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Abstract: Diabetic kidney disease (DKD) is one of the common chronic microvascular complications
of diabetes in which mitochondrial disorder plays an important role in its pathogenesis. The current
study delved into the single-cell level transcriptome heterogeneity of mitochondrial homeostasis
in db/db mice, an animal model for study of type 2 diabetes and DKD, with single-cell RNA
sequencing (scRNA-Seq) and bulk RNA-seq analyses. From the comprehensive dataset comprising
13 meticulously captured and authenticated renal cell types, an unsupervised cluster analysis of
mitochondria-related genes within the descending loop of Henle, collecting duct principal cell,
endothelial, B cells and macrophage, showed that they had two types of cell subsets, i.e., health-
dominant and DKD-dominant clusters. Pseudotime analysis, cell communication and transcription
factors forecast resulted in identification of the hub differentially expressed genes between these
two clusters and unveiled that the hierarchical regulatory network of receptor-TF-target genes was
triggered by mitochondrial degeneration. Furthermore, the collecting duct principal cells were found
to be regulated by the decline of Fzd7, which contributed to the impaired cellular proliferation and
development, apoptosis and inactive cell cycle, as well as diminished capacity for material transport.
Thereby, both scRNA-Seq and bulk RNA-Seq data from the current study elucidate the heterogeneity
of mitochondrial disorders among distinct cell types, particularly in the collecting duct principal cells
and B cells during the DKD progression and drug administration, which provide novel insights for
better understanding the pathogenesis of DKD.

Keywords: bioinformatics; diabetic kidney disease; mitochondria; single-cell RNA sequencing;
transcriptional regulation

1. Introduction

The latest figures released by the International Diabetes Federation in 2021 show that
537 million (1 in 10) adults now live with diabetes worldwide; a rise of 16% (74 million) since
the previous estimates in 2019 [1]. Due to the microangiopathy caused by hyperglycemia,
up to 30~50% of diabetic patients have diabetic kidney disease (DKD) [2]. DKD has been
recognized as the uppermost cause of end stage kidney disease, which brings tremendous
health and property deficiency to patients and medical finance.

Mitochondria exhibit a semi-autonomous nature due to their double-membrane struc-
ture. They possess their own genome and function as the cellular energy-generating
factories, providing over 90% of the cell’s ATP supply. Mitochondria can oxidize small
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molecular organic acids, fatty acids and ketones to produce energy, extensively participat-
ing in the regulation of cell metabolism, energy supply, cell cycle and other intracellular
activities. Numerous studies have demonstrated that the mitochondrial disorder caused by
metabolic changes of diabetes is one of the important causes of DKD [3]. In DKD, mito-
chondrial dysfunction has a definite relation with DKD because of the reduced quantity,
impaired oxidative function, kinetic imbalance and fuel transition [4]. Furthermore, the
oxygen contents vary across different regions of the kidney, leading to diverse metabolic
characteristics of mitochondria in various types of renal cells. Consequently, the changes
of mitochondria in distinct cell types at different stages of DKD may exhibit variations
as well. Therefore, it is imperative to carry out a comprehensive analysis of mitochon-
dria considering heterogeneity among different cell types in kidney of DKD at single-cell
resolution.

Bulk RNA-Seq, known for its high-throughput capabilities, has been a powerful tech-
nology for screening biomarkers or therapeutic targets for diverse tissues and organs [5].
Zhao et al. utilized this technology to investigate the biomarkers of DKD in db/db mice and
found the mitochondrial dysfunction, abnormal lipid metabolism and oxidative stress [6].
Bulk RNA-Seq, however, has a limitation owning to the internal heterogeneity within tis-
sues and organs. In recent years, single-cell RNA sequencing (scRNA-seq) has been widely
used in the research of diseases such as hepatology [7], cardiovascular disease [8], and
neurodegenerative disease [9]. Compared to bulk RNA-Seq, scRNA-Seq advantageously
offers the ability to comprehensively consider the analysis of heterogeneity among the types
of cells. Leveraging scRNA-Seq, we recently identified the cell-specific targets involved in
the aetiology of DKD in db/db mice [10].

In the current study, we performed an extensive analysis of the mitochondrial land-
scape in DKD based upon the data of specific cell types of scRNA renal transcription to
reveal the regulatory network and its heterogeneity of renal mitochondrial damages in
distinct renal cell types of DKD. There are universal transitions of material transportation,
metabolism, cell cycle in the descending loop of Henle (DLH), collecting duct principal
cells (CD-PC), endothelial cells (EnCs), B cells and macrophages (Mac). Especially notable
is the fluctuation in the CD-PC and B cells, whose cell state can be reversed by angiotensin
receptor blockers (ARB) and Huangkui capsule (HKC).

2. Results
2.1. Pathological Features and Reactive Oxygen Species

According to the HE staining, compared with Ctrl mice, the DKD group showed
thickening and diffuse hyperplasia of glomerular basement membrane, early Kimmelstiel–
Wilson (KW) nodule formation, glomerular atrophy, transparent capillary lesions and
other characteristics (Figure 1A). Meanwhile, necrosis and exfoliation of renal tubular
epithelial cells, vacuolar lesions and dilatation of renal tubular lumen were observed in
Periodic Acid-Schiff (PAS)-staining of the DKD group (Figure 1B). The images showed the
typical pathological manifestations in kidney of DKD. Notably, the increase of fluorescence
intensity of reactive oxygen species (ROS) fluorescence in DKD was obvious (Figure 1C).
Based upon the electron microscope observation, we further found that most mitochondria
in the Ctrl group were abundant in number, long and complete in shape, with dense
mitochondria matrix and intima formed crista, but mitochondria in the DKD group were
mostly round, with transparent matrix, loose in structure, intima and crista (Figure 1D).

2.2. Renal scRNA-Seq Data Preparation, Clustering, and Quality Control

These cells were divided into 13 distinct cell types, including ascending loop of Henle
(ALH), Collecting duct intercalated cell (CD-IC), CD-PC, Distal convoluted tubule (DCT),
DLH, EnC, Mac and segment 1 (S1), S2, S3 of PTCs (Figure 2A,B). The top 10 markers of each
cell type showed no clustering bias caused by batch effect between groups (Figure 2C,D).
Mitochondrial RNA content is typically associated with cell survival rates during the
preparation of a single-cell suspension and the quality of scRNA-Seq library construction.
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To mitigate any potential interference arising from cell survival rates and RNA library
integrity, the double droplet judgment was carried out.
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Figure 1. Histopathological examination showed that there were significant differences between DKD
group and Ctrl group in glomerular injury, renal tubule lesions, ROS overproduction and mitochon-
drial morphology. (A) HE optical photograph of DKD group kidneys showed thickening and diffuse
hyperplasia of glomerular basement membrane, early Kimmelstiel–Wilson (KW) nodule formation,
glomerular atrophy, transparent capillary lesions. Scale bar, 20 µm. (B) PAS results showed that DKD
group developed obvious lesions such as necrosis and exfoliation of renal tubular epithelial cells, vacuo-
lar lesions and dilatation of renal tubular lumen. Scale bar, 80 µm. (C) By 2,7-Dichlorodihydrofluorescein
diacetate dyeing (red), it can be obviously observed that ROS levels in the frozen kidney section of the
DKD group began to rise. Scale bar, 50 µm. (D) The morphological deterioration of DKD mitochondria
was observed under electron microscope. Scale bar, 2 µm and 500 nm.
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Figure 2. Dimension reduction and mitochondrial content calculation of scRNA-Seq. (A,B) PTCs
in S1, S2 and S3 segments of PTCs (A) and DRSC (B), including ALH, CD-IC, CD-PC, DCT, DLH,
EnC, T cell, B cell, Mac and DC, are respectively shown in the UMAP map. The accompanying
shadows indicate confidence intervals of UMAP score. (C,D) The combined scatter plot shows the
respective markers of the 13 renal cell types in the Ctrl (C) and DKD (D) groups. The fold change was
obtained by comparing the corresponding cells with the remaining cells except the cells themselves
and the five marker genes with the lowest p-value (Wilcox test) in each cell of both up-regulation and
down-regulation were labeled. E–F: The PMEM of PTCs (E), DRSC and IC (F) were demonstrated in
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violin plots with consistent y-coordinates. ALH—Ascending loop of Henle; CD-IC—Collecting
duct intercalated cell; CD-PC—Collecting duct principal cell; DCT—Distal convoluted tubule;
DLH—Descending loop of Henle; EnC—Endothelial cell; Mac—Macrophage; DC—Dendric cell;
PTCs—Proximal tubule cells; S1, S2 and S3 are segments of proximal tubule; PMEM—percentage of
mitochondrial encoding mRNA; DRSC—distal renal stromal cells.

2.3. Mitochondrial Encoding mRNA Content

As a semi-autonomous organelle with its own diminutive genome, mitochondria
contains 37 self-encoding genes, of which 13 encode mRNA. Current scRNA-Seq expression
matrix included 13 mRNA genes encoded by mitochondria, and the expression of these
13 mRNA genes in PTC and other cells was summarized (Figure S2 and Table S2).

To explore whether the expression pattern encoded by mitochondria was involved
in the progress of DKD, we counted the expression of these 13 genes in each cell type
(Figure 2E,F, Table S3) and found that the percentages of mitochondrial encoding mRNA
(PMEM) in PTCs (S1: 7.89%; S2: 9.51%; S3: 7.29%) and collecting tubules (CD-IC: 10.7%;
CD-PC: 7.85%), which were higher than other cells. This might reflect the function of genes
in these PTC, CD-IC, and CD-PC cells to transport large amounts of organic and inorganic
ions between blood and initial urine. The overall distribution of gene set variation analysis
(GSVA) scores between the Ctrl and DKD groups at the whole kidney level (Figure 3A)
showed insignificant differences. This phenomenon might be caused by ignoring the
heterogeneity among renal cell types. Therefore, we further conducted an analysis of
inter-group genetic difference at the levels of whole kidney and PTC. The intersection of the
two differential analyses showed that the differential expressed genes in the whole kidney
(Wilcox test, p < 0.05|log2(FC)| > 0.5) were nearly identical to those in PTC (Figure 3B).
It suggested that previous studies by using bulk RNA-seq in kidney had focused on
PTC specifically. Obviously, the comparison of expression at the whole kidney level
holds limited significance. We thus performed the analysis of difference between the
Ctrl and DKD groups at the cell type level. In the S1 segment of PTCs, there was no
significant difference between the groups. In the S2 segment of PTCs, the GSVA score of
the mitochondrial coding gene set in the DKD group was significantly higher compared to
the Ctrl group, while the GSVA score in the S3 segment of PTCs in the DKD group was
significantly lower (Figure 3C). These findings were consistent with the trends in other cell
types, except for CD-IC and DC, suggesting that PTCs were less affected by DKD than
distal renal stromal cells (DRSC) and immune cells (ICs). Therefore, we re-counted the
GSVA score of these cells at levels of PTCs, DRSC and ICs. In the different classifications,
compared to the Ctrl group, GSVA score in PTCs of the DKD group was higher, while the
GSVA score in DSRC and ICs were lower, and the downscaling multiples in ICs were larger
and more significant (Figure 3D).

2.4. Mitochondria-Associated Nuclear Genes Were Involved in the Process of DKD

Widespreadly, more than one thousand mitochondria-associated nuclear genes (MANGs)
are known to encode the mitochondrial components. Even the oxidative respiratory
electron transport chain is located on the inner membrane of mitochondria and is heavily
encoded by the MANGs (Figure S3). A total of 1140 MANGs were adopted from Mouse
Mito Carta [11] and categorized into 151 pathways, such as mitochondrial central dogma,
mtDNA maintenance, mtDNA replication, etc. (Table S4). We used the pathways to guide
the GSVA and subsequent difference analysis (generalized linear models) of each cell type
(Figure S4). The GSVA score of 151 pathways showed the extensive differences as the GSVA
scores of MANGs among different cell types between Ctrl and DKD groups.
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Figure 3. Different analysis of mitochondrial mRNA content between the Ctrl and DKD group at
different classification level s. (A) The boxplot shows the mitochondrial encoding gene GSVA score
of all individual renal cells in the DKD (yellow) and Ctrl (blue) groups. (B) There was a large degree
of overlap between the comparison of DKD and Ctrl with the whole kidney as the unit and the
comparison between groups of separate PTCs. (C) Bar-boxplot composite diagram depicting the
logarithmic fold change of GSVA score (bar plot) of the DKD group compared to the Ctrl group and
distribution of GSVA score in both groups (boxplot). (D) Bar-boxplot composite diagram depicting
the logarithmic fold change of GSVA score (bar plot) of PTCs, DRSC, ICs in the DKD group compared
to that in the Ctrl group and distribution of GSVA score in both groups (boxplot). *** p < 0.001;
ns: No significance.

We assumed that there were healthy and DKD individuals in renal cells of DKD.
Therefore, we used the GSVA score of significantly different pathways to re-cluster cell
population in Seurat and divided them into two clusters (Figure S5) based upon the
parameters (Table 1). We weighted the proportion and found the special clusters of S1, S3,
DLH, ALH, CD-PC, CD-IC, EnC, B cells and Mac were significantly higher in the DKD
group (Figure 4A). These subpopulations, called DKD-dominant Clusters (DDCs), were
significantly higher than those in the Ctrl group. Tentatively, we referred to remaining
subpopulations as health-dominant clusters (HDCs). We then conducted two difference
analyses with the Wilcox test either between HDC cells of Ctrl group and DDC cells
of the DKD group (different analysis 1, DA1) or between HDC cells and DDC cells in
the DKD group (different analysis 2, DA2) of S1, S3, DLH ALH, CD-PC, CD-IC, EnC,
B cells and Mac. After excluding MANGs, significantly differential genes were defined
(p-value < 0.05 and |Log2(FC)| > 0.5). DLH, CD-PC, EnC, B cells and Mac shared the
different genes, and the exclusive different genes in DA1 and DA2 accounted for more
than 100 individuals (Figure 4B). The cell types with insufficient intersection genes were
discarded. The Log2(FC) of the intersecting genes was presented in a scatter fitting curve to
reflect their linear correlation (Figure 4C). There was a significant positive correlation within
five cell types between the intersection genes of two comparisons. It was preliminarily
speculated that the development of DLH, CD-PC, EnC, B cells and Mac in the formation
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of DKD might be driven by MANGs. Therefore, we extracted the intersection genes of
two comparisons and exclusive gene of DA2 in DLH, CD-PC, EnC, B cells and Mac to
perform a gene enrichment analysis based upon 51 DKD-conventional pathways (DCP) as
we previously described [10]. The enrichment analysis showed that the intersection genes
were DCP-enriched in DLH, CD-PC, EnC, B cells and Mac (Figure 4F, Table S5). We selected
the most significant 20 pathways (if sufficient) in DCP enrichment data of intersection
genes and exclusive genes of DA2. The number of top 20 enriched DCP was decreased in
the exclusive genes of DA2 in DLH and CD-PC even though we followed the same process
and parameters in enrichment analysis (Figure 4F). To avoid that, HDC and DDC cells were
introduced due to the errors in upstream cell annotation, the Person correlation analysis
was performed among ten subsets of five cell types in DKD and corresponding to the cell
types in Ctrl by using normalized expression matrix (Figure 4E). We found that all ten
subclusters had the similarity with original five cell types. The subclusters might have the
characteristics of DKD but the rest of the cell subclusters (HDCs) had the characteristics of
normal samples. Furthermore, the exclusive genes of DA2 provided us with information
other than conventional DCP. We performed a cross-analysis of ESDEGs in these five cell
types (Figure 4D). The fold change and significance (p value, Wilcox test) between HDCs
and DDCs in the respective cell types displayed intense heterogeneity (Figure 5A).

Table 1. Parameters in dimension reduction cluster based on GSVA score.

Cell Type DEP Dims of PCA Resolution

S1 138 20 0.1
S2 127 19 0.08
S3 142 20 0.1
DLH 67 3 0.15
ALH 119 16 0.1
DCT 129 15 0.1
CD-PC 125 8 0.1
CD-IC 104 9 0.2
EnC 44 3 0.15
T Cell 86 10 0.1
B cell 32 2 0.1
Mac 76 3 0.1
DC 10 NA NA

To explore the biological significance of ESDEGs, we performed a semi-supervised
pseudotime analysis of these five cell types (Figure 5B–D). The trajectory inference prelimi-
narily predicted that there was imbalance in the distribution of HDCs and DDCs, and the
density curves of these cells in the pseudotime were significantly different (p-value < 0.001).
To avoid the prior influence caused by the intervention of mitochondria-related path-
ways, MANGs were eliminated from the DA1 and DA2 when the ESDEGs were defined.
To demonstrate that the pseudotime state differences between HDCs and DDCs are indeed
associated with mitochondria, we summarized DKD-related mitochondrial pathways and
corresponding genes previously confirmed to be associated with DKD for ssGSEA, a su-
pervised machine learning approach [12]. The significantly different pathways were very
consistent (Figure 5E). The ssGSEA score of mitochondrial and DKD-related pathways
in DLH and CD-PC, which are responsible for the transport of renal tubular substances,
showed a trend of significant up-regulation in most DDCs. However, these pathways in
EnC, B cells and Mac, which are not responsible for the transport of renal tubular materials,
mostly showed a downregulation trend in DDCs. It can be speculated that HDCs and
DDCs have indeed changed in mitochondrial function and change of cell biological status
driven by mitochondria, so the biological significance of ESDEGs is worth further revealing.
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Figure 4. Cells of the DKD group can be divided into two distinct clusters by the clustering of
mitochondria-related gene sets. (A) Boxplot showing the distribution in DKD-dominance clus-
ters among cell types of the Ctrl group (skyblue) and DKD group (orange). P, unpaired t test.
* p < 0.05, ** p < 0.01, *** p < 0.001. (B) Venn diagram showing the difference (p < 0.05 and
|log2(fold change)| > 0.5) between HDC in the Ctrl (DA1) and DKD (DA2) groups and DDC. (C) The
linear relationship of the log2 (fold change) of intersected genes in (C) was fitted by Pearson correla-
tion coefficient. (D) High latitude Venn diagrams of DA2 unique genes among DLH, CD-PC, EnC,
B cells, Mac. (E) The correlation between sub-cell types and their original cell types is displayed by
complex heatmap. (F) Bubble diagram of conventional DKD-related pathway enrichment analysis of
diff2-exclutive genes (Blue area), intersective genes (Purple area) of DA1 and DA2 in Figure 3C. The
top 20 pathways (if sufficient) were selected by p-value (<0.05).

2.5. SLC Superfamily Intervened in the Process of DKD by Affecting Cellular Metabolism and
Oxidative Stress through Substance Transport Function

There are a total of 364 members of solute carrier (SLC) superfamilies in mice. These
SLC genes possess conserved domains and are widely distributed in various chromosomes
(Figure S6A), tissues and organs of the body, including kidney, liver, intestinal tract, etc.
Functionally, the substances that SLCs transfer include the signaling molecules (such
as cAMP, prostaglandins, bile acids and short-chain fatty acids), metabolites (such as
α-ketoglutarate), and antioxidants (such as urate, ergothioenine, vitamins and cofactors),
etc. [13]. We summarized the highly expressed SLCs in renal cells (Figure S6B). The
members, which were highly expressed in specific cells and acted as material carriers for
the transport function of kidney cells are listed in Table 2.

The members of SLC25 family, as mitochondrial carriers, occur only in mitochon-
dria [14]. Therefore, we identified the differently expressed genes (DEGs) of SLC25 mem-
bers between HDC and DDC of the five cell types and retrieved their respective substrates
(Table 3 and Figure S6C). Slc25a4 (ATP/ADP transport), Slc25a5 (adenine nucleotide trans-
port), Slc25a30 (C4-dicarboxylate and sulfur compound transport) and Slc25a3 (phosphate
transport) as uncoupling proteins were found to be increased in the DDCs of CD-PC. Mean-
while, Slc25a39 responsible for glutathione transport showed the same up-regulation trend
in the DDCs of CD-PC. The remaining SLC25 DEGs’ transport substances were involved
in oxidative phosphorylation such as nicotinamide adenine dinucleotide, ATP, nucleotide,
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malate, oxaloacetate and succinate, which participate in the tricarboxylic acid cycle. In
addition, Slc25a15, the carrier of L-arginaine, L-Lysine and L-ornithine, showed an obvious
down-regulation trend in the DDCs of EnC and B cells. The substances transported by
the SLC25 family showed significant differences between DDCs and HDCs in oxidative
phosphorylation, tricarboxylic acid cycle and amino acid metabolism in the mitochondria
of CD-PC, EnC, B cells and DLH.
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Figure 5. The pseudotime analysis of ESDEG and mitochondria-related DKD pathways demonstrated
that HDCs and DDCs were significantly different in cell state. (A) The volcano diagram shows the
differences of exclusive genes (The blue area in Figure 3C) between DDCs and HDCs in DLH, CD-
PC, EnC, B cells, Mac, where the abscess represents the difference fold and the ordinate represents
the significance (Q value < 0.05, |log2(Fold Change)| > 0.5). (B,C) The scatter plot shows the
pseudotime distribution trajectory (B) obtained by semi-supervised learning in monocle2 and the
coordinates (C) of HDCs and DDCs in each cell in the pseudotime. (D) The cumulative density
distribution curves show that HDCs and DDCs have significant differences in the pseudotime
distribution of their respective cells (t test). (E) The gene set enrichment analysis (ssGSEA) score of
DKD-related mitochondrial pathways related to mitochondrial damage in DKD is demonstrated in
HDCs and DDCs, and the difference analysis was performed by generalized linear models in the
limma package. (*, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001).
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Table 2. Detailed list of SLC genes as cell markers.

Gene As Marker in Substrate

Slc12a1 ALH sodium-potassium-chloride
Slc16a7 DCT lactate, pyruvate, ketone bodies
Slc26a4 CD-IC sulfate

Slc43a2 CD-IC L-isomers of neutral amino acids, including leucine,
phenylalanine, valine and methionine

Slc4a9 CD-IC anion
Slc8a1 CD-PC Ca2+

Slc12a3 DCT Sodium, chloride
Slc27a2 PTC free long-chain fatty acids
Slc34a1 PTC sodium-phosphate
Slc13a3 S3 succinate and other Krebs cycle intermediates
Slc17a1 S1, S3 -
Slc17a3 S3 intracellular urate and organic anions
Slc22a30 S3 -
Slc22a1 S1, S3 organic cation
Slc22a12 S3 urate
Slc22a8 S1, S3 organic anions
Slc23a1 S1, S3 vitamin C
Slc2a2 S1, S3 glucose
Slc6a20b S1, S3 -
Slc37a4 S1, S3 glucose-6-phosphate
Slc3a1 S1, S3 neutral and basic amino acids
Slc47a1 S1, S3 -
Slc4a4 S1, S3 bicarbonate
Slc6a19 S1 neutral amino acids
Slc5a12 S1 lactate
Slc5a2 S1 sodium, glucose
Slc7a7 S1 cationic amino acid, neutral amino acids
Slc7a8 S1 -
Slc22a6 S3 sodium, organic anions

Slc5a10 S3 sodium, glucose, ascorbate, choline, iodide, lipoate,
monocaroboxylates, pantothenate

Slc6a18 S3 sodium, neurotransmitters, amino acids, and osmolytes (eg.,
betaine, taurine, and creatine).

Slc5a8 S3 lactate, monocarboxylates, short-chain fatty acids, sodium
Slc43a3 EnC -
Slc9a3r2 EnC sodium, hydrogen

Table 3. SLC25 Family list.

Gene As DEG in Substrate

Slc25a25 DLH, Mac ATP, Ca2+

Slc25a5 DLH, CD-PC, EnC, B cell adenine nucleotide
Slc25a51 DLH NAD

Slc25a16 DLH, B cell, EnC nucleotide
Slc25a3 DLH, CD-PC, EnC phosphate
Slc25a15 B cell, EnC L-arginine, L-lysine, L-ornithine
Slc25a4 B cell, CD-PC ATP/ADP antiporter
Slc25a42 DLH adenylic acid, coenzyme A
Slc25a30 CD-PC C4-dicarboxylate, sulfur compound
Slc25a39 DLH, B cell, CD-PC, Mac glutathione

Slc25a10 DLH, B cell, Mac dicarboxylic acid, malate, oxaloacetate, phosphate
ion, succinate, sulfate

In addition to the members of the SLC25 family, there were 70 SLC superfamily mem-
bers belonging to DEGs between HDCs and DDCs (Table 4 and Figure S6C). This expands
the differences in material transport. Slc27a2 (long-chain fatty acid), Slc5a8 (short-chain fatty
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acids), Slc10a2 (bile acid-sodium), Slc51b (bile acid) and Slco1a6 (bile acid) involved in lipid
transport can be observed as DEGs. In terms of carbohydrate transporters, Slc5a10 (glucose),
Slc5a2 (glucose), Slc2a5 (fructose, glucose), Slc2a2 (glucose), Slc37a4 (glucose-6-phosphate),
Slc2a4 (glucose), Slc2a1 (glucose), Slc35a1 (pyrimidine nucleotide-sugar) and Slc35a4 (pyrim-
idine nucleotide-sugar) were observed in DEGs of the corresponding cell types. Amino
acids and their derivatives transporters also contained a large amount of DEGs, such as
Slc6a18, Slc7a13 (L-cystine, L-glutamate, aspartate), Slc3a1 (neutral and basic amino acids),
Slc7a12, Slc6a13 (taurine), Slc38a2 (L-glutamine, L-serine), Slc38a3 (L-glutamine), Slc6a19
(neutral amino acids), Slc6a6 (β-alanine, taurine) and Slc1a1 (aspartate, glutamate, chloride,
cysteine). These findings suggested that the SLC superfamily contributed significantly to
the heterogeneity of DDCs and HDCs through the transport of metabolites, which may
affect the mitochondrial homeostasis in the progress of DKD.

Table 4. DEG of SLC superfamilies (except SLC25) in HDCs and DDCs of DLH, CD-PC, EnC, B cells,
and Mac.

Gene As DEG in Substrate

Slc27a2 B cell, EnC, Mac long-chain fatty acids

Slc6a18 DLH Sodium, neurotransmitters, amino acids, osmolytes (e.g., betaine,
taurine, and creatine).

Slc34a1 DLH, CD-PC, EnC, B cell,
Mac sodium-phosphate

Slc4a4 DLH, B cell. EnC, Mac bicarbonate
Slc7a13 DLH L-cystine, L-glutamate, aspartate
Slc23a1 DLH, B cell vitamin C
Slc3a1 DLH, EnC, B cell neutral and basic amino acids
Slc7a12 DLH amino acid
Slc47a1 DLH, EnC, B cell L-arginine
Slc17a1 DLH, EnC, B cell, Mac sialic acid
Slc5a8 DLH, EnC, Mac lactate, monocarboxylates, short-chain fatty acids, sodium
Slc13a1 DLH, EnC, B cell. Mac sodium-sulfate symporter
Slc9a3r1 DLH dopamine receptor, phosphatase
Slc16a9 DLH, EnC, Mac carnitine, monocarboxylic acid, creatine
Slc12a3 DLH, CD-PC, sodium, chloride
Slc22a12 DLH, EnC, B cell, Mac urate

Slc6a13 DLH taurine, amino acid, creatine, gamma-aminobutyric acid,
monocarboxylic acid, neurotransmitter

Slc5a10 DLH, EnC, Mac sodium, glucose, ascorbate, choline, iodide, lipoate, pantothenate
Slc22a1 DLH, EnC, B cell organic cation
Slc22a18 DLH, EnC organic anion, ubiquitin protein ligase
Slc10a2 DLH bile acid-sodium
Slc5a2 DLH, B cell, Mac Sodium, glucose
Slco3a1 DLH, B cell Oligopeptide, sodium-independent organic anion, prostaglandin
Slc17a3 DLH intracellular urate and organic anions
Slc5a12 DLH, B cell lactate
Slc2a5 DLH, Mac fructose, glucose
Slc22a13 DLH nicotinate, urate
Slco4c1 DLH sodium-independent organic anion
Slc2a2 DLH, B cell, Mac glucose
Slc6a20b DLH, B cell L-proline
Slc15a2 DLH dipeptide, oligopeptide
Slc29a3 DLH, Mac nucleoside
Slc22a6 DLH, EnC, B cell, Mac sodium, organic anions
Slc22a30 DLH, B cell short-chain fatty acid
Slc38a3 DLH L-glutamine, L-histidine
Slc16a2 DLH, EnC B cell monocarboxylic acid, thyroid hormone
Slc16a4 DLH, Mac monocarboxylic acid
Slc51b DLH bile acid
Slc23a3 DLH vitamin C, sodium
Slco1a6 DLH, B cell, Mac bile acid, sodium-independent organic anion
Slc38a2 DLH L-glutamine, L-serine
Slco4a1 DLH sodium-independent organic anion, thyroid hormone
Slc22a23 DLH NA
Slc12a2 DLH K+, Hsp90, ammonium, sodium-potassium-chloride
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Table 4. Cont.

Gene As DEG in Substrate

Slc4a7 B cell sodium-bicarbonate symporter
Slc30a9 B cell, Mac monatomic cation, nuclear receptor
Slc6a19 B cell, Mac neutral amino acids
Slc37a4 EnC, B cell, Mac glucose-6-phosphate
Slc22a8 B cell, Mac organic anions
Slc4a7 B cell sodium-bicarbonate symporter
Slc39a1 B cell Zn2+

Slc13a3 EnC, B cell, Mac succinate and other Krebs cycle intermediates
Slc26a2 B cell bicarbonate, chloride, oxalate, sulfate
Slc12a7 B cell ammonium, potassium-chloride symporter
Slc8a1 CD-PC Ca2+

Slc25a30 CD-PC C4-dicarboxylate, sulfur compound
Slc2a4 CD-PC glucose, insulin-responsive glucose-proton symporter
Slc6a6 CD-PC beta-alanine, taurine
Slc2a1 CD-PC glucose, dehydroascorbic acid, long-chain fatty acid
Slc44a1 CD-PC, EnC choline
Slc35a1 EnC CMP-N-acetylneuraminate, pyrimidine nucleotide-sugar
Slc39a3 EnC Zn2+

Slc35a4 Mac pyrimidine nucleotide-sugar
Slc7a8 Mac glycine
Slc35f5 Mac NA
Slc16a1 Mac Lactate, carboxylic acid, succinate
Slc22a5 Mac carnitine, nucleotide
Slc9a3 Mac Na+-H+, K+-H+

Slc20a2 Mac inorganic phosphate
Slc1a1 Mac aspartate, glutamate, chloride, cysteine

NA—not available.

2.6. Differential Expression of ESDEGs Was Controlled by a Hierarchical Receptor-TF-TG
Regulatory Network Formed in Cell Communication

To further discover the biological insight of ESDEGs, the enrichment analyses of Bio-
logical Process, Molecular Function and Cell Component in Gene Ontology (GO) for these
exclusive ESDEGs were performed and the 10 most significant pathways (if sufficient) for
each cell type are shown (Figure 6A). Among them, the ESDEGs of DLH were enriched in
the pathways, including wound healing, cell-substrate adhesion and regulation of actin
filament-based process. For CD-PC, in addition to the enrichment of wounding-related
pathways, epithelial proliferation-related pathways, and negative regulation of cell projec-
tion organization, the presence of negative regulation of phosphorylation might indicate
that mitochondrial function had been disrupted. The same is true for the enrichment path-
ways of EnC, with the difference mainly reflected in the emergence of pathways related to
the metabolism of amino acids, organic acids, carbohydrates, purines and other substances.
In addition, these two pathways related to antigen presentation, namely antigen processing
and presentation of peptide antigen via MHC class II and antigen processing and presenta-
tion of peptide or polysaccharide antigen via MHC class II, were enriched in B cells and
pathways related to organic hydroxy and vitamin metabolism also appeared. Similar to
B cells, the antigen processing and presentation of peptide antigen via the MHC Class I
pathway was enriched in Mac, and the amino acid, sulfur compound, organic hydroxy and
other metabolic pathways are still enriched in Mac. The GO pathways enriched by ESDEGs
in these cells were similar to each other in the metabolism pathways, but each pathway has
its own unique function.
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Figure 6. Gene ontology enrichment analysis of ESDEGs and prediction of the cell communication
pathway. (A) Gene ontology enrichment analysis (based on the principle of hypergeometric distri-
bution) network diagram of ESDEGs produced by clusterProfiler and CNBplot. The color of the
outer dot represents the foldchange of ESDEGs in DDCs compared to that in HDCs, while the size of
the inner dot represents the number of genes enriched into this pathway. (B) Comprehensive cell
communication of each cell type in the DKD group was obtained by Cellchat package calculation and
its built-in ligand-receptor information. The color of the string represents the type of cell from which
the communication pathway originated, and the length of the arc represents the number of cells
involved in the corresponding pathway. (C) Each cell type in the DKD group was involved in the
incoming and outgoing cell communication to varying degrees. The size of the bubble represents the
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actual number of cells involved in communication. (D) The two heat maps respectively showed the
relative strength of 46 incoming (left) and outgoing (right) cell interactions of each cell type in the
DKD group. The bar chart at the top showed the total relative strength of the corresponding cell type
in each of the 46 signaling pathways. (E) The volcano diagram showed the q value and fold change of
ESDEGs as ligand or receptor for DDCs of B cells, CD-PC, DLH, EnCs and Mac compared to HDCs
included in cell communication pathways.

According to the results of cell communication prediction, 46 pathways and 90 ligand-
receptor interactions were summarized in Figure 6B,D and Figure S7. We found that DDCs
and HDCs of B cells might play different roles in the incoming interaction strength. Besides,
the DDCs and HDCs of DLH, EnC and CD-PC showed differences in incoming and outgo-
ing to a certain extent (Figure 6C). Subsequently, the different cell communication pathways
(DCCPs) contained the corresponding ESDEGs as the receptor of the incoming pathway
or the ligand of the outgoing pathway in these five cell types (Table 5 and Figure 6E).
Among the 10 subclusters, only the HDCs of EnC, DDCs of EnC and DDCs of Mac did not
contain DCCP when acting as the target, while DLH contains DCCP whether in HDCs or
DDCs (Table S6). The DCCP in various cell species included APP, COLLAGEN, AGRN,
JAM, LAMININ, etc. Most of them were found to be related with DKD or immunity [10],
except AGRN communication pathway. For example, the COLLAGEN pathway is widely
believed to be related to collagen deposition in kidney, and this pathway may lead to the
occurrence of renal fibrosis in chronic kidney disease (CKD) and DKD [15]. TGF-β, as a
well-known cytokine related to immune regulation, is widely expressed in renal tissues and
involved in a variety of DKD characteristics such as extracellular matrix deposition, renal
fibrosis, glomerular basement membrane expansion, and TGF-β pathway appeared as DCP
when the DDCs of EnC and B cells acted as the source [15]. Among these, DCCP, ANGPTL
(target is DLH), ncWNT (target is CD-PC) and JAM (targets are CD-PC and Mac) receptor
genes exist as ESDEGs in four corresponding target cell types (Figure 7A and Table 5).

Table 5. ESDEG involved in corresponding cell communication.

Cluster Role in Communication Pathway DEG

DLH_HDC Source WNT, COLLAGEN, AGRN,
APP, L1CAM

Wnt7b, Col4a3, Col4a4, Col4a5, Agrn,
App, L1cam

DLH_DDC Source EGF, COLLAGEN, AGRN, APP Egf, Fgf1, Col4a3, Col4a4, Col4a5, Agrn, App
CD-PC_HDC Source KIT, COLLAGEN, APP, JAM, F11r Kitl, Col4a4, App
CD-PC_DDC Source KIT, COLLAGEN, APP, JAM Kitl, Col4a4, App, F11r
EnC_HDC Source VEGF, VISFATIN, COLLAGEN Vegfa, Nampt, Col4a4
EnC_DDC Source TGFb Tgfb1
B cell_HDC Source MHC-II H2-Ab1, H2-Ob
B cell_DDC Source TGFb, MHC-II, SELL Tgfb1, H2-Ab1, H2-Ob, Sell
Mac_HDC Source MIF, SPP1, COLLAGEN, JAM Mif, Spp1, Col4a3, F11r
Mac_DDC Source MIF Mif

DLH_HDC Target ANGPTL, COLLAGEN, FN1,
AGRN, LAMININ Sdc4, Dag1

DLH_DDC Target ANGPTL, COLLAGEN, FN1,
AGRN, LAMININ Sdc4, Dag1

CD-PC_HDC Target ncWNT, JAM Fzd7, F11r
CD-PC_DDC Target JAM F11r
EnC_HDC Target NULL NULL
EnC_DDC Target NULL NULL
B cell_HDC Target APP Cd74
B cell_DDC Target APP Cd74
Mac_HDC Target JAM F11r
Mac_DDC Target NULL NULL
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Figure 7. Incoming cell communication pathways, including ESDEGs between DDCs and HDCs of
DLH, CD-PC, B cells and Mac, which regulate downstream TF and TG. (A) Chords of five incoming
cell communication pathways containing corresponding cell receptors as ESDEGs. The color of
the string represents the type of cell from which the communication pathway originated, and the
length of the arc represents the number of cells involved in the corresponding pathway. (B) The
three-layer ring heat map shows the co-expression coefficient (Spearman) between target gene and
transcription factor, transcription factor and receptor from the outside to the inside. The outermost
content marks the location of ESDEGs in the mouse genome, and the five chromosomes that contain
the most ESDEGs are highlighted in blue (if sufficient).
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We further constructed the inferred gene regulatory network by SCENIC [16]. There
were many effective regulons and differences between the DDCs and HDCs of five cell
types (Figure S8). Among them, Sdc4 of DLH drove 8 downstream transcription factors
(TF), resulting in fluctuations in the expression of 167 downstream target genes (TG). As
the receptors, Fzd7 and F11r regulated 115 TG by 29 TF in CD-PC while F11r regulated 8 TF
to cause a fluctuation in 170 TG of Mac. As an important marker of B cells, Cd74 acted as a
receptor to regulate 31 TF and affected the expression of 286 downstream TF (Figure 7B).
The complete regulatory networks and correlation of TF and TG downstream regulated
by ESDEG receptor of these four cell types suggested that fluctuations of ESDEG were
actuated by DCCP in corresponding cell (Figures 5A and S9).

To understand the biological processes are controlled by these ESDEG receptors
through TF, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
on the regulon containing more than 50 TG (Figures 8A and S10A). DLH demonstrated
the regulation of actin and cell adhesion gene sets resulting from the regulation of Sdc4.
CD-PC contained abundant TF downstream of F11r and Fzd7. TF regulated by Fzd7 mainly
mediate epidermis development, epidermal cell differentiation and establish or maintain
the cell polarity, extrinsic apoptotic signaling pathway, epidermal cell differentiation and
other pathways. This implicated that the DDCs of CD-PC might be subject to the regulation
of cell fate. Fzd7 is highly expressed in renal mesenchymal during renal development and is
one of the markers of renal stem cells [17]. Repressor of Fzd7 may lead to cell apoptosis and
death [18]. Meanwhile, the cell cycle prediction by using a cell cycle signature demonstrated
that the proportion of G2M phase in DDCs of CD-PC during the active cell cycle was
significantly lower than that of HDCs (Figure 8B), and the G2M score showed the same
trend (Figure 8C). Intriguingly, the cibersort score of DDCs in CD-PC was significantly
lower than that of DKD group in the same hyperglycemic diabetes mellitus (DM) group,
whose urinary albumin-to-creatinine ratio (UACR) did not meet the DKD standard, while
the HDCs of CD-PC showed the opposite trend (Figure 8E–G). After treatment with HKC,
ARB, and SGLT2i, the cell ratio in the scRNA-Seq data showed that HKC and ARB could
prevent the increase of DDC ratio in CD-PC, while SGLT2i could not (Figure 8D). In B cells,
the KEGG pathways regulated by Cd74 were mainly involved in ribosomes, endoplasmic
reticulum and related to protein synthesis. As a pro-inflammatory factor, the activation
of Cd74 in B cells implies that it is induced to enter the S phase of cell cycle and improves
the ability to synthesize DNA [19]. In the current study, we observed a corresponding
phenomenon in the cell cycle prediction. The DDCs of B cells contained more S-phase cells
(Figure S10B) and obtained a higher S phase score (Figure S10C) than that of HDCs. Besides,
whether it is SGLT2i, ARB, or HKC, the HDC level of the B cells can be significantly recovered
(Figure S10D). For Mac, the downstream genes mainly exhibited the significant enrichment
pathways regulated by F11r in the binding of Cd8, β-2-microglobulin, TAP1, TAP2 and other
molecules and protein metabolism (Figure S10A). Taken altogether, the data suggested that
the HDCs and DDCs were distinctly regulated by DCCP and ligand-receptors.
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Figure 8. The cascaded regulatory network of receptors, TF and TG resulted in the regulation of
specific KEGG pathways and cell state of HDCs and DDCs. (A) The complex heat map showed the
distribution of HDCs and DDCs of CD-PC as well as the expression of ESDEG with the progression
of pseudotime. The four columns of left annotation from left to right are kmean clustering tree, the
fold change of ESDEG to HDC in DDC, receptor and TF, respectively. More than 50 genes belonging
to the same transcription factor will be enabled for KEGG enrichment analysis and shown in the
word cloud annotation on the right. (B) Pie charts of cell cycle distribution of two subpopulations of
CD-PC in the DKD group. The G2M phase cells of CD-PC_HDC were significantly higher than those
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of CD-PC_DDC. (C) The G2M score calculated by cell cycle signatures was significantly higher in CD-
PC_HDC than in CD-PC_DDC. The S-phase score calculated by cell cycle signatures was significantly
higher in B cell_DDC than in B cell_HDC. (**, p < 0.01, t test). (D) The distribution of HDCs and DDCs
in B cells in the ARB, SGLT2i and HKC groups was predicted by singleR. (E,F) At the 16th week,
db/db mice were used to measure BG (E) and UACR (F). Mice with high BG (>16.7 mmol/L) but no
proteinuria (UACR < 30 ng/µg) were divided into the DM group, and mice with high blood glucose
(BG) and proteinuria (UACR > 30 ng/µg) were divided into the DKD group. (G) Cibersort score of
HDCs and DDCs of CD-PC inferred by TPM value of bulk RNA-Seq.

3. Discussion

In the current study, we have uncovered that the mitochondrial contents in the kidney
were not consistent within the cell types. Instead, the mitochondrial contents showed the
distinct trends in different parts of the nephron and infiltrative IC, and the fold changes of
mitochondrial content were significantly decreased in DSRC and IC of DKD than what in
PTCs (Figure 3D). Subsequently, DRSC demonstrated the most differences in mitochondrial
transcriptome. Therefore, our study has provided evidence that the different cell types of
kidney may have the different degrees of mitochondrial stress.

The heterogeneity among various renal cell types in DKD may not only be inherent but
also pathological. To verify the occurrence of normal-like subpopulation among the renal
cell of DKD, we have assuredly identified two cell subsets (HDC and DDC) in DLH, CD-PC,
EnC, B cells and Mac by scoring 151 mitochondria-related pathways. The differential genes
between DDCs and HDCs overlap with the differences between DKD and Ctrl groups to
a certain extent, and these overlaps have an intensively positive correlation (Figure 4C).
Furthermore, the enrichment results showed that the overlap genes can be divided into
DCP (Figure 4F). Although MANGs were excluded when the intersective genes were
enriched to DCP, we have demonstrated that several pathways, especially oxidation and
metabolism pathways, may be indirectly related to mitochondrial function in current
research. For instance, both ROS elimination and ROS GSEA pathways were observed
in the five cell types, suggesting that the excessive production of ROS in DKD would
lead to oxidative stress in the microenvironment to stimulate the expression of TGF-β [15],
and further cause the mitochondrial morphological deterioration, apoptosis, extracellular
matrix degradation, mesangial dilation, glomerular basement membrane thickening, renal
tubule fibrosis and other characteristics (Figure 1). Indeed, we have detected the emergence
of apoptosis, TGF-β, NFκB, epithelial-mesenchymal transition (EMT) and other related
pathways (Figure 4F). In addition, the metabolic pathways related to amino acids, glucose,
fatty acids and their derivatives were also enriched. As we have previously reported, there
are indeed metabolite differences in the peripheral blood of db/db mice with DKD [20].
These disorders in carbohydrates, amino acids and fats could be further observed in the
kidneys, which is not just limited in the peripheral blood. Carbohydrates and lipids, as the
principal energy sources, may have varying availabilities in different types and phases of
cells. In healthy renal tubulointerstitium, ATP is produced by the oxidation of free fatty
acids and ketones, except for glomerulus [3]. Under the induction of diabetic high glucose
environment; however, the damaged renal tubules may undergo metabolic transformation
from oxidative phosphorylation of lipid metabolism to glycolysis, which will further lead to
lipid accumulation. This will cause further oxidative impairment in renal stromal cells, and
the accumulation of lipid in Mac will inhibit the autophagy of macrophages, thus inhibiting
their ability to transform from M1 (immune activation) to M2 (immunosuppression), and
ultimately leading to the increase of local inflammation activity [21]. Based upon the
ssGSEA score of mitochondria-related DKD pathways, we have demonstrated that the
glucose and lipid metabolism-related pathways are regulated differently across distinct
cell types. Metabolism carbohydrate, fatty acid β oxidation, glycolysis, OXPHOS, and
TCA cycle exhibited a consistent trend between HDCs and DDCs, and all of them were
up-regulated in the DDCs of DLH and CD-PC, while down-regulated in the DDCs of
EnC, B cells, and Mac. Thereby, DLH and CD-PC but not EnC, B cells, and Mac may
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attribute to the role of substance transport within the kidney. These findings prove that the
metabolism consisted with renal cell function and both of them showed a heterogeneity
trend in DKD progress.

DEGs in the members of SLC superfamilies may explain the metabolic disorder in
kidney (Figure S6). In the current study, we found that the expression levels of SLCs
in mitochondria, including Slc25a3, Slc25a4, Slc25a5 and Slc25a30, were significantly up-
regulated in the DDCs of CD-PC (Figure S6C) and might lead to an increase in ROS and
enable the latter to act as a signaling molecule to activate tubular cell apoptosis in DKD [22].
The increase of ROS content and up-regulation of apoptosis could be found in both ROS
staining (Figure 1C) and ssGSEA score (Figure 5E). In addition to mitochondrial SLCs,
we found that professional carbohydrate and lipid SLCs were mostly up-regulated in the
DDCs of DLH and CD-PC (Figure S6C). The kidney has the highest resting metabolic rate in
the body. The elevation of these SLCs is consistent with the observed elevation of ssGSEA
score in the carbohydrate metabolism, gluconeogenesis, glycolysis, fatty acid oxidation,
lipid metabolism, and fatty acid oxidation pathways in the DDCs of DLH and CD-PC
(Figure 5E). A previous study has demonstrated that, even though the renal system intakes
a large amount of glucose in DKD, the proportion utilized for aerobic oxidation is reduced
instead. This shift towards the overactivated glycolysis breaks the metabolic balance,
leading to oxidative stress and subsequent kidney damage [21]. Herein, we speculate that
the oxidative stress damage of mitochondria may be caused by abnormal transport from
the cytoplasm to mitochondria.

The potential of SLCs as targets in treatment of DKD has been concerned by researchers.
Invokana (inhibitor of Slc5a2) has been used for blood glucose management to alleviate
kidney injury in type 2 diabetes patients. Slc5a2, encoding the SGLT2, is localized in
the early proximal tubule and response for 90% glucose reuptake, while high glucose
conditions increase SGLT2 levels and enhance glucose recovery in the proximal tubule
of diabetic patients. By inhibiting the activity of SGLT2, blood glucose levels can be
reduced, inflammation, fibrosis, and damage to the glomerular interstitium improved, and
proteinuria reduced by 30% to 50% [23]. In the current study, we have observed that Slc5a2
is upregulated in the DDCs of DLH compared to HDCs, while upregulation of Slc2a4 in
DDCs and CD-PC is also seen (Figure S6). Slc2a4 is another SLC member that can transport
glucose, and the knockout of this gene in podocytes can prevent glomerular hypertrophy,
mesangial dilatation, albuminuria and other symptoms in mice induced by DKD, thus
reducing the risk of DKD [24]. These members of the SLC superfamily could be potential
treatment targets of DKD.

To reveal the characteristic genes associated with DDCs outside mitochondria, we
have defined ESDEG with deleting MANGs. There are differences in RNA dynamics
between DDCs and HDCs (Figure 5A–D). A massive single nuclear RNA-Seq (snRNA-
Seq) study has documented that CD-PC, DLH, and EnCs exhibit the highest count of
differentially expressed gene in DKD progression [25]. Furthermore, GO enrichment
analysis of ESDEGs in these five cells revealed that they were belong to heterogeneous
regulatory modes (Figure 6A). ESDEGs of DLH were enriched to wound healing, regulation
of supramolecular fiber organization, cell-substrate adhesion, regulation of actin filament-
based process etc., suggesting that it may have undergone cyto-dynamics changes. CD-PC
have enriched abundant gene sets related to epithelial cell development or differentiation.
B cells and Mac exhibited metabolism-related or immune-related pathways similar to the
MHC pathways. Cell communication and TF prediction allow us to understand how
these intricate pathways regulate complex biological network by controlling downstream
TF and TG with a very small number of receptors (Figure 7). For instance, Fzd7 codes a
surface labeled molecule, and is expressed as a marker of progenitor cells or stem cells in
mammalian renal mesenchymal [17]. As a receptor of ncWNT pathway, Fzd7 was found
to be significantly decreased in DDCs of CD-PC. It controlled the cell polarity of CD-PC
through a total of 25 transcription factors such as EGR1, EP300, ESR1, ETV1, etc. (Figure 7B),
resulting in the decreased developmental ability in the DDCs of CD-PC and showed a
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decreased proportion of G2M phase cells in the cell cycle. Consistent with this phenomenon,
inhibition of Fzd7 tends to imply the decreased epithelialization and increased cell death
and apoptosis [26]. F11r encodes junction adhesion molecular and plays a key role in
the adhesion of endothelial and epithelial cells and is relevant to angiogenesis, immune
response, and maintenance of vascular permeability. This gene ontology and TF regulatory
network showed a similar trend in HDCs and the DDCs of CD-PC (Figures 7 and 8). In
the lesions of chronic diseases, irreversible cell proliferation stagnation, increased protein
production, decreased anti-apoptotic ability and metabolic ability disorder often occur. For
instance, impairment of cell cycle and proliferation can be found in renal tubular epithelial
cells in CKD, HIV-associated nephropathy and polycystic nephropathy [27]. Evidence has
demonstrated that hyperglycemia and lipotoxicity lead to tubular senescence in DKD in
relation to cell death pathways such as apoptosis, autophagy, necrosis and ferroptosis [28].
In the current study, data have showed that in the DDCs of CD-PC, there was a state of
Epi development and cell cycle accompanied by the decreased expression of Fzd, which
not only corresponded to the impaired normal function of CD-PC, but also duplicated the
impaired metal ion transport ability of CD-PC in the process of DKD [10]. What excites
us is the proportion shift of DDCs and HDCs in CD-PC can not only be testified between
Bulk RNA-Seq deconvolution of DM and DKD (Figure 8G), but also be reversed by treating
with ARB and HKC. However, since SGLT2i acts on S1 PTCs, we did not find that it has a
reverse effect on the composition of DDCs and HDCs in CD-PC (Figure 8D).

The metabolic and cell cycle changes described above may further cause fibrosis and
inflammation of renal tubules. The previous study has demonstrated that M1-type Mac
play a leading role in DKD, and T cells may have an extensive synergistic effect with Mac
in DKD inflammation [10]. In the current study, we have alternately provided evidence
suggesting that B cells, except T cells, may also be driven by mitochondria and participate
in the process of DKD with Cd74 in the APP pathway (Figure 7A,B) and its interaction with
other renal cells through MHC-II, TGF-β, in the SELL pathway (Table 2 and Figure S7).
Cd74 encodes a class of MHC-II transmembrane glycoprotein molecules and plays a certain
role in the regulation of macrophage migration and T and B cell development. Cd74
receptor activity was first discovered in B cells, in which, this gene regulates cell cycle
and immune activation of B cells [29]. As an additional survival receptor for B cells, the
activation of Cd74 can induce B cells to enter the S-phase to improve their anti-apoptotic
ability and thus enhance their survival ability, which leads to the formation of B cell
libraries and the activation of immune response [19]. Therefore, the activation of Cd74 is
associated with plentiful inflammatory diseases, such as fibrosis, T1D and systemic lupus
erythematosus [30]. In the kidney, the absence of this gene is usually a significant obstacle
to glomerular injury, nephritis and renal tubule fibrosis [30]. Intriguingly, the up-regulation
of B cell DDCs caused by DKD can be reversed by SLGT2i, ARB and HKC.

There are limitations in the current study. The cells in glomerulus, including podocytes
and mesangial cell cannot be captured by scRNA-Seq, but these cells are important in renal
injury and cause of proteinuria in DKD. This is due to a combination of the peculiarity of
10X Genomics and the small number of glomerular cells in total renal cell number. Another
disadvantage of scRNA-seq is that the spatial coordinate information is lost during the
process of tissue dissociation into single-cells suspension. Further investigation of the
transcriptome map in DKD with spatial information has been taken into our consideration.

In conclusion, the current study has provided experimental evidence revealing the
heterogeneity of mitochondrial disorders in distinct cell types, particularly in the CD-PC
and B cells during the process of DKD and administration of ARB, SGLT2i and HKC. The
information is useful for the discovery of new biomarkers in DKD and the proposal of
diagnosis and treatment schemes for the disease.
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4. Methods and Materials
4.1. Animal Management

BKS.Cg-Dock7m +/+ Leprdb/J (db/db) mice (DKD group) and heterozygous db/m
mice (Ctrl group) aged 10 weeks were acquired from Huachang Xinnuo Medical Technology
Co., LTD (Taizhou, China). All experiments with mice were carried out in accordance
with the guidelines of, and were approved by, the Institutional Animal Care and Use
Committee at China Pharmaceutical University (CPU). All male mice were housed in cages
with a barrier environment (22–25 ◦C; 40–50% humidity; and 12-h light/dark cycle) and
received regular chow and water at liberty. At 16 weeks, UACR and BG were measured
as we described before [10]. Based on blood glucose and UACR results, mice in the DM
(BG > 16.7 mmol/L) and DKD (UACR > 30 ng/µg) groups were identified and four
left kidneys of each group were used for bulk RNA-Seq. At 20 weeks, the mice were
sacrificed by cervical dislocation method and the peripheral blood was removed by cardiac
perfusion with 1x phosphate buffered solution and the kidneys of both sides were collected.
The left kidney was placed in a frozen tube and stored in liquid nitrogen, and the right
kidney was uniformly cut lengthwise and placed in 4% paraformaldehyde solution and 4%
glutaraldehyde solution, respectively.

4.2. Reactive Oxygen Species, Hematoxylin-Eosin, and Periodic Acid-Schiff Stain

After the kidney was removed from the cryostorage tube, the frozen section was placed
in the Cryotome E freezing microtome (Thermo, Shanghai China). The fluorescence staining
and sealing were then performed in accordance with the specification of the D7008 ROS kit
(Servicebio, Wuhan, China). Images were collected by Fluorescent Microscopy (NIKON
ECLIPSE C1, NIKON). DAPI glows blue at a UV excitation wavelength of 330–380 nm
and emission wavelength of 420 nm; FITC glows green at an excitation wavelength of
465–495 nm and emission wavelength of 515–555 nm; CY3 glows red at an excitation
wavelength 510–560 nm and emission wavelength of 590 nm. In the Hematoxylin-Eosin
(HE)-staining process, half of the right kidneys were embedded in paraffin wax, and then
dehydration, staining, and elution were performed in accordance with the specification
of the HE-staining kit (Hunan Aifang Biotechnology CO., Ltd., Changsha, China). Finally,
the slices were sealed with neutral gum and the images were collected by AE41 optical
microscope (Motic, Shenyang, China). In the PAS-staining procedure, the section and
dewatering process after paraffin embedding was consistent with the HE procedure. The
actual use of the above PAS process was included in the G1008 PAS dye kit (Hunan Aifang
Biotechnology CO., Ltd., Changsha, China).

4.3. Transmission Electron Microscopy

The upper part of the kidney was taken from the glutaraldehyde and rinsed with 0.1 M
phosphoric acid buffer 3 times for 15 min each time. The sample was infiltrated with 1%
osmic acid solution configured with 0.1 M phosphoric acid buffer to avoid light for 7 h, and
then the phosphoric acid rinsing operation was repeated. Alcohol gradient dehydration for
1 h each: 30%, 50%, 70%, 80%, 95%, 100%, 100%. Different proportions of the mixture of
anhydrous ethanol and acetone were used for dehydration: 3:1, 0.5 h; 1:1, 0.5 h; 1:3, 1.5 h;
0:1,1 h. The samples were treated at 37 ◦C for 12 h with 812 embedding agent and then
treated at 60 ◦C for 48 h to complete polymerization. The ultrathin sectioning mechanism
was used to make sections ranging from 60 to 80 nm. After the dyeing step, the images
were collected: 2% uranium acetate saturated alcohol solution away from light, 8 min; 70%
alcohol rinse, 3 times; ultra-pure water rinse, 3 times; 2.6% lead citrate solution away from
carbon dioxide, 8 min; ultra-pure water rinse, 3 times; the filter paper absorbs excess water
and dries at room temperature for 12 h.
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4.4. ScRNA-Seq Data Preprocessing, Dimension Reduction, Clustering, Cell Annotation and
Quality Control

Renal scRNA-seq data of 4 Ctrl mice were adopted from the National Center for
Biotechnology Information (NCBI) GEO database (GSE107585) and scRNA-Seq data of
DKD kidneys were previously registered in Sequence Read Archive (PRJNA749372). The
steps of quantitative processing, quality control, filtering, clustering, and annotation after
obtaining FASTQ files of scRNA-Seq were described in our previous publications [10].
Seurat container with cell annotation information was generated, and a total of 58,259 indi-
vidual cells were obtained. After the cell annotation was completed, the DoubletFinder
(Version 2.0.3) package was used to classify the doublets and singlets by iterating the
optimal parameter of proportion of artificial nearest neighbors (pANN) based on principal
component (PC) domain size as 1 to 30. We used the find.pK() function of DoubleFinder
package to determine the optimal pANN value of proximal tubular cells (PTC) and rest
cell types as 0.1 and 0.18 respectively, and relied on the pANN value to identify double or
multiple droplets (doublets) and single droplets (singlets) under Poisson distribution.

As described in the methods above, the uniform manifold approximation and projec-
tion (UMAP) of single-cell droplet identification of PTC and other cell types are shown
in Figure S1A,B, respectively. The proportion of doublets and singlets within all PTCs
and the remaining cell types are visualized in Figure S1C,D and the count data are shown
in Supplemental Table S1. We noticed that PTCs contained abundant doublets (21.7%,
9804/45,205). Among the PTC types, S2 (2.86%, 696/24,347) had the least proportion of
doublets and S3 (50.8%, 6287/12,385) had the greatest proportion of doublets (Figure S1C).
The Double-finder was less sensitive when used for unsupervised cell clusters with similar
expression patterns [31]. We thus realized that the false positive heterotypic doublets in
S1 and S3 might be incorrectly identified. Among the DRSC, we found that Mac (62.7%,
260/415) had the highest percentage of doublets, while the ALH (0.0341%, 1/2932) had the
lowest proportion of doublets (Figure S1D). Considering these factors, we refused to discard
doublets misidentified in PTCs but did not reserve doublets in other cells for downstream
advanced analysis. Consequently, we used the Subset function in the Seurat (Version 4.0.3)
package to take out all cells in PTC and singlets of other cells for subsequent analysis. The
RunUMAP function in Seurat was re-executed and UMAP score were visualized by adding
confidence intervals via ggplot2 (Version 3.3.5).

4.5. Gene Set Scoring and Enrichment Analysis

The calculation of mitochondrial coding gene set content was performed by the Per-
centageFeatureSet() function in Seurat. After the percentage was obtained, the wilcox.test()
in R platform was used to calculate the difference. The normalized expression quantity
of each cell was used as GSVA (Version 1.44.4) input matrix and Kernel estimation of the
cumulative density function (kcdf) was calculated according to Gaussian distribution to
obtain GSVA and single sample ssGSEA scores. The inter-group difference analysis of
GSVA and ssGSEA scores was implemented by the limma (Version 3.48.3) package in R
based on empirical linear models of Bayesian methods. The p value of both differential
analysis is corrected by false discovery rate (FDR) to get the adjusted p value. Then, GSVA
significant pathways (p adjustment < 0.05 and |Log2FC| > 0.5) were selected. Linear
regressions between DEGs were calculated by lm() function based on the qr method and
visualized by ggplot2.

In the current study, DCP, GO and KEGG enrichment analyses were implemented in
ClusterProfiler (Version 4.4.4) [32] through the principle of hypergeometric distribution.
In DCP enrichment analysis, among 518 intersection genes belonging to DLH, 297 were
enriched in 33 DCP (9 pathways met the significant enrichment condition of p < 0.05), such
as the Glutathione metabolism, Taurine and hypotaurine metabolism, ROS elimination,
Biosynthesis of unsaturated fatty acids, Alanine aspartate and glutamate metabolism and
so on. While among 324 exclusive genes of DA2 in DLH, 140 of them were enriched in
27 DCP and only one pathway, named Collagen formation, was significantly enriched.
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Among 664 intersection genes belonging to CD-PC, 112 were enriched in 28 DCP (2 of
them met the significant condition), such as Glutathione metabolism, ROS elimination,
EMT, Glycolysis Gluconeogenesis and Apoptosis. While among 218 exclusive genes of
DA2 in CD-PC, 80 of them were enriched in 16 DCP and only TGF-β1 pathway was
significantly enriched. Among 115 intersection genes belonging to EnCs, 26 were enriched
in 13 DCP (ROS-GSEA and Glutathione metabolism met the significant condition). Among
510 exclusive genes of DA2 in EnCs, 145 of them were enriched in 29 DCP; however, only
the Glycerolipid metabolism and Glutathione metabolism pathways were significantly
enriched. Considering B cells, 76 of 297 intersection genes were enriched in 19 DCP
(ROS GSEA and TGF-β pathways were significantly enriched), while 245 of 563 exclusive
genes of DA2 were enriched in 25 DCP (Glutathione metabolism, Alanine, aspartate and
glutamate metabolism, ROS elimination, Nitrogen metabolism and Arginine and proline
metabolism pathways were enriched). Regarding Mac, 80 of 146 intersection genes were
enriched in 20 DCP (Apoptosis and ROS GSEA pathways were significant). While 146 of
835 exclusive genes of DA2 were enriched in 39 DCP, however, only Glycine, serine and
threonine metabolism pathway were significantly enriched (Table S5).

In the pseudotime analysis, we first took out the UMI count in the Seurat object that
conforms to the negative binomial distribution to create the CellDataSet object of monocle
(Version 2.18.0). DDRTree dimensionality reduction determined the topological structure of
data, and we then used exclusive significant difference genes (ESDEG) of corresponding
cells to guide the semi-supervised trajectory analysis while the orderCells() function was
used to determine the coordinates of the cells in pseudotime [33]. Trajectory diagram and
its color rendering was performed by the plot_cell_trajectory() function in monocle, while
at the same time, the cumulative density distribution curve generated by ggridges (0.5.3)
and t test was executed by ggsignif (0.6.3).

4.6. Cell Communication Prediction

After the normalized matrix of the DKD group in the Seurat object container is ob-
tained, the input RNA matrix was converted into a reliable protein network with STRINGdb
support using a random propagation technique through projectData() function. Then, by
referring to the ligand–receptor interactions database containing 229 signaling pathways
including secreted signaling, cell–cell contact, ECM–Receptor three types in CellChat
(Version 1.5.0), the obtained protein matrix was calculated by computeCommunProbPath-
way() function to obtain the intercellular interaction intensity to represent the possibility
of manifold-leaning inferred intercellular communication network. In order to focus
on the heterogeneity of cell subsets within DKD, five cell types including DLH, CD-PC,
EnCs, B cells and Mac, were divided according to HDC and DDC, and the rest of the
cells were not. Considering that some subsets contained only a tiny number of cells, we
did not set the minimum number of cells involved in the pathway for filtration. Con-
sequently, 46 pathways including 90 ligand receptor pairs verified by permutation test
(p-value < 0.05) were preserved. The downstream visualization of cell communication was
performed through netVisual_chord_cell (), netAnalysis_signalingRole_scatter (), netAnaly-
sis_signalingRole_heatmap (), netVisual _bubble () and so on provided by CellChat.

4.7. Transcription Factor Prediction

The single-cell transcription factor regulatory network is mainly completed by
SCENIC [16] (Version 1.3.1) and its dependent GENIE3 [34] (Version 1.18.0), RcisTarget
(Version 1.3.1) and AUCell [16] (Version 1.1.6) packages in R. To avoid artificial co-variation,
summarized counts (UMI count) were used as input data of GENIE3 (R version) to calculate
the co-expression between TF and potential target gene through random forest models.
By using motif framework of iRegulon information recorded by i-cisTarget (mm9-500bp-
upstream-7species.mc9nr.feather and mm9-tss-centered-10kb-7species.mc9nr.feather), TF-
motif enrichment analysis was carried out on sequences of 10 kb around and 500 bp
upstream from the transcriptional start site (TSS). In the results, a normalized enrichment
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score (NES) greater than 3.0 was regarded as a qualified regulon and preserved. The genetic
matrix of regulon was scored by AUCell packages, a method for area under the curve
(AUC) calculation. According to the correspondence between TF and TG in RcisTarget and
hypotaxis of receptors and TF in scMLnet [35], we constructed the regulatory network of
receptor, TF and TG. The continuous AUCell score of regulon was analyzed for difference
through the limma package, Then circlize [36] (Version 0.4.15) and plotly (Version 4.10.0)
were performed, respectively, to display top50 (if sufficient) significantly different regulon
(p value < 0.01) in annular heat map and sankey diagram.

4.8. Bulk RNA-Seq Was Deconvolved by Cibersort Using the scRNA-Seq Data

Fastq files of bulk RNA-Seq were trimmed and aligned to the reference index
(mm10 Version). Then gene counts were obtained by featureCount (Version 2.0.1) to
calculate the transcripts per million (TPM). After figuring out the top 10 marker genes of
10 sub cell cluster, deconvolution was implemented by Cibersort.

4.9. scRNA-Seq Labels Transformation

In addition to the Ctrl and DKD groups, scRNA data from the HKC treatment group
came from SRA (PRJNA991651), data of ARB and Sodium-glucose cotransporter-2 in-
hibitors (SGLT2i) treatment groups came from GEO (GSE181382). The data of all the groups
underwent the same preprocessing process and were annotated with the same cell type as
the DKD group. Finally, CD-PC and B cells of the Ctrl, HKC, ARB and SGLT2i groups were
severally transformed with labels of HDC and DDC through singleR (Version 1.10.0).
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Abbreviations

ALH Ascending loop of Henle
ARB angiotensin receptor blockers
AUC area under the curve
BG blood glucose
CD-IC Collecting duct intercalated cell
CD-PC collecting duct principal cell
CKD chronic kidney disease
CPU China Pharmaceutical University
DA different analysis
DCCP different cell communication pathway
DCP DKD-conventional pathways
DCT Distal convoluted tubule
DDC DKD-dominant Cluster
DEG differently expressed gene
DKD Diabetic kidney disease
DLH descending loop of Henle
DM diabetes mellitus
DRSC distal renal stromal cells
EMT epithelial-mesenchymal transition
EnC endothelial cell
ESDEG exclusive significant difference gene
FDR false discovery rate
GO Gene Ontology
GSVA gene set variation analysis
HDC health-dominant cluster
HE Hematoxylin-Eosin
HKC Huangkui capsule
kcdf Kernel estimation of the cumulative density function
KEGG Kyoto Encyclopedia of Genes and Genomes
KW Kimmelstiel–Wilson
Mac macrophage
MANG mitochondria-associated nuclear gene
NCBI National Center for Biotechnology Information
NES normalized enrichment score
pANN proportion of artificial nearest neighbors
PAS Periodic Acid-Schiff stain
PC principal component
PMEM percentages of mitochondrial encoding
ROS reactive oxygen species
S1 segment 1
scRNA-Seq single-cell RNA sequencing
snRNA-Seq single nuclear RNA-Seq (snRNA-Seq)
SGLT2i Sodium-glucose cotransporter-2 inhibitor
SLC solute carrier
ssGSEA single sample gene set enrichment analysis
TF transcription factor
TG target gene
TPM transcripts per million
TSS transcriptional start site
UACR urinary albumin-to-creatinine ratio
UMAP uniform manifold approximation and projection
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