the kidney of both
obese individuals and animal models of obesity. Specifically, obese animals have exhibited
increased levels of AEA and 2-AG within their kidneys [18–20], which have been associated
with renal dysfunction. Furthermore, research conducted by our group and others has
revealed significant changes in the expression of CB1R in whole kidney tissue [20–22],
glomeruli [23–25], and proximal tubular cells [20,26] in the context of obesity. These
alterations have been linked to intracellular lipid accumulation, inflammation, fibrosis, and
kidney injury [20,27]. Notably, studies utilizing deletion or inhibition of CB1R in obese
animals have demonstrated improvements in kidney function [20,21,24,25,28–32]. Despite
these findings, there remains a dearth of information regarding the involvement of ECS
in obesity-induced CKD, particularly in humans. Thus, the objective of this study is to
contribute to the existing knowledge on this subject matter by investigating the impact of
obesity on the ECS in the kidneys of humans and gain insights into the role of the ECS in
obesity-induced CKD.

2. Results
2.1. Patient Information

Patient demographics and key parameters are specified in Table 1. The study com-
prised 21 male patients who underwent surgery for the removal of a kidney lesion, with
10 individuals classified as having a low body mass index (BMI; <26) and 11 individuals
classified as having a high BMI (>30). Lesion characterization revealed that 43% of par-
ticipants had clear cell renal cell carcinoma, 24% had papillary renal cell carcinoma, and
the remaining patients did not have a malignant tumor. No significant association was
observed between BMI and lesion characterization or malignancy.

Table 1. Patient demographics and key parameters.

Parameters Low BMI (n = 10) High BMI (n = 11) p Value

Age (years) 57.3 (40–64) 54.91 (38–71) 0.5214
BMI (kg/m2) 23.18 (19.02–25.99) 33.69 (30.02–42.50) <0.0001

Fasting serum glucose (mg/dL) # 157 (75-362) 122.86 (89–199) 0.7396
Creatinine (mg/dL) * 1.41 (0.56–4.73) 0.78 (0.64–1.00) 0.7546

BUN (mg/dL) * 14.07 (9.07–31.09) 15.37 (10.67–24.22) 0.2414
Glucose (mmol/L) * 5.87 (3.99–6.67) 6.57 (3.34–9.97) 0.4908
Lactate (mmol/L) * 2.55 (1.13–4.53) 3.86 (2.3–6.5) 0.1079

ALT (U/L) * 18 (9–29) 18.87 (10–29) 0.323
AST (U/L) * 17.11 (9.2–24.1) 13.56 (9.2–18.2) 0.5987
ALP (U/L) * 90.97 (61.1–136.2) 74.33 (54.9–119.3) 0.1812

TG (mg/dL) * 182.55 (119.58–852.44) 214.33 (100.81–609.23) 0.4908
Cholesterol (mg/dL) * 164.91 (112.26–221.72) 151.21 (111.4–218.61) 0.5728

HDL (mg/dL) * 0.98 (0.63–1.13) 0.91 (0.61–1.36) 0.8258
LDL (mg/dL) * 70.33 (18.10–106.95) 69.51 (1.63–139.25) 0.8765

* Measured from 15 patients due to the lack of serum samples. # Presented from 17 patients due to the lack of data.
Bold highlights the significant change between the two groups.
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For further investigation, serum samples and healthy tissue sections from the lesion
were utilized. Fasting serum glucose levels were available for most patients from their
medical records. Biochemical measurements, including creatinine, blood urea nitrogen
(BUN), glucose, lactate, alanine transaminase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), triglycerides (TG), cholesterol, high-density lipoprotein (HDL),
and low-density lipoprotein (LDL), were conducted using the serum samples. Interestingly,
the low- and high-BMI groups exhibited similar biochemical profiles, with no significant
differences observed.

2.2. Patients with High BMI Exhibit Abnormal Kidney Morphology and Elevated Kidney
Injury Markers

Obesity is known to contribute to CKD and is associated with various structural
and functional abnormalities in the kidney. To assess the morphological changes in the
kidneys of obese patients, kidney tissues were subjected to H&E staining. Figure 1 presents
representative microscope images at 20×magnification (Figure 1A) and the quantification
of the glomerular area (Figure 1B) and Bowman’s space area (Figure 1C). While no signifi-
cant differences were observed in glomerular size between the lean and the obese groups,
obese patients exhibited a significant enlargement of Bowman’s space, as indicated by the
quantification analysis (p = 0.0317). Furthermore, a significant increase in kidney injury
molecule-1 (KIM-1) protein expression in the kidneys of obese patients compared to the lean
group (p = 0.0357) was found (Figure 1D,E). Additionally, a significant upregulation in the
gene expression levels of transforming growth factor beta (TGFB) and interleukin 18 (IL-18)
(Figure 1F), which are associated with inflammation and fibrosis, were found in high-BMI
individuals compared to the lean group (p = 0.0006 and p = 0.008, respectively). Addi-
tionally, we attempted to measure other genes associated with inflammation and fibrosis,
such as tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), interferon gamma-induced
protein 10 (IP-10), TIMP metallopeptidase inhibitor 1 (TIMP1), fibronectin (FN), and colla-
gen I (COL1); however, none of them changed in the obese patients compared to the lean
controls (Figure A1). Nevertheless, trichrome staining of kidney sections revealed elevated
levels of collagen in the obese group, further suggesting increased fibrosis (Figure 1G,H).
Taken together, these results suggest a higher propensity for CKD progression in the obese
population compared to their lean counterparts.

2.3. AEA Levels Are Increased in the Kidneys of Obese Patients

Obesity has been linked to an increase in renal eCB “tone” in animal studies [20].
However, this phenomenon has not been thoroughly examined in humans. Using LC-
MS/MS, we measured the concentrations of 2-AG, AEA, and their related ligands, OEA
and PEA, as well as the eCB degrading product arachidonic acid (AA), in the serum and
kidney of obese and lean patients. Interestingly, none of the measurements showed any
significant change in the serum of obese individuals (Figure 2A–E). In renal eCB “tone”, we
found a significant increase in the AEA levels of obese patients (p = 0.0401), together with a
noticeable but non-significant trend toward elevated levels of AA, the degrading product
of AEA (p = 0.1206) (Figure 2F–J). In addition, a slight non-significant reduction in renal
2-AG was found in the obese patients. These findings provide initial evidence suggesting
that obesity may contribute to alterations in the renal ECS in humans and highlight its
potential in the pathophysiology of obesity-related renal dysfunction.
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Figure 1. Kidney pathology of lean vs. obese individuals. (A) Representative images of ×20 magni-
fied H&E-stained kidneys. Quantification of glomerular area (B) and Bowman’s space area (C). Kid-
ney injury marker-1 (KIM-1) was measured via Western blot and quantified (D,E). TGFB and IL-18 
relative kidney mRNA expression (F). Representative images of ×20 magnified Trichrome-stained 
kidney sections (G) and fibrosis quantification (H). Data are mean ± SD; * p < 0.05 obese vs. lean 
group. 
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Figure 1. Kidney pathology of lean vs. obese individuals. (A) Representative images of
×20 magnified H&E-stained kidneys. Quantification of glomerular area (B) and Bowman’s space
area (C). Kidney injury marker-1 (KIM-1) was measured via Western blot and quantified (D,E). TGFB
and IL-18 relative kidney mRNA expression (F). Representative images of ×20 magnified Trichrome-
stained kidney sections (G) and fibrosis quantification (H). Data are mean ± SD; * p < 0.05 obese vs.
lean group.
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Figure 2. Serum and kidney eCB levels in lean vs. obese patients. 2-AG (A), AEA (B), PEA (C), OEA 
(D), and AA (E) levels were extracted from serum, and 2-AG (F), AEA (G), PEA (H), OEA (I), and 
AA (J) levels were extracted from kidney tissue. All eCBs were measured using LC-MS/MS. Data 
are mean ± SD; * p < 0.05 vs. lean group. 
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expression levels of N-acylphosphatidylethanolamine phospholipase D (NAPEPLD; p = 
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Figure 2. Serum and kidney eCB levels in lean vs. obese patients. 2-AG (A), AEA (B), PEA (C),
OEA (D), and AA (E) levels were extracted from serum, and 2-AG (F), AEA (G), PEA (H), OEA (I),
and AA (J) levels were extracted from kidney tissue. All eCBs were measured using LC-MS/MS.
Data are mean ± SD; * p < 0.05 vs. lean group.
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2.4. Abnormal Expression of CB1R and ECS-Related Enzymes in Obese Patients

Previous research has indicated alterations in the renal expression of CB1R and CB2R
in both humans and animals under lipotoxic conditions [32–35]. Building upon the find-
ings presented in Figure 2, we sought to further investigate the expression levels of CB1R.
Figure 3 illustrates the downregulation of CB1R expression in the obese group (Figure 3A),
as depicted by the representative blot and quantification (p = 0.0021). As we found changes
in renal eCB abundance amongst the groups, we further analyzed the expression levels of
their metabolic machinery. The expression levels of fatty acid amide hydrolase (FAAH), the
catabolic enzyme of N-acylethanolamines (AEA, OEA, and PEA), were higher in the obese
patients, in both the protein (p = 0.119; Figure 3B) and the mRNA (p = 0.0205; Figure 3C)
expression levels. Moreover, the obese patients also displayed increased gene expression
levels of N-acylphosphatidylethanolamine phospholipase D (NAPEPLD; p = 0.0093), the
N-acylethanolamine anabolic enzyme. Finally, the gene expression of the synthesizing
and degrading enzymes of 2-AG, diacyl-glycerol lipases α and β (DAGLA and DAGLB;
p = 0.0401 and 0.0076, respectively) and monoacylglycerol lipase (MGLL; 0.0111), respec-
tively, was also notably higher in the obese individuals (Figure 3C). These findings provide
valuable insights into the dysregulation of the ECS in the context of obesity-related renal
pathophysiology.
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Figure 3. Kidney CB1R and ECS enzyme expression levels. Kidney proteins were extracted; CB1R (A)
and FAAH (B) levels were examined via Western blot and quantified. Relative mRNA expression
of FAAH, NAPEPLD, DAGLA, DAGLB, and MGLL genes (C). Data are mean ± SD; * p < 0.05 vs.
lean group.

2.5. Multiple-Parameter Correlations

In order to gain deeper insights into the relationship between obesity-induced CKD
and changes in ECS “tone”, we conducted a comprehensive analysis using a multiple-
parameter correlation matrix, as presented in Figure 4 (and explained in detail in Section 4).
In addition, to compare the kidney injury markers with ECS parameters, we chose to
include other variables known to be associated with CKD in a more indirect manner,
such as liver function parameters and glucose and lipid profiles, which have been shown
repeatedly to affect kidney function [36–43]. Initially, when considering both lean and
obese groups together, we observed minimal correlations between renal and circulating
eCBs, with few noticeable associations (Figure 4A). However, upon stratifying the data into
lean (Figure 4B) and obese (Figure 4C) groups, a multitude of previously unrecognized
connections emerged, even though not all of them were statistically significant.
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coefficients between multiple variables. The matrix was applied to variables of all patients (A) and
then stratified according to their BMI, analyzing the lean (B) and obese (C) groups separately. In eCBs
measurements, K = kidney, and S = serum.

In obese patients, we observed a positive correlation between KIM-1 and BMI, while
their correlation with renal and circulating eCBs predominantly showed negative associa-
tions. Furthermore, histopathological parameters of kidney function displayed predomi-
nantly negative correlations with both renal and circulating eCBs in obese patients, with
a notable exception of a strong positive correlation with renal AEA. Conversely, in lean
patients, the correlations with renal eCBs were consistently negative, except for positive
associations with circulating OEA and AEA. Additionally, serum levels of BUN and creati-
nine exhibited negative correlations with kidney AEA and positive correlations with kidney
PEA and OEA in the high-BMI group. In the low-BMI group, the only notable correlation
was a positive association with renal 2-AG. Furthermore, we observed a clear and robust
association between renal eCBs, circulating 2-AG, and serum glucose levels, as well as
liver and lipid profiles, in both lean and obese patients. These connections underscore the
interplay between renal eCBs and metabolic parameters in both groups (Table A1).

Overall, our findings suggest distinct patterns of correlations between renal and
circulating eCBs, as well as their associations with clinical parameters, depending on
the BMI status of the patients. This comprehensive analysis provides novel insights into
the complex relationship between obesity-induced CKD and the ECS, shedding light
on potential mechanisms underlying the disease progression. Further investigations are
warranted to unravel the functional implications of these correlations and their relevance
for targeted therapeutic interventions.
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3. Discussion

The ECS has been implicated in the pathogenesis of obesity-induced CKD due to
its influence on metabolism and renal function [9–11]. However, the precise mechanisms
underlying the ECS’s involvement in CKD, particularly in humans, remain poorly under-
stood. This study aimed to enhance our understanding by analyzing a small cohort of
human participants.

Our findings demonstrated evidence of kidney injury in obese patients, as indicated
by histological staining and the presence of kidney injury markers. Furthermore, we
investigated the levels of eCBs extracted from the kidneys of lean and obese patients,
providing novel insights. Specifically, we observed elevated levels of AEA and a slight
non-significant reduction in 2-AG in the kidneys of obese individuals. Additionally, we
observed a significant decrease in kidney CB1R expression levels and an upregulation of
eCB biosynthesis and degradation enzymes in the obese group. Notably, there were no
significant alterations in circulating eCBs between the lean and obese groups. Moreover,
we employed a comprehensive correlation matrix analysis to elucidate the relationship
between kidney eCB “tone” and the overall metabolic state. This large-scale analysis
highlighted the intricate interplay between eCBs and systemic metabolic factors. While
our study suggests a role of the ECS in the pathogenesis of CKD, further investigations are
required to fully elucidate the underlying mechanisms.

The serum biochemistry of obese individuals in our study did not exhibit significant
differences compared to their lean counterparts. However, assessment of renal histopathol-
ogy and injury markers revealed evidence of more severe renal pathology in the obese
group. Enlarged glomerular area and Bowman’s space are well-established indicators of
kidney injury in obesity-induced CKD [44,45]. Previous studies in obese human patients
have consistently reported these findings [46–48]. Consistent with the existing literature,
our histopathological analysis also demonstrated a noteworthy expansion of Bowman’s
space in the kidney samples of the obese participants. Although our cohort was limited in
size and did not demonstrate a statistically significant glomerular enlargement, our results
are aligned with the literature on kidney injury in obesity-induced CKD. Furthermore, we
observed increased levels of KIM-1 protein and TGFB and IL-18 mRNA expression, which
are additional markers of kidney injury [49–56]. Trichrome staining for collagen has also
indicated increased fibrosis in the high-BMI group, further verifying the development of
CKD [57]. Our multi-parameter correlation analysis revealed a strong positive correlation
between KIM-1 and BMI in obese patients, thus linking kidney injury to the increased body
weight of the subjects.

This study represents the first investigation of eCBs within the renal context of lean
and obese human patients. Notably, obese individuals display significantly elevated AEA
levels within their kidneys. These findings are in line with previous studies involving both
in-vivo and in-vitro models of obesity, which have highlighted an elevated kidney eCB
“tone” [18–20], as evidenced by increased levels of AEA and/or 2-AG in response to high-
fat diet and lipotoxic conditions [20,26]. Concomitant with these eCB changes, a substantial
overexpression of renal CB1R has been reported in obese mice [20,28]. This elevation in ECS
“tone” and the resultant CB1R overactivation play contributory roles in the onset of kidney
damage, inflammatory responses, and lipid accumulation [20], with pharmacological
blockade and genetic deletion of renal CB1R shown to mitigate the damage [20,22,28].
Furthermore, CB1R overactivity in lipotoxic conditions also contributes to mitochondrial
dysfunction [58], endoplasmic reticulum stress, and apoptosis in renal proximal tubule
cells [28]. Surprisingly, we observed a significant downregulation of renal CB1R protein
expression in the obese subjects, contrary to previous in-vivo and human studies, including
some conducted by our group [20,22,28,59]. A possible explanation for these discrepancies
is the inability to control the sample location within the kidney (such as cortex or medulla)
due to the dependency on the location of the tumor site, and the lack of provided data
regarding this aspect. Additionally, a limitation of the current study is the inability to
capture the dynamic changes in ECS activity at different time points. Nevertheless, we



Int. J. Mol. Sci. 2023, 24, 13636 8 of 16

propose that the observed downregulation of CB1R may be a compensatory mechanism
employed by the organism in response to mitigate the detrimental effects of obesity on
the kidney. This downregulation of CB1R assumes significance, particularly in the context
of emerging therapies targeting renal CB1R as a potential intervention for CKD with
peripherally restricted CB1R blockers [21,22,26,29,33]. Furthermore, our findings indicate
that all the enzymes involved in eCB biosynthesis and degradation exhibit elevated mRNA
levels in our cohort of high-BMI patients, introducing complexity into the interpretation
of these results and requiring further investigation. Altogether, the activity of the ECS
undergoes alterations under obese conditions; however, the direction of these changes
remains unclear, at least in humans.

In the context of this study, it was observed that among the obese patients examined
here, there were elevated renal AEA levels. Conversely, the levels of 2-AG did not exhibit
significant differences and displayed a marginal decreasing trend. It is worth mentioning
that although the renal levels of 2-AG exceeded those of AEA, the question of which
eCB is more abundantly and biologically effective within the kidney remains a topic of
debate. This discrepancy in abundance is known to vary across distinct compartments of
the kidney [33]. Furthermore, it is important to consider that these eCBs exhibit different
affinities and functional activities. AEA functions as a high-affinity, CB1R-selective partial
agonist, while 2-AG acts as a moderate-affinity agonist for both CB1R and CB2R [60].
This distinct pharmacological profile contributes to the intricate interplay between these
endogenous compounds. Given these pharmacological distinctions and the distinct renal
patterns observed between 2-AG and AEA, the implications for CB1R activation in the
context of obesity remain to be further investigated. Moreover, while we found changes in
renal eCB levels, we did not observe any differences in the circulating eCB levels between
the two groups, which contrasts with previous reports of elevated serum AEA, OEA,
and PEA in obese individuals [61–65]. This discrepancy may be attributed to the limited
size of our cohort or the lack of control over sample timing, as various physiological
factors are known to influence circulating eCB levels [66–69]. Notably, our study found no
correlations between the renal and circulating eCB levels, suggesting their distinct roles as
local regulators within the kidney.

Our study employed a comprehensive correlation matrix analysis to explore the
relationship between renal eCB levels, kidney injury parameters, and kidney and systemic
health markers. Initially, weak negative correlations were observed between histological
kidney injury parameters and renal eCB levels when considering all patients collectively.
However, when stratifying the data based on obesity status, interesting patterns emerged.
In lean individuals, serum kidney function markers (creatinine and BUN) exhibited a
positive correlation solely with renal 2-AG. Conversely, in obese individuals, these markers
displayed stronger correlations with AEA, OEA, and PEA. Notably, this connection between
kidney health markers and renal N-acylethanolamines was reinforced by their robust
correlations with renal histological damage markers in the obese group. In contrast, in the
lean group, renal AEA, OEA, and PEA were negatively correlated with histopathological
markers, indicating a divergent relationship compared to the obese group. Furthermore,
we observed a prominent negative correlation between histological markers and renal 2-AG
and AA in the obese group, inconsistent with previous findings in the kidneys of obese
animals [18–20]. Regarding AEA, there are conflicting reports in the literature regarding
its role in the kidney [11,33,70], although numerous studies on chronic renal conditions
describe elevated renal AEA levels [18,20,71,72]. Overall, our findings highlight a distinct
and contrasting profile in renal eCBs and their correlation with kidney health markers
between lean and obese patients. This underscores the potential influence of obesity on the
renal ECS and its intricate interplay with kidney function and pathology.

In addition to the established association between the ECS and kidney health, our
large-scale correlation analysis revealed significant connections between renal ECS and
systemic metabolic parameters. Notably, renal eCB levels showed a close relationship
with blood glucose levels. In lean patients, AEA, OEA, PEA, and AA exhibited positive
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correlations with blood glucose levels. However, in the obese group, while still positively
correlated with AEA, there were negative correlations observed with 2-AG, AA, and OEA.
Existing in-vivo studies conducted by other research groups have reported upregulation
of renal AEA in high-glucose environments, although evidence regarding 2-AG remains
conflicting [18,34,73].

An intriguing and unexpected finding of our study is the strong dependence of renal
“endocannabidiome” on lipid and liver profiles. In lean patients, ALT, AST, serum TG levels,
and total cholesterol exhibited positive correlation with all eCBs, except for 2-AG, which
displayed positive correlations with HDL and LDL. Conversely, in the obese group, all eCBs,
except AEA, demonstrated positive correlations with ALT, AST, and cholesterol, while
displaying negative correlations with ALP and TG. Notably, AEA exhibited an opposite
pattern compared to the other eCBs across these parameters. Liver problems and dyslipi-
demia are common manifestations of the metabolic syndrome in obese patients [35,74–76],
and previous animal studies, as mentioned earlier, have reported changes in renal eCBs
in the context of obesity. However, our study is the first to establish correlations between
lipid and liver profiles and the renal “endocannabidiome”.

Several notable limitations are inherent in the framework of this study. These encom-
pass a relatively small sample size and the exclusion of female subjects, for example. In
addition, even though we do possess some background knowledge about the comorbidi-
ties, as well as treatment regimens, of these patients, which potentially could affect the
conclusions drawn from our results, we could not at this time investigate any such connec-
tions. Unfortunately, the comorbidities and treatment parameters are too varied, which
makes it challenging to successfully correlate them with such a limited cohort of patients.
Additionally, the utilization of biobank-derived specimens in this study as the basis for
analysis impeded the meticulous control of pivotal factors such as temporal alignment of
samples, spatial localization within the kidney, and controlled experimental conditions,
which altogether are especially important for evaluating systemic eCBs profiling. Further
prospective research with a larger sample size and more diverse patient population is
warranted to validate our findings. Importantly, while this study aimed to evaluate the
renal ECS changes in the obese population, the groups were determined by BMI, which is
known to be a limited parameter in assessing metabolic health [77]. Further, while we did
observe worsened kidney architecture and elevated injury markers in the obese group, it
did not translate to robust functional damage. How ECS dysregulation in these obese pa-
tients affects their susceptibility to developing CKD and whether their ECS profile changes
as renal function declines requires further research. Altogether, these findings provide
clinical evidence of ECS dysregulation in the kidneys of obese patients, with implications
for therapeutic targeting for obesity-induced CKD.

4. Materials and Methods
4.1. Study Population

The study comprised 21 male patients, with 10 classified as lean and 11 as obese,
ranging in age from 38 to 71 years. These patients underwent tissue biopsies specifically for
localized renal mass, with only the healthy tissue section utilized for subsequent analysis.
Demographic information and comorbidities were obtained from the patients’ medical
records. BMI, calculated as weight divided by height squared (kg/m2), was determined,
and individuals with a BMI exceeding 30 were considered obese.

4.2. Study Protocol

The biological samples in this study, including frozen kidney tissue, frozen serum,
and FFPE sections, were obtained from “MIDGAM”—Israel National Biobank for Research.
This nonprofit organization, operating under the supervision of the Ministry of Health,
serves as a facilitator for biomedical research and industry in Israel. The MIDGAM biobank
collects samples from various donors, including patients with malignant and non-malignant
diseases, as well as healthy volunteers. Renal tissues that were surgically removed or
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biopsied, as well as samples from blood, were collected, along with relevant demographic
and clinical data, all in accordance with a legally approved protocol. All clinical data
utilized in this study were obtained with approval from the Hadassah Medical School
Institutional Review Board (IRB), with approval number HMO-0611-17, or Ministry of
Health (MOH) IRB, with the assigned approval number 20185829. Informed consent was
obtained from all patients involved, either through IRB approval at Hadassah Medical
Center or by a waiver of consent for samples obtained from MIDGAM.

4.3. Biochemistry Measurements

The levels of various biochemical markers were measured to assess relevant parame-
ters. Serum samples were used to determine the concentrations of creatinine, urea, glucose,
lactate, ALT, AST, ALP, TG, total cholesterol, LDL, and HDL. These measurements were
performed using a Cobas C-111 chemistry analyzer (Roche, Basel, Switzerland). BUN levels
were calculated based on the serum urea concentrations (BUN mg/dL = Urea mM × 2.801).
Fasting serum glucose levels were obtained from the patients’ medical records.

4.4. Endocannabinoid Extraction and Measurement by LC-MS/MS

The extraction, purification, and quantification of serum and kidney eCBs were per-
formed using stable isotope dilution liquid chromatography/tandem mass spectrometry
(LC-MS/MS) as previously described [73]. In brief, serum and kidney proteins were precip-
itated using ice-cold acetone and Tris buffer (50 mM, pH 8.0). Subsequently, an ice-cold
extraction buffer (1:1 MeOH/Tris Buffer + an internal standard [d4-AEA]) was added to the
samples. The homogenates were then extracted using a mixture of ice-col CHCl3:MeOH
(2:1, vol/vol), followed by three washes with ice-cold chloroform. The samples were then
dried under a nitrogen stream and reconstituted in MeOH.

The analysis by LC-MS/MS was performed using an AB Sciex (Framingham, MA,
USA) QTRAP® 6500+ mass spectrometer coupled with a Shimadzu (Kyoto, Japan) UHPLC
System. A Kinetex 2.6µm C18 (100 × 2.1 mm) column from Phenomenex (Torrance, CA,
USA) was used for liquid chromatographic separation. The autosampler temperature was
set at 4 ◦C, and the column was maintained at 40 ◦C throughout the analysis. Gradient
elution mobile phases consisted of 0.1% formic acid in water (phase A) and 0.1% formic
acid in acetonitrile (phase B).

eCBs were detected in a positive ion mode using electron spray ionization (ESI)
and the multiple reaction monitoring (MRM) mode of acquisition. The collision energy
(CE), declustering potential (DP), and collision cell exit potential (CXP) for the monitored
transitions are given in Table 2. The levels of AEA, 2-AG, OEA, PEA, and AA in samples
were measured against standard curves, which were then calculated in pmol/mL serum or
pmol/mg kidney weight.

Table 2. The collision energy (CE), declustering potential (DP), and collision cell exit potential (CXP)
for the measured eCBs.

Analyte Molecular Ion
[M + H]+ [M − H]− for AA [m/z] Fragment (m/z) DP (Volts) CE (Volts) CXP (Volts)

2-AG 379.2
287.1 (quantifier) 70 19 14

91 (qualifier) 70 67 10

AEA 348.2
287.1 (quantifier) 26 13 16

62 (qualifier) 26 13 8

PEA 300.3
283.2 (quantifier) 130 19 24

62 (qualifier) 130 17 8

AA 305.3
91 (quantifier) 1 49 10

287.1 (qualifier) 1 13 22
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Table 2. Cont.

Analyte Molecular Ion
[M + H]+ [M − H]− for AA [m/z] Fragment (m/z) DP (Volts) CE (Volts) CXP (Volts)

OEA 326.3
61.9 (quantifier) 146 21 24
309.1 (qualifier) 146 21 42

d4-AEA 352.3
287.1 (quantifier) 66 15 20

66 (qualifier) 66 21 8

4.5. Real-Time PCR

Kidney mRNA was extracted using a Bio-Tri RNA lysis buffer (Bio-Lab, Jerusalem,
Israel). Subsequently, DNase I treatment (Thermo Scientific, Hanover Park, IL, USA)
was performed to remove any residual genomic DNA. The RNA samples were then
reverse-transcribed using the qScript cDNA Synthesis kit (Quantabio, Beverly, MA, USA)
to generate cDNA. Real-time PCR analysis was conducted using iTaq Universal SYBR
Green Supermix (Bio-Rad, Hercules, CA, USA) and the CFX connect ST system (Bio-
Rad, Hercules, CA, USA). The following primer pairs were utilized for amplification:
TGFB (5′-CCCAGCATCTGCAAAGCTC-3′, 5′-GTCAATGTACAGCTGCCGCA-3′), IL-18
(5′-GCCTAGAGGTATGGCTGTAA-3′, 5′-GCGTCACTACACTCAGCTAA-3′), TNFα (5′-
GGTGCTTGTTCC TC AGCCT C-3′, 5′-C A GGCAGAAGAGCGTGGTG-3′), IL-6 (5′-
TAGC CGC CCC ACAGACAG-3′, 5′-GG CT GG CATT TGTGGTTGGG-3′), IP-10 (5′-
GCCTAG AGG TATGGCT GTAA-3′, 5′-GCGTCA CTACAC TCAGCTAA-3′), TIMP1 (5′-
CTTCT GCAATTC CGACCTCGT-3′, 5′-ACGCTG GTATAAGGT GGTCTG-3′), FN (5′-
CCACCCCCATAAGGCATAGG-3′, 5′-GTAGGGGTCAAAGCACGAGTCATC-3′), COL1
(5′-GAGGGCCAAGACGAAGACATC-3′, 5′-CAGATCACGTCATCGCACAAC-3′), DAGLA
(5′-TGAAATTATTCCTGCAAGCCAA-3′, 5′-CAGACATCTCTTCTCACCCTTCTTT-3′), DAGLB
(5′-TCAGGTGCTACGCCTTCTC-3′, 5′-TCACACTGAGCCTGGGAATC-3′), NAPEPLD
(5′-ACTGGTTATTGCCCTGCTTT-3′, 5′-AATCCTTACAGCTTCTTCTGGG-3′), MGLL (5′-
GGAAACAGGACCTGAAGACC-3′, 5′-ACTGTCCGTCTGCATTGAC-3′), and FAAH (5′-
CACACGCTGGTTCCCTTCTT -3′, 5′-GGGTCCACGAAATCACCTTTGA-3′). The ex-
pression levels of all target genes were normalized to the housekeeping gene RPLP0
(5′-CTTCCTTAAGATCATCCAACTA-3′, 5′-ACATGCGGATCTGCTGCA-3′).

4.6. Western Blotting

Kidney homogenates were prepared using the BulletBlender® and zirconium oxide
beads (Next Advanced, Inc., Troy, NY, USA) in a RIPA buffer containing 25 mM Tris-
HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS. Protein
concentrations were measured using the Pierce™ BCA Protein Assay Kit (Thermo Scientific,
Hanover Park, IL, USA). Samples were separated by SDS-PAGE on 4–15% acrylamide
gels at 150 V and transferred to nitrocellulose membranes using the Trans-Blot® Turbo™
Transfer System (Bio-Rad, Hercules, CA, USA). Membranes were then blocked for 1 h in
5% milk (in 1x TBS-T) to prevent unspecific binding and incubated overnight at 4 ◦C with
CB1R (ImmunoGenes, Budakeszi, Hungary, Cat #CB1), fatty acid amide hydrolase (FAAH;
Abcam, Cambridge, UK, Cat #ab54615), and kidney injury marker 1 (KIM-1; Abcam,
Cambridge, UK Cat #ab78494) antibodies. After washing, membranes were incubated
with anti-rabbit or mouse horseradish peroxidase (HRP)-conjugated secondary antibodies
for 1 h at room temperature, and chemiluminescence detection was performed using
Clarity™ Western ECL Blotting Substrate (Bio-Rad, Hercules, CA, USA). Densitometry was
quantified using ImageJ software (version 1.53k), and quantification was normalized to
anti-β actin (Abcam, Cambridge, UK, Cat# ab49900) and VDAC (Abcam, Cambridge, UK,
Cat #ab15895) antibodies.
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4.7. Histopathology

Paraffin-embedded kidney sections (4 µm) were stained with H&E and Trichrome
(Abcam, Cambridge, UK, Cat #ab150686). Images of both staining samples were captured
from 10 randomly selected 20× fields using an AxioCam ICc5 color camera mounted
on an Axio Scope.A1 light microscope (Zeiss, Oberkochen, Germany). Quantification of
glomerular and Bowman’s space cross-sectional areas in H&E, as well as the quantification
of the collagen cross-sectional areas in Trichrome staining, was carried out in a blinded
manner using Adobe Photoshop CS3 software (version CS3). Bowman’s space area was
normalized to the glomerular area to account for variations in glomerular size.

4.8. Statistical Analysis

Statistical analysis was conducted using SPSS version 26 and GraphPad Prism version
9. Fisher’s exact test was employed to assess the association between nominal variables in
the obese and lean groups. Demographic and biochemical continuous variables are pre-
sented as median (range), and all other continuous variables are presented as mean ± SD.
Differences between two groups were evaluated using the non-parametric Mann–Whitney
test, with statistical significance set at p < 0.05. The Pearson correlation coefficient anal-
ysis was used to assess correlations between metabolic parameters and eCB levels, with
statistical significance set at p < 0.05.

In our study, we harnessed the power of correlation matrices to uncover connections
among the diverse variables we investigated. These matrices provide a foundational
framework for comprehending the interdependencies between different factors. Correlation
matrices were generated using the MATLAB version: 9.10.0.1851785 (R2021a) “corrcoef”
function. This function facilitates the calculation of Pearson correlation coefficients, which
serve as numeric indicators of the strength and direction of linear relationships between
pairs of variables (positive correlations were displayed in blue, while negative correlations
were depicted in brown). These coefficients are commonly used to quantify how closely two
variables move together and to assess the degree of their association, thereby quantifying
the extent of relationships between pairs of variables. This approach provided us with a
quantifiable measure of how variables interact, offering insight into the degree and nature
of their associations. By setting the “Rows” option to “pairwise”, we ensured that only
complete data entries were used for comparisons, effectively preventing the influence of
missing values.

Prior to analysis, the data underwent Z-score normalization. This technique adjusts
the values of each feature to have an average of 0 and a standard deviation of 1. Such
normalization ensures that various variables can be fairly compared and placed on the
same scale, ultimately enhancing the accuracy of our subsequent analyses.

We conducted matrix analysis for all patients as well as for lean and obese patient sub-
groups, aiming to explore potential variations in the relationships between different factors.
This method facilitated a comprehensive investigation of the intricate associations between
various clinical and biochemical parameters, ultimately leading to a deeper understanding
of their interplay.

5. Conclusions

In summary, our findings highlight the intricate connections between the renal ECS
and systemic metabolic parameters. The observed relationships between renal eCBs, blood
glucose levels, lipid profiles, and liver enzymes provide novel insights into the complex
interplay of the ECS and metabolic homeostasis. Further investigations are warranted
to unravel the underlying mechanisms and elucidate the potential implications of these
findings in the context of metabolic disorders and renal health.
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Appendix A

Table A1. Statistically significant correlations of the multiple-parameter matrix.

Correlation p-Value

Glucose/AEA 0.0093
ALT/kidney 2-AG 0.0042
ALT/kidney PEA 0.014
ALT/kidney AA 0.0014

ALT/kidney OEA 0.0178
AST/kidney PEA 0.0477
AST/kidney AA 0.0294
ALP/kidney AA −0.0311

LDL/kidney AEA −0.0051
AST/serum PEA 0.0284
ALP/serum AA −0.0216
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