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Abstract: Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic
Ca2+ elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca2+

elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes
enwrap with their endfeet. However, the causal relationship between astrocytic Ca2+ elevations and
blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca2+ signaling
show normal sensory hyperemia. We addressed this controversy by imaging cortical vasculature
while optogenetically elevating astrocyte Ca2+ in a novel transgenic mouse line, expressing Opto-
Gq-type GPCR Optoα1AR (Astro-Optoα1AR) in astrocytes. Blue light illumination on the surface of
the somatosensory cortex induced Ca2+ elevations in cortical astrocytes and their endfeet in mice
under anesthesia. Blood vessel diameter did not change significantly with Optoα1AR-induced Ca2+

elevations in astrocytes, while it was increased by forelimb stimulation. Next, we labeled blood
plasma with red fluorescence using AAV8-P3-Alb-mScarlet in Astro-Optoα1AR mice. We were
able to identify arterioles that display diameter changes in superficial areas of the somatosensory
cortex through the thinned skull. Photo-stimulation of astrocytes in the cortical area did not result
in noticeable changes in the arteriole diameters compared with their background strain C57BL/6.
Together, compelling evidence for astrocytic Gq pathway-induced vasodiameter changes was not
observed. Our results support the notion that short-term (<10 s) hyperemia is not mediated by
GPCR-induced astrocytic Ca2+ signaling.

Keywords: astrocytes; optogenetic GPCR; OptoA1AR; Ca2+ elevation; blood flow; cortex; mouse;
optical imaging

1. Introduction

Functional hyperemia is a process to provide an on-demand metabolic supply, whereby
areas of high neural activity receive higher blood flow by dilation of local blood vessels [1].
Understanding functional hyperemia is important since brain activity imaging techniques,
including functional magnetic resonance imaging (fMRI), rely on activity-dependent cere-
bral blood flow changes. Several mechanisms have been proposed, such as neuronal
activity-triggered increases in nitric oxide, prostaglandins, adenosine, and potassium [2–5].

Astrocytes are a major glial cell type that extends their processes to neighboring blood
vessels and synapses via endfeet and peri-synaptic astrocytic processes, respectively. In
the cerebral cortex gray matter, astrocytes represent a significant portion of the cellular
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composition, ranging from 20–30% in rodents and humans [6–9]. Astrocytes express
receptors for neurotransmitters and neuromodulators, most of which are G protein-coupled
receptors (GPCRs) [10]. Large-amplitude cytosolic Ca2+ elevations occur in astrocytes by
Gq-coupled GPCRs, which activate the inositol trisphosphate (IP3) pathway.

Astrocytes, with their extensive blood vessel coverage and ability to sense neuronal
activity, represent an optimal candidate cell type for mediating functional hyperemia.
Indeed, astrocytic Ca2+ elevation has been implicated in the modulation of local cerebral
blood flow by multiple independent groups [11–14]. However, this role of astrocytic
Ca2+ has been questioned since IP3 receptor type-2 knockout mice (IP3R2-KO), in which
large astrocytic Ca2+ elevations are diminished, display a similar extent of functional
hyperemia [15–17]. The controversy remains unresolved to date, as a residual Ca2+ response
was observed in IP3R2-KO astrocytes, including their endfeet [18,19], though vastly reduced
in amplitude [20]. Moreover, other studies reported a tight relationship between astrocyte
endfoot Ca2+ and vessel diameter or blood flow velocity [21,22], and proposed an indirect
astrocyte–capillary vasomodulation via pericytes [23]. Utilization of genetic cytosolic
Ca2+ indicators, suitable for detecting GPCR-induced Ca2+ increases from internal stores,
did not support astrocytic modulation of vessel changes [24,25], whereas use of genetic
membrane-tethered Ca2+ indicators for detection of endfoot Ca2+ events [19] gave mixed
results [20,26].

The lack of a hypothesized phenotype by genetic loss-of-function approaches could be
due to a compensatory response in the system. A gain-of-function approach that elevates
cytosolic Ca2+ selectively in astrocytes can test the causal involvement of astrocytic Ca2+

in vasodiameter regulation. Indeed, Bonder and McCarthy (2014 [15]) demonstrated that
activation of astrocytes by a pharmacogenetic Gq-GPCR (hM3Dq DREADD) did not lead to
hyperemia. Still, DREADD-induced Ca2+ signaling is complex [27], and the Ca2+ dynamics
may differ from physiologically induced Ca2+ patterns. Here, we chose optogenetics as
the least invasive method for astrocyte manipulation. We used a transgenic mouse line
expressing the optogenetically activated Gq-type GPCR Optoα1AR in astrocytes, where
astrocytic Ca2+ elevation is induced by brief blue light illumination (Astro-Optoα1AR, BAC-
GLT1-Optoα1AR-EYFP #941; [28,29]). Forelimb stimulation in anesthetized mice resulted
in reliable blood vessel dilations in the corresponding somatosensory cortex. However,
Optoα1AR-induced astrocyte-selective Ca2+ elevation did not lead to vessel diameter
changes in the same set of vessels that showed functional hyperemia. Furthermore, AAV-
mediated labeling of blood plasma [30] in Astro-Optoα1AR mice allowed for non-invasive
monitoring of cerebral arterioles via the thinned skull in awake mice. Yet, optogenetic
activation of the astrocytic Gq pathway did not impact the spontaneous vessel diameter
changes in these arterioles.

2. Results

In order to elevate Ca2+ in astrocytes via the IP3 pathway at a given time and location,
we used a transgenic mouse line in which Optoα1AR is expressed in astrocytes under
the control of a BAC-GLT1 promoter (Astro-Optoα1AR; BAC-GLT1-OptoA1AR-EYFP
#941, [28]). Since repeated in vivo activation of Optoα1AR requires cis-retinal supple-
ment [28], mice were injected with 9-cis-retinal intraperitoneally 20–30 min before imaging.

To test whether astrocytic Gq signaling has a causal impact on local cerebral blood flow,
we performed two-photon imaging of the vasculature in the somatosensory cortex of lightly
urethane-anesthetized mice (Figure 1A). The vasculature was labeled by i.v. FITC injection,
and astrocytes were loaded with an organic Ca2+ indicator Rhod-2 AM. First, we confirmed
that brief forelimb stimulation (2 s) induces dilation of selected penetrating arterioles in
the primary somatosensory cortex forelimb area. The arteriole cross-section expanded
immediately after stimulus onset (<1 s) and peaked in three seconds. Thereafter, the
arteriole cross-sectional area gradually decreased to baseline in five seconds. This response
was stereotypical and repeatable across multiple presentations of forelimb stimulation at an
interval of 30 seconds (Figure 1B). The degree of arteriole expansion did not significantly
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differ between the first three and the last three trials of the nine consecutive trials (p > 0.7,
paired t-test). Overall, the relative area increase in arterioles in the first 3 s after stimulus
onset was 12.6 ± 1.1% (17 arterioles, 5 mice, Figures 1C and S1, Supplementary Data S1).
On the other hand, arteriole area increase in the hindlimb somatosensory cortex was
negligible (1.9 ± 0.6%, 4 arterioles, 2 mice), suggesting that the arteriole dilation was locally
induced. Astrocytic endfoot Ca2+ elevations were only occasionally observed after sensory
stimulation (occurrence probability = 10/100 = 10%; 10 endfeet, 3 mice). On average,
endfoot Ca2+ increase (∆F/F0) of 12 ± 5% was observed in the averaged plot with a latency
of several seconds (Figure 1D).
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Figure 1. Transient astrocytic Optoα1AR activation did not induce artery dilation in vivo. (A) Two-
photon vasculature imaging from layer 2/3 somatosensory cortex of urethane-anesthetized Astro-
Optoα1AR mice upon LED illumination. Blood vessels were labeled by i.v. injection of FITC-dextran
and astrocytes were loaded with the Rhod-2 Ca2+ indicator. LED illumination (1 mW, 1 s) or sensory
stimulation (duration 2 s, interval 30 s) were delivered through the objective lens or on the forelimb,
respectively. Inset: a representative coronal brain section showing EYFP fluorescence that is part
of the Optoα1AR transgene construct. (B) The low-power view shows the pattern of FITC-filled
blood vessels. The high-power view of the orange rectangle region contains a FITC-filled penetrating
arterial cross-section (green) and a Rhod-2-loaded astrocytic endfoot (red), Region of interest (ROI)
of the endfoot is the yellow semi-lucent area indicated by the arrow. The artery expanded during
the sensory stimulation. The semi-lucent orange area represents the arterial area before sensory
stimulation. The arterial area expanded reliably at every sensory presentation, whereas the endfoot
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Ca2+ signal increased only occasionally. Scale bars: 100 µm (low-power image); 10 µm (high-power
image); 20% (FITC area trace), 300% (Rhod-2 F/F0 trace), 30 s (time axis). (C) Arterial cross-sectional
area rapidly increased immediately after the sensory stimulation onset (17 arterial cross-sections from
5 strong TG mice). SEM is shown by the shaded region. (D) Averaged endfoot Ca2+ signal shows
marginal changes after the sensory stimulation (10 endfeet from 3 strong TG mice). (E) Arterial cross-
sectional area of the same data set as in (C) did not increase upon the LED illumination. (F) Endfoot
Ca2+ signal of the same dataset as in (D) strongly increased after the LED illumination. Insets:
Endfoot Ca2+ change by LED illumination is shown in full on an expanded time scale. Abscissa:
−15 s to 90 s, where time 0 corresponds to the onset of LED illumination. Ordinate: −0.5 to 3.0 F/F0.
(G) Mean and peak values of arterial cross-sectional area are plotted for the periods 0–5 s and 0–20 s
(time 0 is the onset of sensory stimulation). Both measures are significantly larger than those of LED
illumination (*** p < 0.001, paired t-test). (H) Mean and peak values of endfoot Ca2+ signals are
plotted for the periods 0–5 s and 0–20 s (time 0 is the onset of LED illumination). Both measures are
significantly higher than those of sensory stimulation (* p < 0.05, ** p < 0.01, paired t-test).

Having demonstrated reliable functional hyperemia, we examined if optically evoked
Gq-induced astrocytic Ca2+ elevation impacts the vasomodulation of the same set of arteri-
oles. As in Figure 1A, a brief illumination of blue light (1 s, 1 mW) through the objective
lens was given while arteriole cross-sections and astrocytic Ca2+ were imaged. We ob-
served that arteriole cross-sectional areas remained unchanged despite optical stimulation
(Figure 1E, Supplementary Data S1), while Ca2+ elevations at astrocytic endfeet were reli-
ably induced (Figure 1F). The lack of arteriole cross-section change was in stark contrast
with sensory-induced hyperemia (Figure 1G), despite significant Ca2+ increases in the as-
trocytic endfeet by optogenetic Gq-GPCR stimulation (Figures 1H and S2). Taken together,
these experiments dissociated the role of astrocytic Ca2+ elevations from sensory-driven
arteriole dilation.

Next, we investigated possible vasomodulatory effects of wider-area astrocytic Gq-
GPCR activation in awake mice. For chronic visualization of blood plasma by red flu-
orescence, we injected AAV8-P3-Alb-mScarlet retro-orbitally to Astro-Optoα1AR and
C57BL/6 control mice 4–5 weeks before the imaging experiment, which allowed for
imaging of superficial vessels by fluorescence microscopy [30]. The vasculature in the
somatosensory area was examined through the thinned and wetted skull using a fluores-
cence macroscope. Red fluorescence in pial vessels and their continuation into a shallow
depth in the parenchyma were visualized (Figure 2A,B). Arterioles were recognized by
their morphology (branching pattern and diameter) and spontaneous diameter dynamics
that occurred in 10 minutes (Figure 2C). To examine the effect of astrocytic Ca2+ eleva-
tion, the thinned skull area was illuminated with a blue LED for 3 s (center wavelength:
465 nm, 3 mW, ~2 × 2 mm2), which was shown to be sufficient to induce large cytosolic
Ca2+ elevations in Astro-Optoα1AR mice [28] after light scattering and attenuation by the
skull [31]. The arteriole diameter profiles of Astro-Optoα1AR mice showed a transient
increase lasting for 10 seconds (Figure 2D, % max diameter during 0–10 s since LED onset:
14.5 ± 1.2%, 9 arterioles from 5 mice, Supplementary Data S1). However, control mice also
showed arteriole diameter increases (17.9 ± 1.2%, 14 arterioles from 5 mice) in response
to cortical surface LED illumination, which were similar to Optoα1AR mice (Figure 2E,
Astro-Optoα1AR vs. control, t = 1.9, p = 0.07). Hence, the vascular response is conceivably
due to visual sensing of the LED cortical illumination by the conscious mice, which in turn
induced large-scale startle-related brain activity.
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Figure 2. Vasculature imaging and activation of astrocytic Optoα1AR in awake mouse cortex through
the thinned skull. (A) Fluorescence imaging of cortical vasculature and optogenetic activation of
astrocytes in awake mice. The somatosensory cortex was imaged. Optoα1AR and control mice have
received liver-targeting AAV8-P3-Alb-mScarlet injection for red fluorescent blood plasma labeling.
Optogenetic stimulation is provided by a blue LED (465 nm, ~3 mW, 3 s), targeted at the thinned
skull area. (B) Macroscopic imaging of Alb-mScarlet-labeled cerebral vasculature. In the example,
the orange box area in the left panel is magnified in the right panel, and the vessel section by
the yellow line is identified to be an arteriole, as the line profile through time (C) shows dynamic
fluctuations of the vessel diameter (top: original line profile, bottom: thresholded binary line profile).
(D) Normalized dynamics of cerebral arteriole diameter dynamics in Astro-Optoα1AR mice. The blue
shade indicates the period of optogenetic stimulation. Modest dilation is observed within several
seconds after the onset of optogenetic stimulation. (E) Comparison of transient arteriole diameter
changes induced by blue LED cortical illumination. The maximum diameter recorded during 0–10 s
after the onset of optogenetic stimulation is compared. Both control and Astro-Optoα1AR mice
display significant increases (p < 0.001), while the increase is not significantly (N.S.) different between
control and Astro-Optoα1AR mice (n = 14 vs. 9, p = 0.07).

Finally, we examined the effects of the repeated optogenetic stimulation (6 × 3 s,
~3 mW in 20 min) on vessel diameter and spontaneous vasomotion by imaging the vas-
culature for 10 min before and after the optogenetic stimulation experiment. The mean
diameter (Figure 3A) and coefficient of variation (CV, Figure 3B) computed over 10 min
were similar between, before, and after the optogenetic stimulation experiment for both con-
trol (mean diameter: p = 0.18, CV: p = 0.82) and Astro-Optoα1AR (mean diameter: p = 0.53,
CV: p = 0.20) mice. These results collectively indicated that the intermittent activation
of Gq-induced astrocytic Ca2+ elevation does not make a visible impact on minute-scale
vasodynamics.
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Figure 3. Intermittent astrocytic Optoα1AR activation did not induce obvious effects on cortical
arteriole diameter or vasodynamics. Arteriole diameter dynamics were monitored for 10 min before
and after the optogenetic experiment presented in Figure 2. (A) Mean diameters for the respective
10 min period are plotted for control (left) and Astro-Optoα1AR (right). No significant difference was
observed in either group (Ctrl: p = 0.18, Astro-Optoα1AR: p = 0.53) (B) Coefficients of variation for
arteriole diameter profile for the respective 10 min period are plotted. No significant difference was
observed in either group (Ctrl: p = 0.82, Astro-Optoα1AR: p = 0.20).

3. Discussion

The involvement of astrocytic Ca2+ signaling in functional hyperemia has been contro-
versial [32–38], in part due to the lack of astrocyte-selective manipulation. Negative results
from in vivo experiments in IP3R2-KO mice [15–17,39] have cast doubt on previous work
using pharmacological interventions and/or in vitro work, though residual small-scale
Ca2+ signals are observable in IP3R2-KO astrocytic processes [18,40,41]. Astrocytic micro-
processes have been reported to show sub-second responses to sensory-evoked neuronal
activity (most likely synaptic transmission) [22,41], on a time scale faster than hemodynam-
ical responses, and some studies have suggested active role of astrocyte endfoot fast Ca2+

signaling in sensory evoked vasomodulation [21,22,26], though without causal manipu-
lations. On the other hand, a recent study using IP3R2-KO concluded that there was no
causal role of astrocytic Ca2+ signaling in cerebral cortical capillaries [20].

Optogenetic astrocyte stimulation with channelrhodopsin-2 (ChR2) has been per-
formed in the context of cerebral blood flow modulation using a transgenic mouse line, al-
lowing for non-invasive astrocyte-selective activation [42]. The study reported a widespread
cerebral cortical blood flow increase stemming from the optogenetic stimulation site that
propagated to the contralateral side. Similar increases in fMRI BOLD signals have also
been reported [43]. Considering extracellular increase in potassium after astrocytic ChR2
stimulation [44], astrocytic ChR2 activation conceivably resulted in elevation of neuronal
excitability and/or energy metabolism and induced hyperemia. Moreover, since astrocytes
do not have notable active membrane conductance or proton channels, ChR2 activation
may not mimic physiological mechanisms of functional hyperemia. Likewise, rapid Ca2+

increase by photolysis of caged Ca2+ has been reported to induce a differential biochemical
pathway from that induced by GPCRs [45].

The current study leverages an optogenetic GPCR that mimics the in vivo astrocytic
Ca2+ dynamics induced by pronounced sensory input [28], while channel-mediated, shorter,
and smaller Ca2+ signals [46] remain unaddressed. We confirmed that sensory stimulation
causes occasional astrocytic Ca2+ elevations [41,47,48]. Such stimulation caused reliable
functional hyperemia, agreeing with a previous paper that astrocytic Ca2+ events are not
necessary for functional hyperemia [47]. Furthermore, we made a more refined observation
that astrocytic endfoot Ca2+ events are not necessary for functional hyperemia in the
somatosensory cortex by two-photon microscopy, confirming a previous study in the visual
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cortex [15]. Vasodynamics has been proposed to be differentially affected depending on the
level of astrocytic Ca2+ [49]. The current work assessed a strong Ca2+ elevation pattern that
is within the physiological range; hence, more subtle Ca2+ signaling requires further study.

Although pharmacogenetic approaches with systemic injection of ligands activate the
system for tens of minutes, the Astro-Optoα1AR mouse allows for triggering transient
astrocytic Ca2+ elevations with the precision of a second with the Gq-pathway-induced
dynamics [28,29]. Inducing astrocytic Ca2+ elevations in Astro-Optoα1AR mice, however,
did not result in penetrating arteriole dilations in the same set of arterioles that displayed
sensory hyperemia. Cortical hyperemia has been demonstrated to be actuated by smooth
muscle cells [50] and/or some capillary pericytes whose activation precedes that of up-
stream arterioles [51]. Since we did not examine capillary diameters, astrocyte endfoot Ca2+

elevation remains a viable candidate pathway for microcirculatory functional hyperemia.
Of note, a recent study using IP3R2-KO mice reported little causal involvement of endfoot
Ca2+ elevation in capillary expansion in the cerebral cortex [20]. The reported neuronally
evoked capillary dilatation may still be controlled by endfoot Ca2+ entry [22], possibly via
P2X channels [23], while astrocyte-specific interference experiments would substantiate
this mechanism. Interestingly, a recent study that overexpressed Ca2+ extrusion pump
(CalEx) in somatosensory cortex astrocytes reported normal hyperemia in response to 5 s
whisker stimulation, whereas prolonged stimulation (30 s) resulted in a mild enhancement
in arteriole dilation [52]. Considering that the Optoα1AR activation in our study results
in ~30 s astrocytic Ca2+ elevation and little arteriole dilation, it is possible that prolonged
astrocytic Ca2+ elevations have an impact on the modulation of arteriole dilation.

There is a concern that a few milliwatts of fiber-guided blue light induces a positive
hemodynamic response in ketamine–xylazine-anesthetized mice [53]. While the stimulation
light power was 3 mW for our experiment with awake mice, the illumination was over a
larger area on the thinned skull, which is considered to have a lower per-volume intensity
(angled 62.5 µm core fiber-delivered illumination to the cranial window vs. 2 × 2 mm2

area). Nonetheless, the direct effect of blue light cannot be excluded from the mechanisms
contributing to the small hyperemia seen in both Optoα1AR and C57BL/6 mice.

To conclude, our results with the refined and non-invasive temporal actuation of
astrocytic Ca2+ elevation lend support to the notion that Gq-GPCR-induced large-amplitude
and long-lasting astrocytic Ca2+ surge is not sufficient to induce functional hyperemia, in
agreement with Bonder and McCarthy (2014 [15]).

4. Materials and Methods
4.1. Mice

Adult male and female heterozygous Astro-Optoα1AR mice (>2 months old, BAC-
GLT1-OptoA1AR-EYFP #941, Jackson Laboratory strain ID: 038174) [29] and age-matched
background strain mice (C57BL/6J) were used in this study. All experimental procedures
involving mice were approved by the RIKEN Institutional Animal Care and Use Committee
of the Danish Animal Experiments Inspectorate.

4.2. Surgery for Acute In Vivo Two-Photon Imaging

Adult Astro-Optoα1AR mice were anesthetized (1.0 g/kg urethane and 50 mg/kg
α-chloralose). A metal frame was attached to the skull of each anesthetized mouse using
dental acrylic (Fuji LUTE BC, GC, Tokyo, Japan and Super Bond, Sun Medical, Shiga,
Japan). A small craniotomy was made above the primary somatosensory cortex (diameter
2.0–3.0 mm AP −1.0 to −2.0 mm and ML 1.5 to 3.5 mm). The dura mater was carefully
removed, and the exposed cortex was loaded with Rhod-2 AM (0.4 mM, Molecular Probes-
Invitrogen, Eugene, OR, USA) for 1 h. After washing with HEPES-ACSF (125 mM NaCl,
3.5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM CaCl2 and 2 mM MgSO4, pH 7.3)
several times, the craniotomy was sealed with a thin glass coverslip.



Int. J. Mol. Sci. 2023, 24, 13590 8 of 12

4.3. In Vivo Two-Photon Imaging

A two-photon microscope (Bergamo, Thorlabs, Newton, NJ, USA) with a Chameleon
Ultra 2 laser (Coherent, Santa Clara, CA, USA), a 25× objective lens (1.05 NA, Olympus,
Tokyo, Japan), a primary dichroic mirror (405/473–488/561/705–1600 nm notched dichroic
mirror, Thorlabs), and a secondary dichroic mirror cube for emission light (FF562-Di03,
FF03-525/50, FF01-607/70, all from Semrock, New York, NY, USA) was used, as described
previously [28]. Images were acquired using the proprietary software ThorImage LS v3.0.
Simultaneous imaging of astrocytic endfoot Ca2+ (Rhod-2) and the vasculature (FITC) was
performed using a mode-locked beam of 820 nm light. Photo-activation of Optoα1AR
was carried out with a 470 nm LED (M470L3, Thorlabs) targeted at the imaged area
(ϕ = ~0.8 mm) through the objective lens. The photomultiplier tubes (PMTs) were blocked
by a built-in mechanized shutter during photo-activation.

On the day of the experiment, an aliquot of 9-cis-retinal (5 µL, 200 mM in dimethyl
sulfoxide; R5754, Sigma-Aldrich, St. Louis, MO, USA) was diluted in 100 µL HEPES-ACSF
or saline at 35 ◦C and administered by intraperitoneal (i.p.) injection ~30 min before the
imaging session. Thereafter, an intravenous injection of FITC-dextran was made to label
the serum via the femoral vein (50–70 µL, 5% in saline; FD-2000S, Sigma-Aldrich), similar
to the previously described procedure [54]. After mounting the mouse under the objective
lens via the headplate, needle electrodes (30 G) were inserted in the contralateral forelimb
to apply sensory stimulation (1 mA, 100 ms, 3 Hz, 6 times, interval 30 s, 10 times). Imaging
was performed at a frame rate of 3 Hz. Once sensory-driven vasodilation was observed, the
same area was imaged with Optoα1AR activation by LED illumination (1 mW, duration 1 s).
In some mice (3 out of 5 mice), astrocytic Rhod-2 loading in the somatosensory cortex was
also done. For analysis of FITC area, penetrating arterioles that had circular cross-sections
were sampled.

4.4. Imaging of Awake Mice

Adult Astro-Optoα1AR and control mice were briefly anesthetized by isoflurane (3%),
and retro-orbital administration of AAV8-P3-Alb-mScarlet (2–4 × 1011 vg in ~150 µL saline;
Addgene 183461) was made at least four weeks prior to imaging [30]. The headplate
attachment was made as described above. The skull was thinned by a dental drill to the
extent that dural vessels are observable through the saline-wet thinned skull.

Next, 9-cis-retinal was administered by i.p. injection ~20 min before the imaging
session, as described above. Awake mice were fixed under a macroscope (Leica M205 FA,
Leica, Wetzlar, Germany) equipped with an X-Cite 200Dc light source and a digital camera
(ORCA-Flash4.0, Hamamatsu, Shizuoka, Japan). Cerebral vessels of the thinned skull area
were observed using an ET mCherry filter set (excitation 560/40 nm, emission 630/75 nm;
10450195, Leica). For optogenetic stimulation, a blue LED (center wavelength: 465 nm;
NSPB300B, Nichia, Tokushima, Japan) was mounted onto the microscope apparatus to
illuminate the thin-skulled area at an intensity of ~ 3 mW.

The cerebral vasculature through the thinned skull area was imaged at a frame rate
of 16.6 Hz (512 × 512 pixels) or 5.2 Hz (1024 × 1024 pixels). First, the vasculature was
imaged for 10 min without optogenetic stimulation. Thereafter, six consecutive optogenetic
stimulation sessions were recorded, each session consisting of a 20 s pre-stimulation, a
3 s optogenetic stimulation, and a 180 s post-stimulation period. Finally, another 10 min
recording was made without optogenetic stimulation.

4.5. Data Analysis and Statistics

The analysis for two-photon imaging was performed using ImageJ (ver. 1.45–1.54e;
NIH, Bethesda, MD, USA)and MATLAB (R2016a–R2022a; MathWorks, Natick, MA, USA)
software. Image shift in the XY axis was adjusted by the TurboReg ImageJ plug-in (7th
July, 2011) program for all images. FITC signals were binarized and circular cross-sections
of penetrating arterioles were extracted using ImageJ. The binarized data were used to
calculate the cross-sectional area using MATLAB. Astrocytic endfeet areas were manually



Int. J. Mol. Sci. 2023, 24, 13590 9 of 12

marked in the area surrounding chosen penetrating arterioles and Rhod-2 signals were
extracted using ImageJ. The Rhod-2 signals were converted to F/F0 using MATLAB. The
values of FITC and Rhod-2 were averaged across imaging trials and normalized to the
control period of 0–10 s before sensory stimulation or LED illumination. The mean ± SEM
of the normalized trace is presented in Figure 1C–F. For statistical comparison of arteriole
cross-section, the mean and the peak values of normalized FITC signals from 0 to 5 s and
0 to 20 s after the onset of sensory or LED stimulation were computed (Figure 1G). For
comparison of endfoot Ca2+, the mean values of normalized Rhod-2 signals from 0 to 20 s
after stimulation were computed (Figure 1H).

For macroscopic fluorescence imaging, the original image series were resampled to
2 Hz to enhance pixel intensity range and registered for XY shifts using TurboReg ImageJ
plug-in. Horizontally vascularized arterioles were identified by their morphological charac-
teristics, lateral origin (where traceable), and spontaneous vasodiameter changes observed
during the 10 min imaging recorded prior to an optogenetic stimulation session. The image
stack was binarized by a manually determined threshold that captured a selected arteriole.
The arteriole diameter was estimated by drawing an orthogonal line and quantifying the
number of positive pixels in the pixel intensity profile. Temporal arteriole diameter profiles
were normalized to the mean of each arteriole.

Descriptive statistical values are described as mean ± SEM (standard error of the
mean). Comparisons between two groups were analyzed by unpaired t-test. If variances
were significantly different between them, Welch’s correction was applied (Welch’s t-test).
For comparisons of data before and after manipulation, paired t-test was used.
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