Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides
Abstract
:1. Introduction
2. Thymus-Derived Short Immunotropic Peptide Pharmaceuticals
2.1. First Generation: Thymogen
2.2. The Regulation of Immunodeficiency Conditions by Thymogen
2.3. Second Generation: Stemokin
2.4. Third Generation: Thymodepressin
2.4.1. Thymodepressin Influences the Development of Hemopoietic Precursor Cells Development
2.4.2. Thymodepressin Effects on Hemopoiesis and Immunity
- -
- The peptide D-Glu(D-Trp)-OH inhibits the migration of CD34+ cells from the bone marrow into peripheral blood in normal and tumor-bearing animals [31]. Injecting this peptide into donor mice two days before irradiation or the exposure to the cytostatic cytosine arabinoside (cytosar) D-Glu(D-Trp)-OH protected the population of hematopoietic progenitor cells and promotes more intensive restoration than the control group [32].
- -
- A direct suppression of the autoimmune reaction in the mice models by the peptide D-Glu(D-Trp)-OH more effectively prevented and treated the developed autoimmune reactions when directly compared with Cyclosporin [32].
- -
- Therefore, after preclinical and clinical studies, the peptide D-Glu(D-Trp-OH) was registered in the Russian Federation as a drug named Thymodepressin® (Russian Ministry of Health Registration Certificate № LCP-001836/08 17 March 2008). The immuno-inhibiting properties of this unnatural iso-peptide were in demand in medicine. Currently, Thymodepressin is actively used in clinical practice for the treatment of autoimmune and allergic processes caused by lymphocyte-mediated hyperimmune reactions; these include psoriasis, atopic dermatitis, lichen planus, autoimmune cytopenia, and other syndromes [25,32].
3. Toward a Fourth Generation of Glu-Trp Family Peptide Pharmaceuticals
3.1. Discovery of the Reciprocal Activities of Glu-Trp Family Peptides
3.2. Development of 2,5-DKP-Based Peptidomimetics
4. Development of the Peptidomimetic [AlaGlu(Trp)]
5. Discussion
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Räder, A.F.B.; Reichart, F.; Weinmuller, M.; Kessler, H. Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg. Med. Chem. 2018, 26, 2766–2773. [Google Scholar] [CrossRef]
- Choi, J.S.; Joo, S.H. Recent Trends in Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 2020, 28, 18–22. [Google Scholar] [CrossRef]
- Bockus, A.T.; McEwen, C.M.; Lokey, R.S. Form and function in cyclic peptide natural products: A pharmacokinetic perspective. Curr. Top. Med. Chem. 2013, 13, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, S. Cyclic peptide drugs approved in the last two decades (2001–2021). RSC Chem. Biol. 2022, 3, 18–31. [Google Scholar] [CrossRef]
- Meyers, P.A. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev. Anticancer Ther. 2009, 9, 1035–1049. [Google Scholar] [CrossRef]
- Henninot, A.; Collins, J.C.; Nuss, J.M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382–1414. [Google Scholar] [CrossRef]
- Deigin, V.I.; Semenets, T.N.; Zamulaeva, I.A.; Maliutina, Y.V.; Selivanova, E.I.; Saenko, A.S.; Semina, O.V. The effects of the EW dipeptide optical and chemical isomers on the CFU-S population in intact and irradiated mice. Int. Immunopharmacol. 2007, 7, 375–382. [Google Scholar] [CrossRef]
- Cazzola, P.; Mazzanti, P.; Kouttab, N.M. Update and future perspectives of a thymic biological response modifier (thymomodulin). Immunopharmac. Immunotoxicol. 1987, 9, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Maurer, H.R.; Nogueira, M. Novel approaches to immunotherapy using thymic peptides. Immunol. Today 1997, 18, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Garachi, E. Thymosin alpha 1: A historical overview. Ann. N. Y. Acad. Sci. 2007, 1112, 14–20. [Google Scholar] [CrossRef]
- Goldstein, A.L. Thymic Hormones and Lymphokines; Plenum Press: London, UK; New York, NY, USA, 1984. [Google Scholar]
- Nicolas, S.; Kenny, J. Proteins of the kidney microvillar membrane. Enzymic and molecular properties of aminopeptidase W. Biochem. J. 1987, 246, 97–102. [Google Scholar] [CrossRef]
- Morozov, V.G.; Khavinson, V.K. Natural and synthetic thymic peptides as therapeutics for immune disfunction. Int. J. Immunopharmacol. 1997, 19, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Poverenny, A.M.; Vinogradova, Y.E.; Deigin, V.I. Hemoregulatory synthetic peptides. Ther. Arch. 2000, 72, 74–76. [Google Scholar]
- Zhukova, G.V.; Schikhlyarova, A.I.; Barteneva, T.A.; Shevchenko, A.N.; Zakharyuta, F.M. Effect of Thymalin on the Tumor and Thymus under Conditions of Activation Therapy In Vivo. Bull. Exp. Biol. Med. 2018, 165, 80–83. [Google Scholar] [CrossRef]
- Ashapkin, V.; Khavinson, V.; Shilovsky, G.; Linkova, N.; Vanuyshin, B. Gene expression in human mesenchymal stem cell aging cultures: Modulation by short peptides. Mol. Biol. Rep. 2020, 47, 4323–4329. [Google Scholar] [CrossRef]
- Semina, O.V.; Semenets, T.N.; Zamulaeva, I.A.; Selivanova, E.I.; Malyutina, Y.V.; Semin, Y.A.; Deigin, V.I.; Saenko, A.S. Influence of synthetic iew peptide’s optical isomers on bone marrow’s colony-forming ability in vivo. Bull. Exp. Biol. Med. 2005, 140, 335–338. [Google Scholar] [CrossRef]
- Khavinson, V.K. Peptides and Ageing. Neuro Endocrinol. Lett. 2002, 23, 11–144. [Google Scholar]
- Khavinson, V.; Linkova, N.; Dyatlova, A.; Kuznik, B.; Umnov, R. Peptides: Prospects for Use in the Treatment of COVID-19. Molecules 2020, 25, 4389. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K.; Linkova, N.S.; Kvetnoy, I.M.; Polyakova, V.O.; Drobintseva, A.O.; Kvetnaia, T.V.; Ivko, O.M. Thymalin: Activation of Differentiation of Human Hematopoietic Stem Cells. Bull. Exp. Biol. Med. 2020, 170, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.E.; Standefer, J.C.; Scaletti, J.V. Radiosensitivity of defined populations of lymphocytes. VI. Functional, structural, and biochemical consequences of in vitro irradiation. Cell Immunol. 1977, 33, 45–61. [Google Scholar] [CrossRef]
- Vinogradova, I.E.; Shinkarkina, A.P.; Vinogradov, D.L.; Poverennyĭ, A.M. Characteristics of a clinical course of immune cytopenia with a high titer of autoantibodies to the microsomal antigen of the thyroid gland. Ter. Arkh. 2004, 76, 81–85. [Google Scholar] [PubMed]
- Avolio, F.; Martinotti, S.; Khavinson, V.K.; Esposito, J.E.; Giambuzzi, G.; Marino, A.; Mironova, E.; Pulcini, R.; Robuffo, I.; Bologna, G.; et al. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int. J. Mol. Sci. 2022, 23, 3607. [Google Scholar] [CrossRef] [PubMed]
- Deigin, V.I.; Semenets, T.N.; Zamulaeva, I.A.; Maliutina, Y.V.; Selivanova, E.I.; Saenko, A.S.; Semina, O.V. The effects of the EW--peptide optical and chemical isomers on the hemopoietic stem cells in intact and irradiated mice. Adv. Exp. Med. Biol. 2009, 611, 461–463. [Google Scholar] [CrossRef]
- Deigin, V.; Koroev, D.; Volpina, O. Peptide ILE-GLU-TRP (Stemokin) Potential Adjuvant Stimulating a Balanced Immune Response. Int. J. Pept. Res. Ther. 2022, 28, 156. [Google Scholar] [CrossRef]
- Li, N.; Hua, J. Interactions between mesenchymal stem cells and the immune system. J. Cell. Mol. Life Sci. 2017, 13, 2345–2360. [Google Scholar] [CrossRef]
- Semina, O.V.; Semenets, T.N.; Deigin, V.I.; Korotkov, A.M.; Poverenny, A.M. Effect of the peptide of thymus original (synthetic peptide IEW) on hemopoietic cell progenitors in intact and irradiated animals. Immunol. Lett. 1996, 51, 137–140. [Google Scholar] [CrossRef]
- Semina, O.V.; Semenets, T.N.; Zamulaeva, I.A.; Selivanova, E.I.; Iljina, T.P.; Maliutina, Y.V.; Semin, D.Y.; Deigin, V.I.; Saenko, A.S. Dipeptide gamma-d-Glu-d-Trp (thymodepressin) inhibits migration of CD34+ cells from the bone marrow into peripheral blood during tumor growth. Bull. Exp. Biol. Med. 2008, 146, 96–99. [Google Scholar] [CrossRef]
- Deigin, V.I.; Vinogradova, J.E.; Vinogradov, D.L.; Krasilshchikova, M.S.; Ivanov, V.T. Thymodepressin-Unforeseen Immunosuppressor. Molecules 2021, 26, 6550. [Google Scholar] [CrossRef] [PubMed]
- Vladimirskaya, E.B.; Osipova, Y.E.; Kaznacheev, K.S.; Ivanova, K.A.; Deigin, V.I.; Rumyantsev, A.G. The effect of Thymodepressin on the proliferation of human hematopoietic progenitor cells. Hematol. Transfusiol. 1999, 44, 11–14. [Google Scholar]
- Becker, A.J.; McCulloch, E.A.; Siminovitch, L.; Till, J.E. A direct effect of differing demands for blood cell production on DNA synthesis by hemopoietic colony-forming cells of mice. Blood 1965, 26, 296–308. [Google Scholar] [CrossRef]
- Sapuntsova, S.G.; Lebed’ko, O.A.; Shchetkina, M.V.; Fleyshman, M.Y.; Kozulin, E.A.; Timoshin, S.S. Status of free-radical oxidation and proliferation processes in patients with atopic dermatitis and lichen planus. Bull. Exp. Biol. Med. 2011, 150, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, J.; Craik, D.J. Discovery, structure, function, and applications of cyclotides: Circular proteins from plants. J. Exp. Bot. 2016, 67, 4801–4812. [Google Scholar] [CrossRef]
- Moiola, M.; Memeo, M.G.; Quadrelli, P. Stapled Peptides-A Useful Improvement for Peptide-Based Drugs. Molecules 2019, 24, 3654. [Google Scholar] [CrossRef]
- Deigin, V.; Ksenofontova, O.; Yatskin, O.; Goryacheva, A.; Ignatova, A.; Feofanov, A.; Ivanov, V. Novel platform for the preparation of synthetic orally active peptidomimetics with hemoregulating activity. II. Hemosuppressor activity of 2,5-diketopiperazine-based. Int. Immunopharmacol. 2020, 81, 106185. [Google Scholar] [CrossRef]
- Deigin, V.; Ksenofontova, O.; Khrushchev, A.; Yatskin, O.; Goryacheva, A.; Ivanov, V. Chemical Platform for the Preparation of Synthetic Orally Active Peptidomimetics with Hemoregulating Activity. ChemMedChem 2016, 11, 1974–1977. [Google Scholar] [CrossRef]
- Deigin, V.; Premyslova, M.; Yatskin, O.; Volpina, O. Evaluation of Neuroprotective and Adjuvant Activities of Diketopiperazine-Based Peptidomimetics. ChemistrySelect 2023, 8, e202204076. [Google Scholar] [CrossRef]
- Rand, A.C.; Leung, S.S.F.; Eng, H.; Rotter, C.J.; Sharma, R.; Kalgutkar, A.S.; Zhang, Y.; Varma, M.V.; Farley, K.A.; Khunte, B.; et al. Optimizing PK properties of cyclic peptides: The effect of side chain substitutions on permeability and clearance. Med. Chem. Comm. 2012, 3, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Antosova, Z.; Mackova, M.; Kral, V.; Macek, T. Therapeutic application of peptides and proteins: Parenteral forever? Trends Biotechnol. 2009, 27, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Ahmed, I.; Akram, Z.; Iqbal, M.N. Protein and peptide biopharmaceuticals: An overview. Protein Pept. Lett. 2017, 24, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Appavoo, S.D.; Huh, S.; Diaz, D.B.; Yudin, A.K. Conformational Control of Macrocycles by Remote Structural Modification. Chem. Rev. 2019, 119, 9724–9752. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.; Harris, J.L.; Khanna, K.K.; Hong, J.H.A. Comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 2019, 20, 2383. [Google Scholar] [CrossRef] [PubMed]
- Kolchina, N.; Khavinson, V.; Linkova, N.; Yakimov, A.; Baitin, D.; Afanasyeva, A.; Petukhov, M. Systematic search for structural motifs of peptide binding to double-stranded DNA. Nucleic Acids Res. 2019, 47, 10553–10563. [Google Scholar] [CrossRef]
- Paragliola, R.M.; Salvatori, R. Novel Somatostatin Receptor Ligands Therapies for Acromegaly. Front. Endocrinol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Theunissen, F.J.; Chinery, L.; Pujar, Y.V. Current research on carbetocin and implications for prevention of postpartum haemorrhage. Reprod. Health 2018, 15, 94. [Google Scholar] [CrossRef]
- Deigin, V.I.; Poluektova, E.A.; Beniashvili, A.G.; Kozin, S.A.; Poluektov, Y.M. Development of Peptide Biopharmaceuticals in Russia . Pharmaceutics 2022, 14, 716. [Google Scholar] [CrossRef]
- Lamberts, S.W.J.; Hofland, L.J. Anniversary review: Octreotide, 40 years later. Eur. J. Endocrinol. 2019, 181, R173–R183. [Google Scholar] [CrossRef]
- Muratspahić, E.; Freissmuth, M.; Gruber, C.W. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol. Sci. 2019, 40, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Muheem, A.; Shakeel, F.M.; Jahangir, A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J. 2016, 24, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Borgman, P.; Lopez, R.D.; Lane, A.L. The Expanding Spectrum of Diketopiperazine Natural Product Biosynthetic Pathways Containing Cyclodipeptide Synthases. Org. Biomol. Chem. 2019, 17, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.; Tavassoli, A. Genetically Encoded Cyclic Peptide Libraries: From Hit to Lead and Beyond. Methods Enzymol. 2018, 610, 117–134. [Google Scholar] [CrossRef]
- Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S.A.; Akanbi, H.J.; Moll, G.N. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods 2010, 61, 210–218. [Google Scholar] [CrossRef]
- Brayden, D.J.; Mrsny, R.J. Oral peptide delivery: Prioritizing the leading technologies. Ther. Deliv. 2011, 2, 1567–1573. [Google Scholar] [CrossRef]
- Lander, A.J.; Jin, Y.; Louis, Y.P. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. ChemBioChem 2023, 24, e202200537. [Google Scholar] [CrossRef]
- Abdalla, M.A.; McGaw, L.J. Natural Cyclic Peptides as an Attractive Modality for therapeutics: A Mini Review. Molecules 2018, 23, 2080. [Google Scholar] [CrossRef]
- Dougherty, P.G.; Sahni, A.; Pei, D. Understanding Cell Penetration of Cyclic Peptides. Chem. Rev. 2019, 119, 10241–10287. [Google Scholar] [CrossRef]
- Erak, M.; Bellmann-Sickert, K.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide chemistry toolbox—Transforming natural peptides into peptide therapeutics. Bioorganic Med. Chem. 2018, 26, 2759–2765. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Wu, X.; Stumpf, S.D.; Qi, Y.; D’Alessandro, J.M.; Nepal, K.K.; Sarotti, A.M.; Cao, S.; Blodgett, J.A.V. Discovery of unusual dimeric piperazyl-cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc. Natl. Acad. Sci. USA 2022, 119, e2117941119. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.B.; Carvalho, I. Diketopiperazines: Biological activity and synthesis. Tetrahedron 2007, 63, 9923–9932. [Google Scholar] [CrossRef]
- Vu, Q.N.; Young, R.; Sudhakar, H.K.; Gao, T.; Huang, T.; Tan, Y.S.; Lau, Y.H. Cyclisation strategies for stabilizing peptides with irregular conformations. RSC Med. Chem. 2021, 12, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.A.; Yin, Y.; Suga, H. Macrocyclic peptides as drug candidates: Recent progress and remaining challenges. J. Am. Chem. Soc. 2019, 141, 4167–4181. [Google Scholar] [CrossRef]
- Deigin, V. Substituted Piperazin-2,5-Diones and Their Use as Multifunctional Bioactive Compounds. U.S. Patent US8637521B2, 28 January 2014. Available online: https://patents.google.com/patent/US8637521 (accessed on 1 August 2023).
- White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; et al. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science 2021, 371, 926–931. [Google Scholar] [CrossRef]
- Papapanou, M.; Papoutsi, E.; Giannakas, T.; Katsaounou, P. Plitidepsin: Mechanisms and Clinical Profile of a Promising Antiviral Agent against COVID-19. J. Pers. Med. 2021, 11, 668. [Google Scholar] [CrossRef]
- Rader, A.F.B.; Weinmüller, M.; Reichart, F.; Schumacher-Klinger, A.; Merzbach, S.; Gilon, C.; Hoffman, A.; Kessler, H. Orally Active Peptides: Is There a Magic Bullet? Angew. Chem. Int. Ed. 2018, 57, 14414–14438. [Google Scholar] [CrossRef]
- Cavaco, M.; Valle, J.; Flores, I.; Andreu, D.A.R.B.; Castanho, M. Estimating peptide half-life in serum from tunable, sequence-related physicochemical properties. Clin. Transl. Sci. 2021, 14, 1349–1358. [Google Scholar] [CrossRef]
- Kamuda, J.A.; Mazzola, N. Plecanatide (Trulance) for Chronic Idiopathic Constipation and Irritable Bowel Syndrome with Constipation. Pharm. Ther. 2018, 43, 207–232. [Google Scholar]
- Perez, A.R.; Maya-Monteiro, C.M.; Carvalho, V.F. Neuroendocrine-Immunological Interactions in Health and Disease. Front. Endocrinol. 2021, 12, 718893. [Google Scholar] [CrossRef]
- Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally Absorbed Cyclic Peptides. Chem. Rev. 2017, 117, 8094–8128. [Google Scholar] [CrossRef] [PubMed]
- Caputi, S.; Trubiani, O.; Sinjari, B.; Trofimova, S.; Diomede, F.; Linkova, N.; Diatlova, A.; Khavinson, V. Effect of short peptides on neuronal differentiation of stem cells. Int. J. Immunopathol. Pharmacol. 2019, 33, 205873841828613. [Google Scholar] [CrossRef] [PubMed]
- Akimov, M.G.; Nazimov, I.V.; Gretskaya, N.M.; Deigin, V.I.; Bezuglov, V.V. Investigation of Peptide Stability upon Hydrolysis by of Fragments of the Organs of the Gastrointestinal Tract of Rats. Russ. J. Bioorg. Chem. 2010, 36, 690–695. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deigin, V.; Linkova, N.; Volpina, O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. Int. J. Mol. Sci. 2023, 24, 13534. https://doi.org/10.3390/ijms241713534
Deigin V, Linkova N, Volpina O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. International Journal of Molecular Sciences. 2023; 24(17):13534. https://doi.org/10.3390/ijms241713534
Chicago/Turabian StyleDeigin, Vladislav, Natalia Linkova, and Olga Volpina. 2023. "Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides" International Journal of Molecular Sciences 24, no. 17: 13534. https://doi.org/10.3390/ijms241713534