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Abstract: A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been
shown in the literature. Given the need for specific biomarkers to improve OP and FM management,
common miRNAs might provide promising tracks for future prevention and treatment. The aim of
this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in
both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP,
FM, and miRNA expression. Clinical trials, case–control, and cross-sectional studies were included.
Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by
OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-,
4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the
cholinergic system and a possible link has been highlighted. Further studies are needed to explore
this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs
shared between OP and FM.

Keywords: fibromyalgia; osteoporosis; epigenetics; microRNA

1. Introduction

Osteoporosis (OP) is a systemic disease that affects skeletal architecture. It is charac-
terized by decreased bone mineral density (BMD) and increased risk of fragility fractures,
disability, and impaired quality of life. OP prevalence increases with age at a rate of
19.1–23.5% in women after 50 years, and 5.9–7.2% in men, in whom it still remains under-
diagnosed [1,2], and affects millions of people worldwide. OP is a complex multifactorial
pathology that may remain undetected for a long time until a fracture occurs. It is diag-
nosed clinically and via dual-energy X-ray absorptiometry (DEXA). Mechanical, metabolic,
and hormonal influences, aging, menopause, genetic predisposition, and environment,
including nutrition, are the main factors for OP development. Although cost-effective
therapeutic interventions to reduce fractures have been developed, there are a number of
gaps in the general management of OP, and preventive measures need to be extended [3,4].

The fibromyalgia syndrome (FM) consists of chronic symptoms of moderate to severe
intensity with chronic widespread (nociplastic) pain, associated with fatigue, cognitive
and sleep disorders, and numerous somatic complaints [5–8]. Its manifestations are hetero-
geneous at the clinical, physical, social, and psychological levels, and treatment failures
are frequent [9,10]. The prevalence of FM in the general population is estimated as 1.78%
(95% confidence interval: 1.65–1.92) [11] with a female predominance, and, like in OP, it
remains underestimated in men. The detection of FM follows the American College of
Rheumatology recommendations [12], and, for its management, international guidelines
recommend non-pharmacological approaches (exercise) in the first instance, and then drug
treatment for comorbidities and pain, but quality of life is often impaired. Although a
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number of predictive factors of FM including biomarkers have been suggested [5], no
specific biomarker has so far been identified.

Clinically, associations between FM and OP have been shown in the literature. Since
the earlier works published in the 90s [13,14], FM has been suggested in a number of
studies to be associated with an increased risk of OP [1,15,16]. In a meta-analysis, BMD at
the lumbar spine was decreased in FM compared with normal individuals, stressing that
the risk assessment of OP should be systematically performed [15]. FM shares common
risk factors with OP, including age, gender, hygiene, dietary habits/lifestyle factors, a low
level of physical activity, and hormonal factors [16]. A meta-analysis [17] demonstrated
that BMD was significantly lower in FM patients, in Caucasians, and in female populations.
A population-based case–control electronic study recently showed a significant association
(coefficient correlation 0.55; p < 0.001) between OP and FM with a large database [1]. The
authors underlined the need for the detection of predisposing factors for OP in FM patients,
and advised the implementation of prevention measures (dietary supplements, resistance
or weight-bearing exercise, anti-OP drugs). These, in order to maintain a satisfactory
quality of life, reduce both the occurrence rate and severity of OP and its complications,
such as fractures.

OP and FM have each been described as being associated with a number of possible
biomarkers, including epigenetic markers and microRNAs (miRNAs) [18,19], known to play
important roles in regulating gene expression. miRNAs have been a focus of research over
the last years in OP and in FM. miRNAs, a class of non-coding RNAs 18 to 25 nucleotides
long, are known to control gene expression at the post-transcriptional level [20] by forming
an RNA-induced silencing complex which directly modulates the gene expression of mRNA
genes [21]. miRNAs could regulate more than 60% of protein-coding genes and are therefore
involved in most biological processes [22]. Epigenetics play important roles in bone
metabolism and bone remodeling. An abnormal regulation may induce OP development
and a number of miRNAs have been identified [23–26]. Likewise, miRNAs have been
studied and described in FM [18,27]. Considering the need for specific biomarkers to
improve OP and FM management, common miRNAs might provide promising tracks
for future prevention and treatment. In order to find significant circulating predictive
markers and potential new therapeutic targets for FM and OP, the objective of this review
is to identify common miRNAs with similar regulation in OP and FM. To the best of our
knowledge, there is currently no previous review on the common epigenetic markers of
OP and FM.

2. Results and Discussion
2.1. Included Studies

Our search (Figure 1) retrieved 4922 potentially relevant records for the current scoping
review, 232 for FM and 4690 for OP. After removing duplicates, the titles and abstracts of
the remaining 1144 (36 for FM and 1108 for OP) were screened by two reviewers (SP, MD).
After discarding records not conforming with the inclusion criteria, the full texts of the
eligible papers were reviewed and 137 studies were included in this scoping review, 8 for
FM [28–35] and 129 for OP [23,36–163].

In these 137 publications, there was a total of 189 dysregulated miRNAs (versus healthy
volunteers (HV)): 46 miRNAs in FM and 166 in OP (Figures 2 and 3, Tables S1 and S2).

In 45/137 articles, 23 miRNAs were common for FM and OP (Figure 2, Table 1):
14 articles showing 7 common miRNAs dysregulated in the same direction, and 40 articles
showing 16 miRNAs dysregulated in the opposite direction (n = 9) or discordant (n = 7
dysregulated in the same or in the opposite direction in FM and OP).

In 14/45 articles, according to our objective to identify common miRNAs with a similar
regulation, seven miRNAs were dysregulated (up- or downregulation) in the same direction
for both pathologies: three miRNAs were upregulated (hsa-miR-9-(3p or 5p), hsa-miR-128-
(3p), and hsa-335- 5p), and four were downregulated (hsa-miR-1-(3p), hsa-let-7a-(3p or 5p),
hsa-miR-29a-3p, and hsa-miR-328-3p).
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Figure 1. PRISMA Extension for Scoping Reviews (PRISMA-ScR) flowchart. a: comment, meta-
analysis, review, meeting abstract; N = number of articles.

2.2. Characteristics of Studies with Common miRNAs in FM and OP, and With Regulation in the
Same Direction

The 45 studies were published between 2012 and 2022, mainly with Caucasian partici-
pants for FM and Asian participants for OP (Tables S3 and S4).

2.2.1. Sample Size

In the 14 articles related to the seven common miRNAs regulated in the same direction
(up or down), three of the five FM studies had less than 50 participants, the largest (n = 74)
with 49 FM patients and 25 HV [30], and the smallest (n = 18) with 10 FM and 8 HV [31]. For
the nine articles for OP, two studies included more than 100 persons, four between 50 and
80 participants, and three less than 50. The largest study (n = 116) included 76 low-BMD
participants with or without fractures and treatment, and 40 HV [43], and the smallest
(n = 6) included 3 OP and 3 HV [37].

In the 45 articles, the majority of FM studies (71%: n = 5) had less than 50 participants,
the largest (n = 74) with 49 FM patients and 25 HV [30], and the smallest (n = 18) with
10 FM and 8 HV [31]. For OP, six studies included more than 100 persons, six between 50
and 80 participants, and twenty-five less than 50. One [55] did not mention the sample size.
The largest study (n = 161) included 82 OP and 79 HV [65], and the smallest (n = 6) 3 OP
and 3 HV [37,47].



Int. J. Mol. Sci. 2023, 24, 13513 4 of 19Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 2. Summary diagram of dysregulated miRNAs in both osteoporosis (OP) and fibromyalgia 
(FM). N = number of articles; n = number of miRNAs. 

Figure 2. Summary diagram of dysregulated miRNAs in both osteoporosis (OP) and fibromyalgia
(FM). N = number of articles; n = number of miRNAs.

Table 1. Differentially expressed miRNAs in fibromyalgia (FM) and osteoporosis (OP). (↓ = downreg-
ulated; ↑ = upregulated).

miRNAs Expressed in Same Direction in FM and OP (n = 7). miRNAs Expressed in Opposite Direction in FM and OP (n = 9)

miRNAs miRNA Expression References miRNAs miRNA Expression References

miR-1-(3p) ↓ FM [28] miR-7-5p ↑ FM [30]
OP [36,37] ↓ OP [42]

let-7a-(3p or 5p) ↓ FM [29] miR-23b-(3p) ↓ FM [31]
OP [37] ↑ OP [44,45]

miR-9-(3p or 5p) ↑ FM [30]
miR-107

↓ FM [29,33]
OP [38,39] ↑ OP [46]

miR-29a-3p ↓ FM [31] miR-139-5p ↓ FM [28]
OP [22] ↑ OP [44]

miR-128-(3p) ↑ FM [30] miR-143-(3p) ↓ FM [34]
OP [40] ↑ OP [41,47]

miR-328-3p ↓ FM [30] miR-151a-(3p or 5p) ↓ FM [29]
OP [41] ↑ OP [48,49]

miR-335-5p ↑ FM [32] miR-186-5p ↑ FM [30]
OP [42,43] ↓ OP [42]

miR-338-3p ↓ FM [34]
↑ OP [50]

miR-766-(3p or 5p) ↓ FM [30]
↑ OP [51]
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Figure 3. Summary of miRNAs found in fibromyalgia (orange circle) and in osteoporosis (blue circle).
“↑” miRNAs at the upper part of the circles are upregulated. “↓” miRNAs at the lower part of the
circles are downregulated. “↑↓” miRNAs at the equator of the circles are either up- or downregulated.
Intersection of circles in green represents miRNAs common for FM and OP. References are listed in
Tables S1 and S2.
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2.2.2. Age and Gender

Concerning the seven miRNAs regulated in the same direction (up or down), all
cohorts in FM patients were around 50 years old, except one [28] that did not mention
the age. In OP, the patients were over 50 years old, with 70-year-old persons in five
studies [23,36,37,41,43] and no mention of age in several [38–40]. In FM, all studies but
one [32]—with only 30% men—included only females. In OP, six out of nine studies for
OP were 100% women. One study included both genders, with 60% women [42]. The
remaining two studies did not mention gender [39,41].

In the 45 articles, the FM patients were around 50 years old, and OP patients were over
50 years old, with 80-year-old persons in 2 studies [56,59]. Age was not always mentioned
in FM [28] or in OP [38–40,46,48,55,70,72]. In FM, all studies but one [32]—with only 30%
men—included only females. In OP, 25 of 38 studies for OP had only women. For studies
that included both genders, the majority was with 60 to 90% women. One study included
the same number of men and women for patient and HV groups [56]. The remaining nine
studies did not mention gender.

2.2.3. Tissue Sample, Extraction, and Detection Method

For the seven miRNAs regulated in the same direction (up or down), concerning extrac-
tion, four out of five FM studies were on circulating miRNAs: serum [28,29,32], cerebrospinal
fluid [31], or whole blood [30]. Three of the studies used extraction kits from Qiagen, one from
Thermo Fisher, and one did not specify the kit used. Concerning detection, qRT-PCR was used,
but, in one study [32], a multiplex assay was used. Concerning extraction in OP, 29% of OP
studies (n = 4) used circulating miRNAs with serum (n = 4). Other studies used whole blood
(n = 3), or other tissues specific to bone, like human-bone-marrow-derived mesenchymal stem
cells (hBMSCs) (n = 1) and bone (n = 1). In total, 67% (n = 6) of the studies used extraction kits
from Thermo Fisher, the other articles used Qiagen. Three of the four articles with sequencing
are found in the nine OP articles where the regulation is in the same direction. A total of 67%
(n = 6) used qRT-PCR as a detection method.

In the 45 articles, the extraction was realized with Qiagen or Thermo Fisher (Invitrogen,
Ambion) kits, and the detection method was qRT-PCR. Concerning extraction in FM, 57%
of FM studies (n = 4) were on circulating miRNAs in the serum [28,29,32], cerebrospinal
fluid [31], white blood cells [33], peripheral blood monocellular cells [34], and whole
blood [30]. Overall, 57% (n = 4) of the studies used extraction kits from Qiagen, two studies
used Thermo Fisher, and one did not specify the kit used. Concerning detection, qRT-PCR
was used, but one study [32] used a multiplex assay.

Concerning extraction, in OP, 55% of OP studies (n = 21) used circulating miRNAs, with
serum (n = 15) and plasma (n = 6), or whole blood (n = 5) and circulating monocytes (n = 1).
Other tissues specific to bone were used like human-bone-marrow-derived mesenchymal
stem cells (hBMSCs) (n = 6) and bone (n = 3); two studies [56,59] used both bone and serum.
In total, 53% (n = 20) of the studies used extraction kits from Thermo Fisher, 42% (n = 16)
used Qiagen, one study used both [37], and one did not specify the kit used [61]. Overall,
86% (n = 33) of OP studies used qRT-PCR as the detection method, only four studies
performed sequencing, and one study performed next-generation sequencing (NGS) [53].

2.3. Discussion

Low BMD and OP have been shown to be linked to FM [1,13–17]. In order to better
characterize the association between both pathologies, the aim of this review was to identify
if there are miRNAs common to FM and OP. It also aimed to specify which miRNAs are
regulated in the same direction, and to suggest common biomarkers.

A total of 23 common miRNAs were retrieved in the literature. Fifteen of these are
described to target and modulate the Wingless integration site (Wnt) pathway (miR-1-(3p),
let-7a-(3p or 5p), miR-9-(3p or 5p), miR-21-5p, miR-29a-3p, miR-107, miR-133a, miR-139-
5p, miR-145-(3p or 5p), miR-148a-(3p), miR-186-5p, miR-320a, miR-328-3p, miR-335-5p,
and miR-338-3p) [164–167]. Seven miRNAs modulate the cholinergic system (miR-7-5p,
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miR-9-(3p or 5p), miR-128-(3p), miR-148a-(3p), miR-186-5p, miR-328-3p, and miR-532-(3p
or 5p)), known as “CholinomiR” [30,168]. It is interesting to note that three miRNAs are
upregulated and four downregulated in FM and in OP, and they target the Wnt pathway in
bone studies, and the cholinergic system in FM studies.

The Wnt system is composed of Wnt proteins that are involved in many cellular
processes, ranging from cell-fate determination to stem-cell renewal, and dysregulated Wnt
signaling is involved in many human pathologies [169]. Wnt pathways display numerous
cross connections that negatively or positively regulate each other, forming a mutual
regulatory network.

At the bone level, the Wnt pathway is the most important regulatory pathway; it has a
direct effect on skeletal remodeling, regulating bone mass via bone forming osteoblasts, old
bone reabsorbing osteoclasts, and progenitor cells responsible for the maintenance of bone-
marrow-derived mesenchymal stem cells (BMSCs) [170]. Multiple genes are also targeted,
and involved in the regulation of bone, including cyclin D1, RUNX2, bone sialoprotein,
sclerostin, Dickkopf 1 and 2, secreted FZ-related protein, osteoprotegerin, osterix, myocyte
enhancer factor 2C, osteocalcin, or osteopontin [165,170]. Wnt signaling plays a central
regulatory role during embryonic development and in the adult osteogenic differentiation
of mesenchymal stem cells. Alterations of this system are accompanied by impaired bone
healing, autoimmune disease, osteoporosis, and malignant degeneration. Wnt factors
have been suggested as potential future therapeutics to help bone healing after trauma in
endocrine or orthopedic situations [171].

The Wnt pathway is ubiquitous and involved in other domains like muscle func-
tion [172] or chronic fatigue syndrome (CFS) [173]. FM and CSF are flip sides of almost
identical chronic conditions. Patients with CFS have many similar symptoms to those with
fibromyalgia—brain fog, fatigue, headache, and poor sleep. Dysregulated Wnt/β-catenin
signaling has been shown to cause oxidative stress in animals with CFS, and produce
reactive oxygen species (ROS) and aberrations in cross-talks between Wnt, Redox, and
NF-kB pathways. The Wnt pathway is also involved in pain sensitization, and neuropathic
and bone-cancer-induced pain [174]. Pain accompanies OP especially after trauma and
fracture; ensuing central sensitization may lead, in some patients, to neuropathic pain (with
burning, stabbing, itching, allodynia, and hyperalgesia). While the origin of FM remains
unclear, the central sensitization of pain [175] and the diffuse nociplastic musculoskeletal
type of pain are landmarks of FM [6]. In a study centered on an experimental model of
FM [174], it has been shown that the Wnt/β-catenin pathway is involved in the release
of brain-derived neurotrophic factor from the spinal microglia. This observation suggests
that the modulation of this pathway plays a key role in the activation of the nociceptive
pathway in the spinal cord [174]. In the same way, the activated Wnt signaling pathway
in neuropathic pain [176] modulates the expression of the glutamate receptor, resulting in
synaptic plasticity and central sensitization [176].

The cholinergic system is the other system that is expressed by the common miRNAs
in FM and OP. Cholinergic mechanisms may play an important role in the pathophysiol-
ogy and severity of FM [30], especially via the vagus nerve. The vagus nerve is a major
cholinergic component of the parasympathetic system, a mixed nerve containing 80%
afferent and 20% efferent fibers, which controls the neuro-digestive, vascular, and immune
systems. Non-invasive vagus nerve stimulation is even considered today as a potential
adjunct treatment for FM [177], since FM involves a dysregulation of the autonomic (high
sympathetic tone) and immune (enhanced pro-inflammatory activity and cytokines) sys-
tems. Another link between FM and the cholinergic system is medication: a cross-sectional
study [178] highlighted that one of the most frequently used and effective FM treatments is
amitriptyline, a strong anticholinergic molecule [178].

The cholinergic system is also involved in the health status of bone [179], and choliner-
gic components (with adrenergic ones, the other branch of the autonomic nervous system)
play an important role in bone remodeling. Bone loss associated with OP could be due to
local alterations/inhibitions in cholinergic activity, but this has been scarcely studied so far.
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Clinical studies have shown that bone is also associated with the function of cholinergic-
regulated tissues like the hypothalamus [180] and those outside the nervous system in
non-neuronal cells.

Common miRNAs have specific signatures in FM and OP (Figure 4, Table 2).
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miR-1-(3p), involved in myoblast differentiation, has been suggested to be down-
regulated in FM because of decreased physical activity in this pathology. miR-1(3p) also
modulates Brain Derived Neurotrophic Factor (BDNF) expression in skeletal muscle where
it inhibits myogenic differentiation [28,37], and in OP [36]. miR-1-(3p) has a specific target
with Secreted Frizzled Related Protein 1 (SFRP1), part of the Wnt signaling system, and
balances the osteogenesis and adipogenesis of mesenchymal stem cells (MSCs). Overall,
downregulated miR-1-(3p) leads to decreased bone formation and diminished myogene-
sis [28,36,37].

let-7a-(3p or 5p), downregulated in both diseases [29,38,41,73], plays a role in nerve
fiber pathology [35] and regulates pain pathways via the endogenous opioid system in
FM [29]. It has a close association with the Wnt pathway in OP [37,41].

miR-9 (3p or 5p) is upregulated in both pathologies. As a cholinomiRNA, it may shift
inflammatory processes (Janus kinase 2 expression)—possibly linked to pain—via the mod-
ulation of the systemic cholinergic system in FM [30]. It binds to the Wnt pathway, and has a
deleterious effect on bone quality [38], skeletal cell proliferation, and differentiation [38,39].

miR-29a-3p is downregulated and is associated with the diminution of β-catenin and
with the inactivation of canonical Wnt signaling, leading to OP [23]. In FM, miR-29a-3p
expression is reduced compared to healthy controls [31].

miR-128-3p, which is upregulated, is an inhibitor of bone formation via sirtuine 6
(SIRT6) expression [40], and is a cholinomiRNA [30] that modulates the systemic cholin-
ergic system in FM. miR-328-3p is also a cholinomiRNA, which is downregulated, and is
associated with osteoblast differentiation in OP [41].
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Table 2. Characteristics of the 7 common miRNAs in fibromyalgia (FM) and osteoporosis (OP).

miRs Pathology Reference Findings

miR-1(-3p)

FM [28]

Myoblast differentiation - Downregulation of miR-1(-3p) following reduced
physical activity in FM patients because of pain and fatigue symptoms.
Modulation of brain-derived neurotrophic factor (BDNF) expression.
BDNF in skeletal muscle inhibits myogenic differentiation.

OP

[36]

Balance between osteogenesis and adipogenesis of mesenchymal stem
cells (MSC). Upregulation of miR-1-3p during osteogenesis and downregulation
during adipogenesis. Secreted Frizzled-related protein 1 (SFRP1) is a direct target of
miR-1-3p. Inhibition of miR-1-3p decreased bone formation and bone mass.
Regulation of myostatin gene. Influence on muscle hypertrophy.
Reduced/suppressed expression of fibronectin 1, BDNF, Dickkopf 1
(DKK1). Suppressed proliferation and migration of oral squamous cell carcinoma/
renal cell lines.

[37]

Regulation of RAB5C expression. hsa-miR-1-3p and his target mRNA RAB5C
may play a critical role in the bone metabolism of postmenopausal osteoporosis.
Regulation in skeletal tissue.Muscle proliferation, muscle differentiation and
myogenesis.

let-7a(-3p or 5p)
FM [29] Repression of µ-opioid receptor expression.Regulation of the endogenous

opioid system and in opioid tolerance.
OP [37] Downregulated.

miR-9(-3p or 5 p)

FM [30]
CholinomiRNA. Regulation of Janus kinase 2 (JAK2) expression. JAK2 is
pivotal for IL6/JAK2/STAT3 axis-mediated inflammation.CholinomiRs may
shift inflammatory processes via modulation of the systemic cholinergic system.

OP

[38]

Inhibition of osteogenic differentiation of hMSCs.Inhibiting the miR-9-5p
expression promoted the expression of osteocalcin, runt-related transcription factor 2
(Runx2) and bone morphogenetic protein 7 (BMP-7), enhanced BMD, and promoted
fracture healing.
Inhibition of skeletal cell proliferation and differentiation.

[39]

Inhibition of the expressions of osteogenic-related genes.Direct binding to
Wnt3a. Wnt3a overexpression partially reversed the regulatory effect on osteogenic
differentiation of MSCs.
Promotion of adipogenic-related genes expression.

miR-29a-3p

FM [31] Upregulation during aging in mice and decreased in several pathologies
including muscular dystrophy type 1.

OP [23]
Induction of beta-catenin protein levels.Activation of canonical Wnt
signaling.
Key regulation of collagen expression.

miR-128-3p

FM [30] CholinomiRNA- Upregulation and Involvement in the neuronal
oxidative stress response.Modulation of the cholinergic system.

OP [40] Inhibition of osteoblast differentiation.Down-regulation of sirtuine 6 (SIRT6)
expression.

miR-328-3p
FM [30] CholinomiRNA.Modulation of the cholinergic system.
OP [41] Inhibition of osteoblast differentiation.

miR-335-5p

FM [32] Sole miRNA that differed significantly from controls.

OP
[42] Upregulation in osteoporosis with low-traumatic fractures compared to

controls.

[43] Upregulation in osteoporosis with vertebral fractures/low BMD
compared to low BMD/no fractures and controls.

mir-335-5p, which is upregulated, is the only miRNA that was significantly expressed
in 105 FM patients compared to 54 controls [32]. mir-335-5p activates Wnt signaling and
promotes osteogenic differentiation by downregulating Dickkopf 1 (DKK1), a soluble
inhibitor of the Wnt signaling pathway. Two studies with 26 and 39 OP patients compared
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to control subjects showed miR-335-5p as being upregulated in OP with vertebral/fragility
fractures [42,43].

With these seven common miRNAs up- or downregulating in the same direction in FM
and OP, the possibility of a link between the Wnt pathway and the cholinergic system could
open new avenues for research on the prevention and management of both pathologies.
Preclinical studies have highlighted a cholinergic induction of Wnt during infection or
immune activation [181,182]. The coordinated activities between acetylcholine receptors
and Wnt signaling seem to be conserved in evolutionary terms, and are found in mice [183].
There seems to be a cholinergic–Wnt signaling axis, which can intervene in homeostasis
regulation [181], but has not been looked for in OP or FM.

Although we highlighted a number of miRNAs common in FM and OP, there are a
number of limitations in this review. The regulation of miRNAs may often be contradictory,
even in the same pathology. These mismatches can be explained by differences between
studies. From one study to another, the number of patients in the cohort but also in the
tissue samples, and technical issues with extraction and detection techniques all vary.
miRNAs in FM appear to have less contradictions than in OP, but less research has been
carried out on this topic. We noticed that the more studies report miRNA expression, the
more contradictory results are obtained.

Another limitation in the interpretation of our results is the ethnical origin of the patients.
Indeed, the majority of articles included Asian patients, and results cannot be extrapolated as
representing Caucasian characteristics; in addition, there are no studies in African patients or
other ethnical groups. While OP is largely reported in women, especially after menopause,
OP remains underestimated in men where it usually presents at a later age. Likewise, mostly
women seek advice for FM symptoms, while men are less present in pain clinics for this
pathology and are poorly represented in publications on FM. This present review underlines
the paucity of miRNA studies that include men; such a gap needs to be addressed, since
gender-specific differences in miRNAs expression (in the quantity of expression and type of
miRNAs) have been described in several pathologies, and such a difference in OP and FM
could suggest the development of sex-specific therapeutic strategies.

There is also a need to have prospective longitudinal rather than transversal studies in
order to follow FM patients over a number of years, and to evaluate, thoroughly, their bone
health and the early presence of OP. Future clinical research should include larger cohorts
of patients with a wider range of ethnic representation, more men, and a systematic report
on comorbidities that could influence the given pathological condition. Bioinformatics and
artificial intelligence can be useful tools in this context to validate miRNAs and identify the
predictive value of these common biomarkers for the better diagnosis and management
of both pathologies. These miRNAs play a pivotal role in the pathogenesis of FM and OP
and are associated with cardinal symptoms, making them interesting potential therapeutic
molecules to target.

Finally, some miRNAs are not detected in both pathologies, but it is not certain whether
they are present or not, or shared between both diseases, as miRNAs are often prescreened
and the choice is based on what researchers want to analyze [184]. Some miRNAs are
not secreted by cells, and therefore cannot be detected in circulating miRNAs studies.
While qRT-PCR is a sensitive and specific reference method that allows the detection of
individual miRNAs or a panel of miRNAs, new detection methods now exist, including
deep sequencing. These may help in the future to detect a much wider range and identify
new miRNAs, but such techniques are expensive and their development is self-limiting.

3. Materials and Methods
3.1. Review Protocol

This is a systematic/scoping review that was conducted and reported according to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) Guidelines [185].
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3.2. Eligibility Criteria

Peer-reviewed journal articles were included if they involved the comparison of
miRNA expression between HV and patients with OP or FM. An investigation of the
miRNAs profiles was followed as a primary or secondary outcome, with any type of
biological sample. Clinical trials, case–control, and cross-sectional studies were included.
Reviews, meta-analyses, comments, method validations, meeting abstracts, in vitro studies,
and animal studies were excluded. All articles that did not clearly mention FM, OP, or
miRNA expression were excluded. Database-based studies were not included. There was
no age limit nor a minimum number for the population, no specific requirement regarding
the year of publication, and studies had to be available in English.

3.3. Information Sources and Search Strategy

In order to identify potentially relevant articles, the online database PubMed was
searched until June 2023 with the following keywords: (“fibromyalgia” OR “fibromyalgia
syndrome” OR “osteoporosis” OR “post-menopausal osteoporosis”) AND (“miRNA” OR
“microRNA” OR “sequencing microRNA” OR “micro RNA” OR “mirRNAs OR “mirs” OR
“mir”). The gray literature was not searched nor included. The medical subject heading
(MeSH) was used to increase the sensitivity of the systematic search. The reference list of
all the full-text articles selected after the screening and the list of articles citing these articles
were hand-searched for titles not identified with the previous methods.

3.4. Study Selection Process

Abstracts were obtained for all the studies identified during the electronic and hand-
searches, after having removed duplicates. Two reviewers (SP, MD) screened titles and
abstracts in the first phase, and full-text copies in the second phase independently to
eliminate articles that clearly failed to meet the eligibility criteria. Full-text copies were
obtained for all the selected studies.

3.5. Data Charting Process and Synthesis

Predetermined data (including first author, publication year, number for the popula-
tion, ethnicity, mean age, gender, menopause, age of the disease, comorbidities, biological
sample, extraction kit, detection method, study design...) were extracted from each study
by two reviewers (SP and MD) and arranged into data tables. The miRNAs cited and
explored in the included studies were listed in tables specifying their expression (upreg-
ulating or downregulating), according to the targeted pathology (FM or OP). No quality
assessment of the included articles took place, which was in accordance with the available
guidelines on scoping reviews [185]. We used RNAcentral (http://rnacentral.org), miR-
Base (http://www.mirbase.org), and Rfam (http://rfam.org) databases (accessed on 18
May 2023) to identify signaling pathways and systems potentially altered by the miRNAs
differentially expressed in both pathologies (FM and OP).

According to the nomenclature of the miRNAs, we paid attention to miRNAs originat-
ing from the same precursor, the most abundant being named “5p” and the least abundant
“3p”. Some articles did not, however, specify the strand. If the literature reported one or
the other strand, we indicated it (3p or 5p).

4. Conclusions

Collective data of this review show that a number of common miRNAs in FM and OP
have been identified. These are involved in the Wnt pathway for OP and in the cholinergic
system for FM. A substantial link is still missing to evaluate the real miRNA impact on
Wnt dysregulation in FM and on cholinergic system alterations in OP. Research on this
possible link is important since it has been described in animal species with intestinal
dysfunction and could be investigated in musculoskeletal conditions. Further research is
also warranted on harmonizing techniques or on the choice of tissue for miRNA analysis.
Our review underlined a number of gaps linked to the large heterogeneity of methods.

http://rnacentral.org
http://www.mirbase.org
http://rfam.org
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We recommend further studies in order to strengthen the epigenetic knowledge of the
FM and OP association, and how they are interwoven, to prevent and better manage
these pathologies using common predictive biomarkers. Clinical data have reported the
increased risk of developing OP in FM patients. The identification of common miRNAs
would provide predictive factors for limiting the double burden of FM and OP in aging.
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//www.mdpi.com/article/10.3390/ijms241713513/s1.
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