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Abstract: Wintersweet (Chimonanthus praecox (L.) Link, Calycanthaceae) is an esteemed ornamental
flowering shrub known for its distinct blooming period in winter, vibrant color petals, and captivating
floral fragrance. Basic helix-loop-helix (bHLH) transcription factors (TFs) play pivotal roles as key
regulators in secondary metabolites biosynthesis, growth, and development in plants. However,
the systematic analysis of the bHLH family members and their role in the regulation of floral traits
in Wintersweet remains insufficiently understood. To bridge this knowledge gap, we conducted a
comprehensive genome-wide analysis of the C. praecox bHLH (CpbHLH) gene family, identifying a
total of 131 CpbHLH genes across 11 chromosomes. Phylogenetic analysis classified these CpbHLH
genes into 23 subfamilies, wherein most members within the same subfamily exhibited analogous
intron/exon patterns and motif composition. Moreover, the expansion of the CpbHLH gene family
was primarily driven by segmental duplication, with duplicated gene pairs experiencing purifying
selection during evolution. Transcriptomic analysis revealed diverse expression patterns of CpbHLH
genes in various tissues and distinct stages of Wintersweet flower development, thereby suggesting
their involvement in a diverse array of physiological processes. Furthermore, yeast 2-hybrid assay
demonstrated interaction between CpbHLH25 and CpbHLH59 (regulators of floral scent and color)
as well as with CpbHLH112 and CpMYB2, suggesting potential coordinately regulation of secondary
metabolites biosynthesis in Wintersweet flowers. Collectively, our comprehensive analysis provides
valuable insights into the structural attributes, evolutionary dynamics, and expression profiles of
the CpbHLH gene family, laying a solid foundation for further explorations of the multifaceted
physiological and molecular roles of bHLH TFs in Wintersweet.

Keywords: bHLH family; Wintersweet; expression analysis; protein–protein interactions

1. Introduction

Transcription factors (TFs) are pivotal regulators that orchestrate a wide range of
biological processes using the activation or repression of target gene expression [1–5]. TFs
belong to different families, such as MYBs (myeloblastosis), bHLHs (basic helix-loop-helix
transcription factors), bZIPs (basic leucine zippers), and WRKY [6–9]. Among these families,
bHLHs constitute one of the largest TF families in plants [10]. The bHLH family members
typically contain a conserved bHLH domain that consists of approximately 60 amino acids,
which is divided into two functionally distinct regions: the basic region and the helix-loop-
helix (HLH) region [11]. The basic region, which spans approximately 15 amino acids and is
situated at the N-terminus of the bHLH domain, encourages binding to the cis-elements in
DNA. On the other hand, the HLH region, composed of around 40 amino acids and located
at the C-terminus of the bHLH domain, facilitates the formation of protein complexes,
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including homodimers and heterodimers [12,13]. Additionally, in Arabidopsis thaliana (L.)
Heynh. (Brassicaceae), certain atypical bHLHs have been identified and characterized,
featuring a less conserved basic region that is essential for DNA binding [14,15].

The bHLH TFs are important regulators of various biological processes in plants,
including secondary metabolism [16–18], plant growth and development [19,20], and stress
tolerance [21–23]. The initial discovery of a plant bHLH TF was the R gene, which regu-
lates the structural genes involved in anthocyanin formation [24]. bHLH TFs engage in
interactions with MYB and WD40 repeat (WDR) TFs, forming a ternary complex known as
MBW. This MBW complex plays a regulatory role in the transcription of genes involved
in the biosynthesis of flavonoids in plants [25,26]. In blueberry fruit (Vaccinium spp.),
VcbHLHL1 stimulates anthocyanin accumulation and pigment development by interacting
with VcMYBL1 and VcWDL2 [27]. Several bHLH genes related to anthocyanin biosynthe-
sis have been functionally characterized in various plant species, such as AtTT8, AtGL3,
and AtEGL3 in A. thaliana [28] and DcTT8 in Dendrobium candidum [29]. In A. thaliana,
the HEC gene encoding bHLH TF was found to be involved in female reproductive tract
development, depending on the level of loss in HEC function, infertility, and develop-
mental abnormalities observed in plants [30]. BIGPETALp, another gene encoding bHLH
TF, regulates petal growth by interfering in postmitotic cell expansion [31]. Recent re-
search has identified AabHLH112 as a positive regulator of sesquiterpenes biosynthesis
(β-caryophyllene, epi-cedrol, and β-farnesene) in Artemisia annua L. (Asteraceae) [32]. In
Solanum lycopersicum L. (Solanaceae), knockdown of SlMYC1 resulted in the reduction
in monoterpene content in leaf and stem trichome and sesquiterpenes (β-caryophyllene
and α-humulene) in leaf trichome, while the content of β-caryophyllene and α-humulene
increased in stem trichome, indicating differential regulation by SlMYC1 [33]. Given the
complex regulation of bHLH TFs in controlling various floral traits, it is crucial to con-
tinue studying this TF family and identify additional bHLH TFs and their mechanisms
of regulation.

Chimonanthus praecox, commonly known as Wintersweet, has a long history of cul-
tivation in China, dating back over a thousand years [34,35]. It is highly valued for its
winter blooming period, bright yellow color, and intense fragrance, making it a popular
ornamental plant [34]. Notably, the unique blooming season of Wintersweet suggests a
potential for distinct molecular mechanisms governing flower development compared
to spring-blooming plants [36,37]. Additionally, variation in the floral volatile profiles
and pigment compositions among different Wintersweet genotypes further positions it as
an ideal target for exploring floral traits in ornamental plants [38,39]. The genome-wide
identification of bHLH transcription factors (TFs) holds great potential for comprehending
their biological functions. However, the knowledge on the bHLH TF family in Wintersweet
is limited, with only a few studies focusing on CpbHLH1 [18], CpTT8 [40], CpbHLH13, and
CpMYC2 [41]. To shed light on the functions of bHLH TFs in Wintersweet, a comprehensive
genome-wide study was conducted using the recently published genome database [42].
This study analyzed various aspects of the CpbHLH TFs, including evolutionary history,
chromosomal distribution, gene duplication, protein motifs, and gene structures. Further-
more, this study conducted an analysis of the expression patterns of CpbHLH genes using
transcriptome data obtained from different organs of Wintersweet plants, as well as during
various stages of flower development in two Wintersweet genotypes. The findings from
this study provide a valuable resource for future investigations exploring the intricate
relationship between CpbHLH genes and diverse floral characteristics within Wintersweet.

2. Results
2.1. Identification, Sequence Analysis, and Chromosomal Location of CpbHLHs

In the Wintersweet genome, 131 putative CpbHLH genes were identified by combining
the results of conserved domains and HMM identification. These CpbHLH genes were
renamed CpbHLH1 to CpbHLH131 based on their distribution across different chromo-
somes. Next, we analyzed the physicochemical characteristics of the putative CpbHLHs
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and found diversities in open reading frames (ORFs), protein length, molecular weight
(Mw), isoelectric point (PI), subcellular localization, and GRAVY. Specifically, the ORFs
of the CpbHLH genes ranged from 273 to 2277 bp, and their corresponding protein prod-
ucts varied in length from 90 aa to 758 aa. The molecular weight (MW) and isoelectric
point (PI) of CpbHLHs were found to range from 10218.55 to 82809.87 and 4.63 to 11.24,
respectively (Table S1). Additionally, subcellular localization predictions revealed that all
CpbHLH proteins, with the exception of CpbHLH36, CpbHLH38, CpbHLH99, CpbHLH76,
CpbHLH63, CpbHLH73, CpbHLH120, CpbHLH31, CpbHLH54, CpbHLH19, CpbHLH17,
CpbHLH18, CpbHLH121, CpbHLH103, CpbHLH80, CpbHLH122, CpbHLH82, CpbHLH9,
CpbHLH11, CpbHLH126, CpbHLH16, CpbHLH88, CpbHLH107, and CpbHLH124, were
localized within the nucleus (Table S1). The genome annotation information indicated that
the 131 CpbHLH genes were located on eleven different chromosomes, with an uneven
distribution of CpbHLH genes across each chromosome. Chromosome 3 contained the
highest number of CpbHLH genes (18), followed by chromosome 4 with 17 CpbHLH genes,
while chromosome 11 had the lowest number of CpbHLH genes (4) (Figure 1). The clustalW
alignment of the 131 CpbHLH proteins revealed that the basic region and two helix regions
of the bHLH domain were highly conserved in the CpbHLH proteins, except CpbHLH16,
CpbHLH31, CpbHLH62, CpbHLH66, CpbHLH81, CpbHLH88, CpbHLH94, CpbHLH113,
CpbHLH124, and CpbHLH126, which lacked one of these regions (Figure S1). In total, 17
amino acid residues of the bHLH domain were conserved with more than 50% consensus
ratio, and 5 of them were conserved with a consensus ratio greater than 85%. Among the 17
conserved amino acid residues, five (His-9, Glu-13, Arg-14, Arg-16, and Arg-17) constitute
the basic region, three (Leu-27, Leu-30, and Pro-32) were present in the helix 1 region, one
(Asp-43) was in the loop region, and eight (Ala-45, Ser-46, Leu-48, Ala-51, Ile-52, Tyr-54,
Lys-56, and Leu-58) were present in the helix 2 region (Figure 2).
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2.2. Evolutionary Tree Analysis of CpbHLHs

To explore the evolutionary relationships and potential functions of CpbHLHs, a
NJ phylogenetic tree was generated by aligning the full-length protein sequences of 131
CpbHLHs, 157 AtbHLHs and six functionally characterized bHLHs (PhAN1, PhJAF13, VvGL3,
PbbHLH4, AmDEL, and FhMYC2). Based on the classification system of the A. thaliana bHLH
family [43,44], all of these 294 bHLHs were grouped into 25 subfamilies in the phylogenetic
tree (Figure 3). Among these subfamilies, 23 contained CpbHLHs, including Ia, Ib1, Ib2,
II, III(a+c), IIIb, III(d+e), IIIf, IVa, IVb, IVc, IVd, Va, Vb, VII(a+b), VIIIa, VIIIb, VIIIc, IX, X,
XI, XII, and XV. None of the CpbHLH genes clustered in the XIII and XIV subfamilies. The
largest number of CpbHLH genes (16) was found in the XII subfamily, while the II and VIIIa
subfamilies had the fewest number of CpbHLH genes, with only one CpbHLH gene in each
(Figure 3). Moreover, the bHLH genes that could not cluster in any of the 25 subfamilies
were termed orphans.

2.3. Gene Structure and Protein Motif Analysis of the CpbHLHs

The intron-exon organization and the protein motifs composition of CpbHLHs were
analyzed to better understand their structure and functions. The MEME suite predicted
20 potential conserved motifs in 131 CpbHLH proteins, with motifs 1 and 2 being present
in all CpbHLH proteins, except CpbHLH31, CpbHLH62, CpbHLH81, CpbHLH124, and
CpbHLH113 which lacked one of these motifs, while the remaining conserved motifs were
found only in certain gene sequences (Figure 4B). Motif 1 and 2 make up the bHLH domain,
with motif 1 containing the basic region and helix 1 region, while, motif 2 comprising the
loop and helix 2 region (Table S4). Most members of the same subfamily shared similar
motif patterns. For instance, all members of subfamily IVc contained motifs 1, 2, 14, and 19,
while Vb subfamily members contained motifs 1, 2, and 5. Moreover, most subfamily Ia
members had motifs 10, 1, 2, 12, 4, and 9, while XI subfamily members contained motifs
3, 1, 2, 16, and 7 (Figure 4B). In addition, the number of exons ranged from 1 to 10 among
131 CpbHLH genes, with most genes having 2–8 exons, while CpbHLH79 was intronless.
CpbHLH33 was found to have the highest number of exons (10) and introns (9) among all
CpbHLH genes (Figure 4C). As expected, the majority of CpbHLH genes within the same
subfamily had similar exon/intron organizations. For instance, most members of the IX,
IVc, XI, and Vb subfamilies contained 6, 5, 7, and 2 exons, respectively (Figure 4C).

2.4. Pivotal cis-Acting Elements in the Promoter of CpbHLHs

TFs bind to cis-acting elements, which are usually located upstream of the 5′ end of a
gene and are responsible for transcriptional regulation. Thus, to investigate the patterns of
gene regulation, PlantCARE was utilized to analyze the 2 kb upstream sequence of the start
codon of the CpbHLH genes, aiming to identify potential cis-acting elements. The promoters
of all CpbHLHs exhibited a diverse range of cis-elements, which could be categorized
into several groups, including development-related/organ-specific related (AACA_motif,
CAT-box, O2-site, and so on), light-responsive elements (chs-CMA1a, GATA-motif, 3-AF1
binding site and so on), hormone-responsive elements (ABRE, AuxRR-core, GARE-motif
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and so on), stress-related elements (LTR, MBS, TC-rich repeats and so on), MYB-related
elements, MYC elements, Binding site elements, and promoter-related elements. The
presence of MRE, MBS, and MBS1 cis-acting elements in the promoter region of CpbHLH
genes suggests that MYB TFs may play a role in regulating the transcription of bHLH genes
in Wintersweet, potentially modulating the expression of downstream genes (Figure S2).
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2.5. Gene Duplication Events and Synteny Analysis of CpbHLHs

To gain insight into the expansion mechanism of the CpbHLH gene family, we utilized
Multiple Collinearity Scan (MCScanx) to examine gene duplication events in C. praecox.
A total of 61 gene duplication events were identified, resulting in the formation of gene
pairs within the CpbHLHs. Among these, five pairs (comprising 8 CpbHLH genes) were
found to have arisen through tandem duplication, which occurred on chromosomes 1, 2,
and 3 (Figure 1). Additionally, the remaining 56 pairs (consisting of 85 CpbHLH genes)
appeared to be segmental duplicates distributed across all 11 chromosomes (Figure 5A).
These findings indicate that gene duplication events likely contributed to the diversity of
the C. praecox bHLH gene family, particularly segmental duplications. In addition, all the
tandem duplicates and 55 segmental duplicats had a Ka/Ks value lower than 1, suggesting
the influence of purifying selection during the evolutionary process (Table S2). The Ka/Ks
value of 1 segmental duplicate (CpbHLH37 and CpbHLH109) could not be calculated due to
sequence divergence.
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ship of CpbHLH genes. Grey lines indicate all the syntenic relationships in the Wintersweet genome,
while the red lines represent the segmental duplicated CpbHLH genes. (B) Synteny analysis of Chimo-
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and Oryza sativa (monocotyledon) bHLH genes. The grey lines in the background depict the collinear
block between Wintersweet and other plant genomes, while the red line specifies the syntenic bHLH
gene pairs.

To explore the evolutionary relationship among bHLH genes of A. thaliana, P. tri-
chocarpa Torr. and A.Gray ex. Hook. (Salicaceae), V. vinifera L. (Vitaceae) (dicotyledon),
O. sativa L. (Poaceae) (monocotyledon), and C. praecox, collinearity analysis was carried
out to identify orthologous bHLH genes across these species. Our analysis revealed a
total of 68 orthologous gene pairs between C. praecox and A. thaliana, 187 pairs between
C. praecox and P. trichocarpa, 109 pairs between C. praecox and V. vinifera, and 96 pairs
between C. praecox and O. sativa (Figure 5B). Among the orthologous gene pairs involv-
ing C. praecox and A. thaliana, there were 48 CpbHLHs and 46 AtbHLHs, while the pairs
between C. praecox and P. trichocarpa consisted of 81 CpbHLHs and 109 PpbHLHs. Further-
more, the pairs between C. praecox and V. vinifera comprised 74 CpbHLHs and 64 VvbHLHs,
and the pairs between C. praecox and O. sativa included 62 CpbHLHs and 61 OsbHLH
genes (Table S3). Additionally, several CpbHLH genes exhibited collinearity with more
than three bHLH genes from other plant species, such as CpbHLH101 (C. praecox and O.
sativa), CpbHLH34, CpbHLH99, CpbHLH69, CpbHLH100, CpbHLH64, CpbHLH95, CpbHLH26,
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CpbHLH20, CpbHLH21, CpbHLH81, CpbHLH5, CpbHLH93, CpbHLH85, CpbHLH84, CpbHLH83,
CpbHLH30, and CpbHLH29 (C. praecox and P. trichocarpa) (Table S3).

2.6. Expression Analysis of CpbHLHs in Wintersweet

To dissect the expression patterns of CpbHLH genes in different tissues of Wintersweet,
the FPKM values of these genes were extracted from transcriptome data of four distinct
organ samples, namely roots, leaves, cotyledon, and flowers. CpbHLH genes with FPKM
values below 1 in all tissues were excluded, and the remaining genes were used to generate
an expression heatmap. Out of the 131 CpbHLH genes, 94 showed expression in at least one
of the four tissues analyzed in the transcriptome database. Cluster analysis was performed,
resulting in the classification of the 94 CpbHLH genes into seven distinct groups based
on their specific expression profiles (Figure 6A). Among 94 CpbHLH genes, few CpbHLHs
exclusively expressed in one tissue, such as CpbHLH117, CpbHLH14, CpbHLH16, and
CpbHLH6. Notably, CpbHLH82, CpbHLH87, CpbHLH88, CpbHLH17, CpbHLH67, CpbHLH73,
CpbHLH103 and CpbHLH6 showed higher expression levels in the flower tissue, while
CpbHLH114, CpbHLH57 and CpbHLH10 exhibited higher expression in leaves. Moreover,
CpbHLH32, CpbHLH14, CpbHLH16, CpbHLH70, and CpbHLH2 displayed specific expression
patterns primarily in roots (Figure 6A).

To assess the temporal expression profile of CpbHLH genes in Wintersweet flower,
six flower samples were subjected to DGE analysis, and the resulting data were analyzed
using hierarchal cluster analysis, which grouped the 77 differentially expressed CpbHLH
genes into six distinct clusters (Figure 6B). In Figure 6B, clusters 2, 3, and 4 demonstrated
low expression levels across most of the tested samples, whereas cluster 1 exhibited high
expression levels in the majority of the tested samples. Several CpbHLH genes exhibited
significant temporal expression differences during flower development, such as CpbHLH15,
CpbHLH114, CpbHLH91, CpbHLH86, CpbHLH13, CpbHLH110 and CpbHLH6 (Figure 6B) and
their expression pattern was also similar in two genotypes. The expression of these genes
peaked during the bud stages and decreased at the open flower stage during development.
However, specific CpbHLH genes exhibited significant expression differences between the
HLT015 and HLT040 genotypes during flower development. For instance, CpbHLH68
and CpbHLH87 were significantly upregulated at bud stage 2 in the HLT015 genotype
compared to the HLT040 genotype. In contrast, CpbHLH77 showed significant upregulation
at bud stage 2 and the full open flower stage in the HLT040 genotype compared to the
HLT015 genotype (Figure 6B). Furthermore, CpbHLH17 and CpbHLH112 exhibited high
expression levels at the full open flower stage in the HLT040 genotype compared to the
HLT015 genotype. Additionally, CpbHLH118 and CpbHLH66 were upregulated in the
HLT015 genotype at the full open flower stage relative to the HLT040 genotype, displaying
distinct expression patterns in both genotypes. These findings indicate that CpbHLH genes
exhibit diverse expression patterns, suggesting potential functional divergence during
flower development (Figure 6A,B).

To validate the transcriptome data, the expression of six randomly selected CpbHLH
genes was further analyzed using qRT-PCR. The qRT-PCR results revealed that the expres-
sion patterns of five genes, except CpbHLH82, during flower development were relatively
consistent with the RNA-Seq. Results (Figure 7), thereby affirming the reliability of tran-
scriptome data.
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Figure 6. Expression analysis of CpbHLH genes. (A): Tissue specific expression of CpbHLHs in roots,
leaves, flowers, and cotyledons. (B): Temporal expression profile of differentially expressed CpbHLHs
in developing flowers of two Wintersweet genotypes flower. S1: green bud, S2: bud turning yellow,
and S3: open flower.
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2.7. Protein–Protein Interaction

Interactions among bHLH TFs and other TFs play a crucial role in the regulation of
various biological processes. To investigate the potential interactions, yeast cells were
transformed with different combinations of binding domain (BD) and activation domain
(AD) fusion constructs. The yeast cells carrying BD-empty+AD-CpMYB2, BD-empty+AD-
CpbHLH25, BD-empty+AD-CpbHLH59, and BD-empty+AD-empty did not exhibit any
growth or interaction on SD/-Leu-Trp-His-Ade+3-AT+X-α-gal medium (Figure 8). In
contrast, yeast cells carrying BD-CpbHLH25+AD-CpMYB2, BD-CpbHLH59+AD-CpMYB2,
BD-CpbHLH59+AD-CpbHLH25, BD-CpbHLH112+AD-CpbHLH25, BD-CpbHLH112+AD-
CpbHLH59, BD-CpbHLH112+AD-CpMYB2, BD-CpMYB2+AD-CpbHLH112, and BD-
CpbHLH25+AD-CpbHLH112 displayed growth and turned blue (Figure 8), demonstrating
the potential interactions between the tested TF pairs.
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Figure 8. Evaluation of interactions between CpbHLH25, CpbHLH59, CpbHLH112, and CpMYB2
via Yeast two-hybrid system. SD/-Leu-Trp: Synthetic dropout media without leucine and tryptophan;
SD/-Leu-Trp-His: Synthetic dropout media without leucine tryptophan and histidine; SD/-Leu-Trp-
His-ade+3-AT+ X-α-Gal: Synthetic dropout media lacking leucine tryptophan, histidine and adenine
but contain 3-amino-1,2,4-triazole and X-α-Gal.

3. Discussion

The bHLH genes have demonstrated their involvement in a diverse range of physiolog-
ical and biochemical processes (signaling, defense against stress, biosynthesis, and growth
and development) in plants [18,20,45–47]. However, there has been limited research on the
bHLH gene family in Wintersweet, with only a few specific genes (CpbHLH1, CpTT8, Cp-
MYC2, and CpbHLH13) being functionally characterized [18,40,41]. The recent publication
of the Wintersweet genome [42] has provided an opportunity to conduct a comprehensive
analysis and characterization of the bHLH gene family at the genome level. Here, we
identified 131 members belonging to the bHLH gene family in the Wintersweet genome.
Interestingly, the number of bHLH genes in Wintersweet was found to be lower than those
in A. thaliana (162) [11], O. sativa (183) [48], and Malus domestica (Suckow) Borkh. (Rosaceae)
(175) [49] but higher than Prunus avium L. (Rosaceae) (66) [50] and Carthamus tinctorius L.
(Asteraceae) (41) [51]. The variation in the number of bHLH genes among different species
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may be attributed to events such as genome/gene duplication or differences in genome
size [52–54].

The classification of bHLH genes in plants varies across different species. For example,
in Prunus mume (Siebold) Siebold and Zucc. (Rosaceae), 100 PmbHLH genes were catego-
rized into 21 subfamilies, while in Camellia sinensis (L.) Kuntze (Theaceae), 134 CsbHLHs
were divided into 17 subfamilies [55,56]. In our study, the CpbHLH genes clustered into
23 subfamilies and lacked members in XIII and XIV subfamilies (Figure 3), suggesting
the possible loss of these genes during the evolution of Wintersweet. Further analysis of
protein motifs and gene structures revealed similarities among most of the CpbHLH genes
within the same subfamily, indicating their shared evolutionary origins and potentially
similar physiological functions (Figure 4). The conservation of protein motifs 1 and 2, which
constitute the DNA binding and protein dimerization region of the bHLH domain [57,58],
was observed across CpbHLH genes. However, the composition of the remaining motifs was
unique and conserved within subfamilies (Figure 4B). These variations in conserved motifs
facilitate the categorization of proteins into subfamilies and reflect the specific functions
carried out by each subfamily [59]. Moreover, insight into the evolution of gene families
can be gained by analyzing gene structure [60]. CpbHLH genes exhibit variation in the
number of introns ranging between 0 and 10, indicating the possibility of intron gain and
loss that may contribute to the variation among CpbHLH subfamilies (Figure 4C).

Gene duplication events are crucial in the evolutionary process and contribute to the
generation of new genes [61–64]. These events have greatly facilitated the diversification of
gene families [65]. In the case of CpbHLH genes, we identified five gene pairs that were
tandem duplicates (Figure 1), while 56 gene pairs were the result of segmental duplications
(Figure 5A). This indicates a significant contribution of gene duplication events, particularly
segmental duplications, as a driving force behind the expansion of the CpbHLH gene family
during evolution. Similar patterns have been observed in the bHLH gene families of P.
mume and Fagopyrum tataricum (L.) Gaertn. (Polygonaceae) [56,66]. The Ka/Ks ratios
of these duplicated gene pairs of CpbHLH suggested that this gene family experienced
purifying selection, a clear indication of highly conserved evolution. In the collinearity
analysis, we found that CpbHLH genes showed a high level of collinearity with P. trichocarpa
bHLH genes, followed by V. vinifera, O. sativa, and A. thaliana, indicating that these bHLH
genes probably descended from a common ancestor (Figure 5B). Moreover, the presence of
a few collinear genes across the genomes of all the tested plants suggests that these genes
may hold significant importance in the evolutionary dynamics.

To comprehensively investigate the function of the bHLH family in Wintersweet,
we performed an in-depth analysis of the expression patterns of CpbHLH genes across
various tissues. A total of 94 CpbHLH genes were found to be expressed in at least one
tissue, and their expression levels varied greatly across tissues (Table S8). Some CpbHLH
genes exhibited high expression levels in specific tissues, indicating potential roles in
those tissues’ development (Figure 6A). Considering the conserved properties of gene
families, the putative functions of CpbHLH genes could be predicted based on their orthol-
ogous genes [67]. The combination of phylogenetic tree and expression analyses served
as a foundation for further investigations. Notably, the expression levels of CpbHLH87,
CpbHLH82, CpbHLH88, CpbHLH6, CpbHLH17, CpbHLH73, CpbHLH103, and CpbHLH67
genes were higher in flowers compared to other tissues (Figure 6A), suggesting their poten-
tial importance in flower development. For instance, CpbHLH73 clustered with AtbHLH24
(SPATULA) in the VII(a+b) subfamily (Figure 3), and it has been reported that AtbHLH24
regulates organ morphogenesis (carpel development) [19]. Moreover, the transcript abun-
dance of CpbHLH114, CpbHLH57, and CpbHLH10 was highest in leaves (Figure 6A). In
the phylogenetic tree, CpbHLH114, CpbHLH57, and CpbHLH10 clustered with AtbHLH97,
AtbHLH45, and AtbHLH98 in the Ia subfamily, which regulates the stomata development in
Arabidopsis [68], suggesting a potential similar function in Wintersweet.

Next, we delved deeper into the expression profile of CpbHLH genes during the de-
velopment of Wintersweet flowers, aiming to gain insights into their roles in Wintersweet
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flowers. In total, 97 CpbHLH genes were expressed in at least one stage of flower devel-
opment, with 77 differentially expressed genes and 20 genes showing stable expression
across three flower development stages in two Wintersweet genotypes (Tables S6 and S7),
indicating the potential involvement of CpbHLH genes in Wintersweet flower development.
Particularly, CpbHLH86, CpbHLH15, and CpbHLH110 exhibited differential expression with
high levels during the early stages of flower development, and the expression levels of
these genes, especially CpbHLH15 and CpbHLH86, were similar in both genotypes, sug-
gesting conserved functions in Wintersweet (Figures 6B and 7). In the phylogenetic tree,
CpbHLH110 clustered with AtbHLH10, AtbHLH89, AtbHLH91, and AtbHLH138 in subfamily
II, while CpbHLH15 closely clustered with AtbHLH21 in subfamily III (a+c) (Figure 3). These
genes have been reported to be required for anther development in Arabidopsis [69,70]. Fur-
thermore, CpbHLH86 clustered with Cryptochrome interacting bHLHs (CIBs) in subfamily
XII, which act as positive regulators in CRY2-mediated flowering time in Arabidopsis [71],
suggesting a potential role for CpbHLHs in a similar process in Wintersweet.

CpbHLH118, CpbHLH66, and CpbHLH96 clustered with AtbHLH1, AtbHLH2, AtbHLH12,
and AtbHLH42 in IIIf subfamily (Figure 3), which have been associated with anthocyanin
and proanthocyanidin biosynthesis, trichome formation and root hair patterning [72–74]. In
this study, CpbHLH118, CpbHLH66, and CpbHLH96 showed differential expression during
flower development, and their expression patterns also differed between the two geno-
types. Specifically, CpbHLH118 and CpbHLH66 exhibited a descending expression trend
during flower development in HLT040 genotype (dark yellow petals), while in the HLT015
genotype (red middle petals), their expression significantly upregulated at the open flower
stage compared to HLT040 genotype (Figure 6B), This suggests that they may play a role in
regulating floral color variation between the two genotypes. Previous studies have demon-
strated that CpbHLH1 (referred to as CpbHLH118 in this study) and CpTT8 (referred to as
CpbHLH96 in this study) act as negative and positive regulators of anthocyanin biosynthesis,
respectively [18,40]. CpbHLH66 shares sequence similarity with CpbHLH118 but lacks the
DNA binding region. However, it contains the conserved amino acid residues in helix
regions required for dimerization, suggesting that CpbHLH66 may form heterodimers with
other transcription factors to enhance or repress their activity. Additionally, CpbHLH87,
CpbHLH77, and CpbHLH17 also showed differential expression during flower development
and between the genotypes. CpbHLH87 showed a higher expression level at bud stage
2 in the HLT015 compared to the HLT040 genotype. It shares the highest sequence simi-
larity with BIM1 (a key regulator of the brassinosteroid signaling), and previous reports
have shown that brassinosteroid, along with other phytohormone signaling, enhances
anthocyanin accumulation in plants, potentially regulated using ternary MYB-bHLH-WD
transcriptional complexes [75,76]. However, further functional validation is required to
confirm the specific roles of these CpbHLH genes.

Compared to other TFs, bHLH TFs exhibit versatile regulatory functions, participating
in multiple pathways and acting as co-regulators of gene expression alongside other
proteins [77]. Previously, it has been revealed that heterologous expression of Wintersweet
bHLH13 (referred to as CpbHLH25 in this study) and MYC2 (referred to as CpbHLH59
in this study) in model plants (Arabidopsis and tobacco) increased the β-caryophyllene
and Linalool contents, respectively, a reduction in anthocyanin content was also observed
in bHLH13 overexpressing plants [41]. In the present study, protein–protein interaction
assays were conducted, confirming the physical interaction between CpbHLH25 and
CpbHLH59 (Figure 8). Furthermore, the interaction of CpbHLH25 and CpbHLH59 with
other proteins, specifically CpbHLH112 and CpMYB2, was also observed (Figure 8). Qian
et al. (2021) reported that CpMYB2 interaction with CpTT8 is required for the activation
of the anthocyanin biosynthetic structural gene CpANS [40]. Furthermore, Shang et al.
(2020) previously suggested that CpbHLH112 is a potential candidate for regulating scent
biosynthesis in Wintersweet flowers [42]. Therefore, the observed physical interactions
among CpbHLH25, CpbHLH59, CpbHLH112, and CpMYB2 indicate their coordinated
involvement in the regulation of secondary metabolite biosynthesis in Wintersweet flowers.
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4. Materials and Methods
4.1. Retrieval of CpbHLH Family Genes

The Wintersweet genome sequences and protein sequences, along with annotation infor-
mation, were acquired from the Wintersweet genome database [42]. The HMMER 3.0 software
program [78] was employed to search for potential CpbHLH candidates in the Wintersweet
genome database using the hidden Markov Model (HMM) profile of the HLH (PF00010) domain
that was obtained from the Pfam database [79]. All of the retrieved CpbHLH protein sequences
were further examined using NCBI CDD [80] and SMART [81] databases to verify the presence
of the bHLH domain. To ensure the identification of all CpbHLHs as well as possible, genes
containing incomplete or atypical bHLH structural domains were also retained for subsequent
analysis. The physicochemical characteristics of CpbHLH proteins, such as the numbers of
amino acids (aa), isoelectric point (pI), and molecular weights (MW), were determined us-
ing the ExPASy (ProtParam) online tool (https://web.expasy.org/protparam/ (accessed on
3 January 2023)). The subcellular location of the CpbHLH protein was predicted using
WoLF PSORT (https://www.genscript.com/wolf-psort.html (accessed on 3 January 2023)).
Furthermore, the sequences of conserved domains in CpbHLH proteins were visualized
and analyzed using the Weblogo3 and Jalview software (version 2.11.2.7).

4.2. Conserved Motif and Intron/Exon Organization of CpbHLHs

MEME SUITE (https://meme-suite.org/meme/tools/meme (accessed on 8 January
2023)), an online tool, was used to examine the motifs (max. number = 20) of the CpbHLH
proteins [82]. Gene structure (intron/exon) information was retrieved from the generic
feature format (GFF) file of the Wintersweet genome database [42]. The schematic represen-
tation of protein motifs and intron/exon organization was drawn using the gene structure
view (advanced) program embedded in TBtools.

4.3. Phylogenetic Analysis and Chromosomal Distribution of CpbHLHs

The protein sequences of A. thaliana bHLH were retrieved from the TAIR database.
Multiple sequence alignment of CpbHLHs, AtbHLHs, and a few functionally characterized
bHLHs was performed using the ClustalW algorithm in MEGA7 software (version 7.0.21)
with default parameters. The neighbor-joining (NJ) phylogenetic tree was constructed
using pairwise deletion, p-distance method, and 1000 bootstrap replication in MEGA7. NJ
phylogenetic tree of CpbHLHs was constructed using the same parameters as described
above. The Newick extension of the MEGA NJ was used as a query to obtain the final figure
of the NJ tree using the iTOL. The positions of CpbHLH genes on specific chromosomes
were visualized using TBtools software (version v2.001) based on the chromosomal location
information of genes obtained from the GFF file of the Wintersweet genome database.

4.4. Promoter Analysis of CpbHLHs

We obtained the 2 kb upstream sequence of the start codon of each CpbHLH gene from
its full-length genomic sequence using TBtools and subjected it to the PlantCARE database
for the prediction of putative cis-acting elements [83].

4.5. Gene Duplication Events and Syntenic Analysis

To detect the gene duplication events of bHLH genes within C. praecox, and to find
the homology of the bHLH genes between C. praecox and the other selected plants (A.
thaliana, P. trichocarpa, V. vinifera, and O. sativa), the MCscanx tool embedded in TBtools
was used. The Ka/Ks calculator integrated in TBtools was employed to examine the Ka
and Ks values of duplicated CpbHLH gene pairs, and the Ka/Ks ratio was calculated to
evaluate the selection pressure. The genomic information of A. thaliana, P. trichocarpa, V.
vinifera, and O. sativa was downloaded from Phytozome.

https://web.expasy.org/protparam/
https://www.genscript.com/wolf-psort.html
https://meme-suite.org/meme/tools/meme
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4.6. Plant Material

Two genotypes of Wintersweet (HLT015 and HLT040), grown under natural conditions
in Heilongtan Park (Kunming, China), were selected. The morphological attributes of
these genotypes were as follows: (1) HLT015, light yellow-colored flowers with red inner
petals; (2) HLT040, dark yellow-colored flowers with yellow petals. For RNA sequencing,
three biological replicates of green buds (Stage 1), buds turning yellow (Stage 2), and
open flowers (Stage 3) were collected from both genotypes. For tissue-specific expression
analysis, cotyledon, leaf, root, and flower tissues of Wintersweet were collected. All samples
were immediately frozen in liquid nitrogen and stored at −80 ◦C until RNA extraction.

4.7. Expression Profile of CpbHLHs Based on Transcriptome Database

The FPKM (Fragments Per Kilobase per Million mapped reads) values of CpbHLH
candidate genes were retrieved from the transcriptome databases generated from three
developmental stages of flower (green bud, bud turning yellow, and open flower stage) of
two Wintersweet genotypes as well as different organs (cotyledon, root, leaf and flower) of
Wintersweet plant. We used TBtools to create heat maps that show the transcript profiles of
CpbHLH genes based on the FPKM values.

4.8. Quantitative Real-Time PCR (RT-qPCR)

To validate the transcriptome results, we used RT-qPCR to measure the transcription
levels of the differentially expressed genes (DEGs) with gene-specific primers. The ex-
traction of total RNA from two Wintersweet genotypes flowers at three developmental
stages (S1: green buds, S2: buds turning yellow, and S3: open flowers) was carried out
using the EASYspin plant RNA extraction kit (aidlab, Beijing, China) as per manufacturer’s
protocol. Subsequently, the integrity and purity of RNA were determined using a 1.5%
denaturing agarose gel and a Nanodrop-2000 spectrophotometer, respectively. The reverse
transcription of RNA into cDNA was carried out using the cDNA Synthesis SuperMix
(TransGen Biotech, Beijing, China) according to the manufacturer’s instructions. RT-qPCR
was performed in a 20 µL reaction volume comprising BlastaqTM 2X qPCR MasterMix
(10 µL), cDNA (1 µL, 100 ng/µL), forward primer (0.5 µL), reverse primer (0.5 µL) and
ddH2O (8 µL) on the Roche LightCyclerR 480 II Real-Time PCR platform. The experiments
were conducted in triplicates, and β-actin was used as an internal reference for normaliza-
tion. Finally, the 2−∆∆CT method was utilized for the calculation of relative gene expression
levels. The primers used in this study are listed in Table S5.

4.9. Yeast Two-Hybrid Assay (Y2H)

The open reading frames (ORFs) of CpbHLH25, CpbHLH59, CpMYB2, and CpbHLH112
were amplified using gene-specific primers and cloned separately into pGBKT7 and
pGADT7 vectors to generate bait and prey constructs, respectively. We then co-transformed
the respective pairs of recombinant vectors into the AH109 yeast strain and performed
the Y2H assay as directed by the manufacturer (Clontech). The transformants (AH109
cells) carrying the pairs of recombinant vectors were cultured on synthetic dropout me-
dia SD/-Leu-Trp, and the pairs interactions were evaluated on the SD/-Leu-Trp-His-
Ade + 3-amino-1,2,4-triazole (3-AT) (40 mM/L) + X-α-gal (25 mg/L) media.

5. Conclusions

In the current study, we performed a comprehensive genome-wide analysis of the
bHLH gene family in Wintersweet. Our analysis revealed the presence of 131 CpbHLH
genes distributed across the 11 chromosomes of Wintersweet, which were classified into 23
distinct subfamilies. The accuracy of this classification was further supported using motif
and gene structure analyses. Notably, gene duplication, particularly segmental duplication,
emerged as a key driver of bHLH gene diversity. RNA-seq analysis illuminated distinct ex-
pression patterns in various tissues and during flower development, highlighting intricate
transcriptional regulation. Furthermore, CpbHLH25 and CpbHLH59 (regulators of floral
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scent and color) form heterodimers not only with each other but also with CpbHLH112
and CpMYB2, suggesting their potential coordination in regulating secondary metabolite
biosynthesis. Overall, these findings offer valuable insights for future research investigating
the biological functions of bHLH gene family members in Wintersweet flowers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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