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Abstract: Sjögren’s syndrome is an autoimmune rheumatic disease characterized by inflammation
of the salivary and lacrimal glands, often manifesting as dry mouth and dry eyes. To simplify
diagnostics of primary Sjögren’s syndrome (pSS), a non-invasive marker is needed. The aim of the
study was to compare the RNA content of salivary extracellular vesicles (EVs) between patients with
pSS and healthy controls using microarray technology. Stimulated whole saliva was collected from
11 pSS patients and 11 age-matched controls. EV-RNA was isolated from the saliva samples using a
Qiagen exoRNeasy Midi Kit and analyzed using Affymetrix Clariom D™ microarrays. A one-way
ANOVA test was used to compare the mean signal values of each transcript between the two groups.
A total of 9307 transcripts, coding and non-coding RNA, were detected in all samples. Of these
transcripts, 1475 showed statistically significant differential abundance between the pSS and the
control groups, generating two distinct EV-RNA patterns. In particular, tRNAs were downregulated
in pSS patients, with the transcript tRNA-Ile-AAT-2-1 showing a 2-fold difference, and a promise as
a potential biomarker candidate. This study therein demonstrates the potential for using salivary
EV-RNA in pSS diagnostics.

Keywords: primary Sjögren’s syndrome; saliva; extracellular vesicles; RNA; non-coding RNA

1. Introduction

Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by inflamma-
tory destruction of the salivary and lacrimal exocrine glands with resultant hypofunction [1].
Consequently, patients present clinically with dry mouth (xerostomia) and dry eyes (xe-
rophthalmia). Other extra-glandular manifestations may also occur. SS is referred to as
primary SS (pSS) when it occurs alone [2] and secondary SS when diagnosed concurrently
with another autoimmune condition, such as rheumatoid arthritis, systemic lupus erythe-
matosus (SLE), or scleroderma [2]. The estimated worldwide prevalence of pSS is 0.06% [3].
pSS predominantly affects women, with a female-to-male ratio of 9:1 [2,4], and the incidence
rate increases with age, peaking at 55–65 years for women [4].

While the exact etiology of pSS is still undetermined, a combination of environmental
factors together with a genetic predisposition is presumed [2]. Viral infections have been
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considered a potential initiating cause, with a particular focus on the Epstein-Barr virus
(EBV) [2,5].

The most recent set of classification criteria for pSS was developed based on an interna-
tional collaborative effort by the American College of Rheumatology and the European League
Against Rheumatism (ACR-EULAR) in 2016 [6]. These criteria require a score of≥4 where a
labial salivary gland biopsy with a focus score of≥1 foci/4 mm2 gives 3 points. The presence
of autoantibodies (anti-Ro/anti-SSA) also gives 3 points. An unstimulated whole saliva flow
rate≤ 0.1 mL/min, a Schirmer test≤ 5 mm/5 min in at least one eye, and an ocular staining
score≥ 5 in at least one eye give 1 point each.

With no curative option presently available, treatment of pSS is generally a combina-
tion of targeted symptomatic therapy and broad-spectrum immunosuppressive therapy [7].
Early diagnosis is favorable for mitigating glandular inflammation and destruction. A
specific test providing rapid diagnosis is thereby sought after. Saliva has gained interest as
a potential source for pSS biomarkers [8]. As a biofluid, it has several advantages, including
its relatively easy and non-invasive collection as well as being target-organ-relevant. There
is additionally an emerging focus on using salivary extracellular vesicles (EVs) in pSS
biomarker discovery, with EVs shielding their contents from enzymatic degradation [9]
and thereby providing a more stable subset of molecules.

EVs are a heterogeneous group of membrane-bound, nano-sized particles released by cells
into the extracellular space. They have been shown to participate in intercellular communication
by means of either ligand-receptor binding or cellular uptake of EV bioactive components [9].
The main components of EVs are lipids, proteins, and nucleic acids, the composition of
which reflects the cellular origin and mode of EV formation [9,10]. Analysis of the different
constituents of EVs may therefore provide an insight into the pathophysiological state of cells,
provide diagnostic modalities, and identify new therapeutic options.

Interest in EV-RNA analysis has increased with the knowledge that RNA transcripts
can be transferred from cell to cell via EVs. Once delivered, the RNA transcripts are
hypothesized to contribute to regulation within the recipient cell, thereby introducing
the possibility of intercellular genetic communication. Advances in both next-generation
sequencing (NGS) and microarray analysis, as well as improvements in bioinformatic data
processing capabilities, have greatly facilitated the accumulation of EV-RNA data such that
comparative studies are now possible. Comparing the EV-RNA profiles between patho-
logical and healthy states may thereby uncover RNA transcripts as potential biomarker
candidates. To date, there is minimal data available from salivary EV-RNA analysis in pSS
patients [11–13].

The aim of this study was therefore to characterize the RNA content of salivary EVs
using microarray technology and then compare the EV-RNA profiles between pSS patients
and healthy controls.

2. Results
2.1. Extracellular Vesicle Characterization

EVs were characterized in joint fractions 8–10 following SEC EV-isolation of a pooled pSS
patient sample and a pooled control sample. NTA was used to determine the concentration and
size distribution of EVs in the patient and control samples (Figure 1A,B). The pooled patient
sample had a concentration of 2.0 × 109 particles/mL, with a mean particle size of 154 nm,
and the pooled control sample had a concentration of 3.7 × 108 particles/mL, with a mean
particle size of 157 nm.
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Figure 1. Characterization of salivary extracellular vesicles (EVs) and EV-RNA. (A) Size and concentration
of EVs in the patient sample by nanoparticle tracking analysis (NTA). (B) Size and concentration of EVs
in the control sample by NTA. (C) Flow cytometric detection of CD9-positive extracellular vesicles in the
patient saliva sample. Red line: pSS patient; black line: isotype control. (D) Western blotting of EV-marker
proteins. SEC = SEC EV isolation; Col = modified Qiagen exoRNeasy EV isolation; Pas = pSS patient;
Ctr = healthy control; Std EV (recombinant EV standard) = positive control; SW 480 = positive control;
CD9 and CD63 = membrane tetraspanins; Hsc70/Hsp70 = heat shock 70 protein, internal EV protein;
Calnexin = endoplasmic reticulum protein; kDa = kilodalton. (E) A transmission electron microscopy
(TEM) image of EVs in a pooled patient saliva sample. Arrows = cup-shaped EVs. Magnification 18,500×.
Image courtesy of Espen Stang, Ph.D. (F) EV-RNA electropherograms, patient samples. (G) EV-RNA
electropherograms, control samples. (nt) = nucleotides.

The presence of the EV surface protein marker tetraspanin CD9 was assessed in the
patient sample using flow cytometry (Figure 1C). The median fluorescence intensity (MFI)
was 1946, with a shift in MFI of 764 relative to the isotype control, indicating an increased
level of tetraspanin CD9 in the patient EV-isolated sample relative to the isotype control.

Western blotting to detect the EV tetraspanins CD9 and CD63, and the internal EV-
marker protein heat shock 70 protein (Hsc70/Hsp70), was performed on EVs isolated
from patient and control samples by both SEC and a modified Qiagen exoRNeasy column
technique (Figure 1D). CD9 and CD63, as well as Hsc70/Hsp70, were detected in all four
of the EV-isolated patient and control samples, although with reduced intensity in the SEC
EV-isolated samples compared to the modified Qiagen exoRNeasy column EV-isolated
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samples. Furthermore, the negative protein control calnexin, an endoplasmic reticulum
protein not found in EVs, was negative in all EV samples but positive in the SW480 cell
lysate sample.

When viewed with TEM, EVs in the pooled pSS patient sample could be identified by
their cup-shaped morphology and size (<220 nm). Some EVs were observed as aggregates
(Figure 1E).

The average EV-RNA concentration of the patient samples was 3.5 ng/µL, with a
range of 1.0 ng/µL to 10.0 ng/µL, according to Qubit® 2.0 Fluorometer analysis. The
average EV-RNA concentration of the control samples was 1.9 ng/µL, with a range of
1.0 ng/µL to 4.0 ng/L. Finally, the size distribution of the salivary EV-RNA was between
25 to 200 nucleotides in all samples, as demonstrated by Agilent 2100 Bioanalyzer analysis
(Figure 1F,G).

2.2. Salivary EV-RNA Analysis Using Affymetrix Clariom™ D Microarrays

Both coding RNA (mRNA) and non-coding RNA (ncRNA) were detected in all saliva
samples. A total of 9307 transcripts were identified from the microarrays’ total of approx-
imately 540,000 transcripts (1.7% transcripts identified). Transcript signal values ranged
from under 10 to over 11,000.

Most known RNA subtypes were identified in all the patient and control saliva samples
(Figure 2A). Close to half of the RNAs detected were mRNA (46%), and close to half were
ncRNAs (46%). Miscellaneous and novel transcripts (5%) and signal recognition particles
(3%) comprised the remaining 8%. Long non-coding RNA (lncRNA) represented the most
abundant ncRNA subtype, comprising 72% of the total (Figure 2B).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 16 
 

 

Western blotting to detect the EV tetraspanins CD9 and CD63, and the internal EV-

marker protein heat shock 70 protein (Hsc70/Hsp70), was performed on EVs isolated from 

patient and control samples by both SEC and a modified Qiagen exoRNeasy column 

technique (Figure 1D). CD9 and CD63, as well as Hsc70/Hsp70, were detected in all four 

of the EV-isolated patient and control samples, although with reduced intensity in the 

SEC EV-isolated samples compared to the modified Qiagen exoRNeasy column EV-

isolated samples. Furthermore, the negative protein control calnexin, an endoplasmic 

reticulum protein not found in EVs, was negative in all EV samples but positive in the 

SW480 cell lysate sample. 

When viewed with TEM, EVs in the pooled pSS patient sample could be identified 

by their cup-shaped morphology and size (<220 nm). Some EVs were observed as 

aggregates (Figure 1E). 

The average EV-RNA concentration of the patient samples was 3.5 ng/μL, with a 

range of 1.0 ng/μL to 10.0 ng/μL, according to Qubit® 2.0 Fluorometer analysis. The 

average EV-RNA concentration of the control samples was 1.9 ng/μL, with a range of 1.0 

ng/μL to 4.0 ng/L. Finally, the size distribution of the salivary EV-RNA was between 25 to 

200 nucleotides in all samples, as demonstrated by Agilent 2100 Bioanalyzer analysis 

(Figure 1F,G). 

2.2. Salivary EV-RNA Analysis Using Affymetrix Clariom™ D Microarrays 

Both coding RNA (mRNA) and non-coding RNA (ncRNA) were detected in all saliva 

samples. A total of 9307 transcripts were identified from the microarrays’ total of 

approximately 540,000 transcripts (1.7% transcripts identified). Transcript signal values 

ranged from under 10 to over 11,000. 

Most known RNA subtypes were identified in all the patient and control saliva 

samples (Figure 2A). Close to half of the RNAs detected were mRNA (46%), and close to 

half were ncRNAs (46%). Miscellaneous and novel transcripts (5%) and signal recognition 

particles (3%) comprised the remaining 8%. Long non-coding RNA (lncRNA) represented 

the most abundant ncRNA subtype, comprising 72% of the total (Figure 2B). 

 

Figure 2. Categorization of the RNA transcripts identified in salivary EVs by Affymetrix Clariom™ 

D microarray analysis. (A) All RNA transcripts detected (9307). (B) Non-coding RNA (ncRNA) 

subtypes only (no mRNA and no miscellaneous or novel transcripts) (4543). A value of 0% indicates 

a value between 0 and 1%. mRNA = messenger RNA; lncRNA = long non-coding RNA; miRNA = 

microRNA; snRNA = small nuclear RNA; circRNA = circular RNA; rRNA = ribosomal RNA; tRNA 

= transfer RNA; yRNA = Y RNA; lincRNA = long intergenic RNA; snoRNA = small nucleolar RNA; 

pRNA = promoter-associated RNA; scaRNA = small Cajal body-specific; vRNA = vault RNA. 

46%

35%

5%

4%

3%

2%

1% 1%
1%

1%

1%

0%
0%

0%

0%

mRNA

lncRNA

miscellaneous + novel transcripts

miRNA

Signal recognition particle

snRNA

circRNA

rRNA

tRNA

yRNA

lincRNA

snoRNA

pRNA

scaRNA

vRNA

46%

35%

5%

4%

3%

2%

1% 1%
1%

1%

1%

0%
0%

0%

0%

mRNA

lncRNA

miscellaneous + novel transcripts

miRNA

Signal recognition particle

snRNA

circRNA

rRNA

tRNA

yRNA

lincRNA

snoRNA

pRNA

scaRNA

vRNA

72%

9%

7%

4%

2%
2%

1% 1%

1%

1%
0%

0%

0%

A B

Figure 2. Categorization of the RNA transcripts identified in salivary EVs by Affymetrix Clariom™
D microarray analysis. (A) All RNA transcripts detected (9307). (B) Non-coding RNA (ncRNA)
subtypes only (no mRNA and no miscellaneous or novel transcripts) (4543). A value of 0% in-
dicates a value between 0 and 1%. mRNA = messenger RNA; lncRNA = long non-coding RNA;
miRNA = microRNA; snRNA = small nuclear RNA; circRNA = circular RNA; rRNA = ribosomal RNA;
tRNA = transfer RNA; yRNA = Y RNA; lincRNA = long intergenic RNA; snoRNA = small nucleolar RNA;
pRNA = promoter-associated RNA; scaRNA = small Cajal body-specific; vRNA = vault RNA.

2.2.1. Comparing Affymetrix Microarray Results between pSS Patient and Control Groups

A one-way ANOVA was used to compare the mean fluorescence signal values, rep-
resenting the mean transcript levels, of the pSS patient and control transcripts. Of the
9307 transcripts detected, 1475 had a statistically significant differential abundance be-
tween the two groups, p-value < 0.05, and approximately 60% of these were ncRNA.
After controlling statistically for the false discovery rate (FDR), seven of these transcripts
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showed q-values < 0.05, where five were lncRNAs, one a tRNA (tRNA-Ile-AAT-2-1),
and one a miRNA (MIR6870). The percentage of transcripts showing statistically sig-
nificant differential abundance within each RNA subtype is displayed in Figure 3, with
tRNA having the most pronounced outcome, with over 50% of the transcripts showing a
significant difference.
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Figure 3. Dual comparison of RNA subtypes. The number of transcripts detected within each RNA
subtype (blue columns) and the corresponding percentage of transcripts within each subtype with
statistically significant differential abundance between the pSS and control groups (orange line),
p-value < 0.05. SRP = signal recognition particle RNA; misc. = miscellaneous transcripts.

A hierarchical cluster heatmap was produced, using the 100 transcripts with the most
statistically significant differences between the patient and the control groups (Figure 4A). Of
these transcripts, 47 are not yet functionally annotated but are inferred to be lncRNAs based on
their database source. The 100 transcripts were further explored and plotted according to their
fold change (Figure 4B). Transcripts with signal values above and below 20 were distinguished,
with a value ≥ 20 chosen as a measure of biological significance. The list was adjusted
to 97 after identifying a triplicate and a duplicate set of transcripts. Of these, 30 transcripts
showed a fold change≥ 1.5. Eight tRNA transcripts identified had reduced levels in the patient
group relative to the control group. The three transcripts having both a fold change≤−1.5 and
a signal value≥ 20 were all tRNAs: tRNA-Lys, tRNA-Ile-AAT-2-1, and tRNA-Cys-GCA, with
tRNA-Ile-AAT-2-1 also having a q-value < 0.05. LINC00673 was identified as the transcript
with the greatest negative fold change (−3.2), however, the mean signal values were <20. Of
the six miRNAs included, MIR6870 had a q-value < 0.05, with a fold change of−1.4.
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Figure 4. The 100 most statistically significant differentially abundant transcripts between the patient
(pSS) and control groups (Ctr), p-value < 0.05. (A) A heatmap displaying hierarchical clustering of
the transcripts. Green represents a lower level in one group relative to the other, and red vice versa.
PSS: pSS patient group; Ctr: control group; blank or ---: unannotated transcripts. (B) Transcripts
from the heatmap are displayed and ordered according to their fold change. Dark blue columns:
transcripts with mean signal values≥20; light blue columns: transcripts with mean signal values < 20.
* tRNA transcripts; arrows: transcripts with q-value < 0.05.

In order to further distinguish transcripts with a difference in abundance between the
patient and the control groups, transcripts with statistically significant differential abun-
dance were further filtered for fold change (≥2) and mean signal values (≥20) (Figure 5).
The mRNA transcript ‘seysnoy’ was identified as having a fold change greater than six,
with a higher level seen in the patient group relative to the control group. Moreover, the
transcript with gene symbol AC087392.1 had a positive fold change close to 4. Furthermore,
the immature miRNAs MIR4472-2 and MIR3135A both showed a positive fold change > 2.
All five transcripts showing a negative fold change were tRNAs, two of mitochondrial ori-
gin: tRNA-Ile-AAT-2-1, mitochondrially encoded tRNA proline, mitochondrially encoded
tRNA methionine, tRNA-Lys-CTT-4-1, and tRNA-Lys.
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versa. Mito-tRNA: mitochondrial tRNA. Transcripts depicted by NONCODE are miscellaneous or
novel transcripts identified as non-coding RNA (ncRNA) but with unknown functions.

2.2.2. RNA Validation

RT-qPCR was used to validate two of the RNA transcripts, B2M and RPL9, in three
pSS patients and three control samples. The RT-qPCR results confirmed transcript levels
consistent with the different signal values detected by the microarrays.

3. Discussion

The Affymetrix microarray analysis of salivary EV-RNA unveiled an extensive reper-
toire of coding and non-coding RNAs in all samples. Approximately half of the RNA
transcripts identified were mRNAs, while the other half were ncRNAs, of which most
known ncRNA subtypes were detected. These included lncRNA, miRNA, snRNA, circRNA,
rRNA, tRNA, yRNA, lincRNA, snoRNA, pRNA, scaRNA, and vRNA. A comparison of
the RNA profiles between patients with pSS and controls revealed statistically significant
differential abundance in the levels of approximately 16% of transcripts. The most re-
markable difference was seen in tRNA transcripts, with close to 50% showing a significant
difference between the patient and control groups. Several mRNA and miRNA transcripts
also deserve further consideration. Furthermore, an abundance of lncRNAs was detected,
five with a q-value < 0.05.

To our knowledge, Ogawa et al., (2008) were the first to show that human whole saliva
contains EVs [14]. Subsequently, 509 mRNA transcripts were identified in salivary EVs
isolated from healthy individuals, using microarray analysis [15]. This study also observed
the transfer of mRNA from EVs to target cells when incubating oral keratinocytes with
salivary EVs and further demonstrated that EVs provide RNA with protection against
salivary nucleases. These observations were in line with other studies showing that both
mRNA and miRNA are transferable in EVs and can have functional capabilities in recipient
cells [16–19], thereby providing the basis for the current study.
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3.1. A Comparison of the mRNA Transcripts in Salivary EVs between pSS Patients and Controls

mRNAs represented approximately half of the RNA transcripts detected by the mi-
croarrays, with almost 12% showing statistically significant differential abundance between
the pSS and control groups. Of these, two stood out as transcripts of interest: seysnoy and
AC087392.1. These transcripts had positive fold changes of 6 times and close to 4 times,
respectively, with higher levels of the transcripts in the pSS patient group compared with
the control group.

The official symbol for the seysnoy gene is MTRNR2L2 and it is located on chromo-
some 5. While there is uncertainty as to whether it is a transcribed protein-coding gene or
a paralog of the mitochondrial gene MT-RNR2, several recent studies have identified its
potential involvement in coronary artery disease, tumorigenesis, Huntington’s disease, and
diabetic kidney disease [20–24].

There are presently no disease or trait phenotypes found in connection with the
protein-coding gene AC087392.1. Further investigation of this transcript is warranted.

3.2. A Comparison of the miRNA Transcripts in Salivary EVs between pSS Patients and Controls

In this study, immature miRNAs represented 9% of the ncRNA transcripts detected
in salivary EVs, with 21% of the identified miRNAs showing a significant difference in
abundance between the two groups. MiRNAs have a well-established role in translational
and transcriptional regulation, and their dysfunction has been linked to many pathological
conditions, including neurodegenerative disorders, cardiovascular disease and obesity [25],
autoimmune diseases [26], and various forms of cancer [27,28]. In the present study,
both MIR4472-2 and MIR3135A were shown to have statistically significant differential
abundance between pSS patients and controls with enriched levels in the patient group and
fold change differences of 3 and 2.6, respectively. However, the biological significance of
these findings must be further evaluated at the miRNA level since the chosen microarrays
did not use functionally recognized mature miRNA.

3.3. A Comparison of the tRNA Transcripts in Salivary EVs between pSS Patients and Controls

Close to 50% of the 55 different tRNA transcripts detected in the salivary EV-RNA
samples showed statistically significant differential abundance between the pSS patient
and control groups. Five showed a fold change over two and when correcting for the
false discovery rate, and tRNA-Ile-AAT-2-1 had a q-value < 0.05. Follow-up validation is
required using either RT-qPCR or NGS.

There are over 600 tRNA loci [29,30] positioned at multiple sites throughout the
genome, coding for a possible 64 anticodons. The largest collection of tRNA genes, with
157 genes, is found on chromosome 6 [30]. There are additionally mitochondrial tRNA
genes and tRNA pseudogenes [30]. While full-length tRNAs are recognized for their role
in binding amino acids and translating mRNA in protein production, fragments derived
from tRNAs are believed to contribute a whole new division to the realm of the regulatory
ncRNAs [31]. Lee et al. were one of the first to suggest that tRNA fragments (tRFs) are a new
group of short ncRNAs that are not merely the result of tRNA degradation or a by-product
of biogenesis [29]. The results from this current study do not, however, distinguish between
whole tRNAs and tRFs, as transcript fragmentation is central to the preparation of RNA
for microarray analysis. Sequencing of salivary EV tRNA would perhaps provide a more
complete picture. That said, it is important to note that tRNAs are heavily base modified,
and this in turn affects the sequencing [32,33].

tRNA fragments are proposed to have roles in various cellular processes, including
cell proliferation [32,33], RNA interference [32,34], and protein synthesis [32]. They have
accordingly been linked to tumorigenesis, neurodegenerative disorders, metabolic diseases,
the response to stress, and viral infections [33,35–41]. Interestingly Li et al. were the first to
publish results from a clinical trial that discovered the tRF tRNA-Gly-GCC-5 in salivary
EVs as a potential biomarker for esophageal carcinoma [42]. With mounting evidence for
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the biomarker potential of EV tRFs, the results from this study indicate that further research
into salivary EV tRNAs is merited.

3.4. A Comparison of the yRNA Transcripts in Salivary EVs between pSS Patients and Controls

A total of 53 yRNA transcripts were identified in the salivary EV-RNA samples.
Four of the transcripts were annotated as Ro-associated Y1, Y3, Y4, and Y5, originating
from chromosome 7. Interestingly, none of these four transcripts showed a statistically
significant difference in abundance between the patients and controls. The remaining yRNA
transcripts were categorized as pseudogenes, originating from diverse chromosomes, with
three showing a statistically significant difference in abundance between the patient and
control groups, but with fold changes < 1.5.

Y-RNAs were originally discovered as the RNA component of ribonucleoprotein (RNP)
complexes in the serum of patients with pSS and SLE. They were found bound to the RNA-
binding proteins Ro60 and La, which are now considered the main autoantigenic targets in both
pSS and SLE [43]. Y-RNAs are evolutionary conserved small RNAs, 83–112 nt in length [44].
Humans have four different types, Y1, Y3, Y4, and Y5, which are all encoded by single-copy
genes clustered on chromosome 7 [45]. The additional yRNA pseudogenes are located at
various positions throughout the genome [45]. The binding of Y-RNA to Ro60 and La facilitates
either nuclear retention or nuclear export, as well as enhancing yRNA stability [43]. So far, it
is known that they are involved in DNA replication, ncRNA quality control, and response to
cellular stress [44–46]. Evidence also supports the selective inclusion of Y-RNAs into EVs [47,48].
Furthermore, the Y-RNA-Ro/La RNP complexes have also been identified in EVs originating
from salivary gland epithelial cells [49], with the authors of the article suggesting that this
could be a method by which “intracellular autoantigens are presented to the immune system
with an immunogenic or tolerogenic outcome”.

Considering the occurrence of autoantigens to Ro60 and La in the majority of pSS patients,
and the association these antigens have with Y-RNA, one could conceivably expect to see a
discrepancy in the EV-associated Y-RNAs between pSS patients and controls. Interestingly, the
present study found that the levels of all four Y-RNA types were present at near equal levels in
the two groups, with the highest levels found for Y3, followed by Y1, Y4, and then Y5.

While it is beyond the scope of this article to make any predictions regarding the
involvement of Y-RNA-RNP complexes and autoimmunity in SS, it is noteworthy that
Y-RNA, as well as signal recognition peptide- (SRP) RNA, are also selectively incorporated
into the capsids of certain viruses [48]. Moreover, it has been postulated that an immune
response to Ro60-positive commensal bacteria in pSS patients could be an alternate manner
in which autoimmunity is established [50].

3.5. A Comparison of the lncRNA Transcripts in Salivary EVs between pSS Patients and Controls

Of the ncRNA transcripts identified by the microarray analysis, over 70% were lncRNA.
Of these, 17% showed statistically significant differential abundance between the patient
group and the control group. However, most of the lncRNA transcripts detected by
the microarrays were transcripts with an uncharacterized function and with no gene
symbol. At least 42 of the transcripts included in the heatmap were lncRNAs, five with a
q-value < 0.05. While the function of lncRNAs has not been definitively determined, they
are believed to be involved in the regulation of gene expression [51].

3.6. RNA in EVs—General Considerations

Comparisons between EV studies are difficult due to the lack of standardization of
methods. Both the EV isolation method and the EV-RNA isolation method, as well as
the type of RNA analysis, greatly impact the RNA transcripts identified. In the future,
improved and standardized EV-RNA isolation techniques may provide more comparable
RNA samples. Increasing the depth of EV-RNA sequencing will similarly broaden the
probe options available for microarray production.
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While NGS techniques enable the analysis of the entire genetic material of a sample,
microarrays provide a method for profiling previously identified nucleic acid sequences.
This presents the obvious disadvantage that novel sequences will not be identified [52].
However, a significant advantage of microarrays is that the results do not require as
elaborate post-analytical bioinformatics as NGS [52]. Furthermore, whole saliva also has
a large microbiota. Microarray analysis of salivary EV-RNA simultaneously captures a
defined sub-population of extracellular RNA and specifically detects human-only RNA [53].

The Clariom™ D microarrays used in this study were designed for use with total
cellular RNA. Only 1.7% of the approximate 540,000 transcripts represented on the chips
hybridized with the RNA transcripts from the salivary EVs. There are several apparent
explanations for this, but they are yet unsubstantiated. Firstly, it supports the notion that
EV-RNA is a selection of total cellular RNA. Secondly, the concentration of EV-RNA is
substantially less than cellular RNA. Thirdly, the Affymetrix microarrays are designed for,
and the hybridization steps are optimized for, total cellular RNA, not EV-RNA. Taking this
into consideration, the EV transcripts identified should only be considered a representation
of the total.

Most of the RNAs in EVs are under 200 nt in length [54,55]. The results from the
Bioanalyzer analysis performed in this study were in accordance with this. While many
regulatory ncRNAs are shorter than 200 nt, both mRNA and lncRNA generally have
original transcript lengths over 200 nt. It can therefore be surmised that the majority of
these latter transcripts were in fragmented form in the salivary EVs. What is not known,
however, is if the fragmentation is due to deliberate cleavage or degradation.

4. Materials and Methods

An overview of the study workflow is illustrated in Figure 6.
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Figure 6. Study workflow.

4.1. Study Participants and Saliva Collection

Saliva samples were provided by the Dry Mouth Clinic at the Department of Clinical
Dentistry, Faculty of Dentistry, University of Oslo. Stimulated whole saliva (SWS) was
collected from 11 pSS patients and 11 age-matched healthy controls. All participants were
women aged between 39 to 72 years, with a mean age of 55. All pSS patients fulfilled the
ACR criteria; all were ANA- and anti-SSA-positive and had dry eyes, dry mouth, and
reduced saliva secretion (Table S1). Most of the patients were also anti-SSB-positive (8)
and had reduced tear secretion (9), while 1 did not tolerate the Schirmer test. Most of the
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patients were not subjected to salivary gland biopsies, as they already fulfilled the various
criteria sets. The control individuals were healthy subjects experiencing no symptoms of
dry mouth or dry eyes, having no SS-associated disease condition, and using no medication
with influence on saliva secretion. No eating or drinking was permitted for the hour prior
to saliva collection. SWS was collected for five minutes by the subjects spitting into a
collection cup placed on ice while chewing on a paraffin pellet (Ivoclar Vivadent, Shaen,
Lichtenstein). Aliquots with volumes of approximately 500 µL, were stored at −80 ◦C.

4.2. Preanalytical Sample Preparation

Saliva samples were thawed on ice and then, to inhibit enzymatic activity,
1 µL of RiboLock RNase Inhibitor (40 U/µL) (Thermo Fisher Scientific, Oslo, Norway),
together with 5 µL of cOmpleteTM Mini Protease Inhibitor (Roche), were added per
1 mL of saliva and mixed well. Filtered phosphate-buffered saline (PBS) (0.1 µm filter,
Millex®-GV, Merck Millipore, Cork, Ireland) was subsequently added to each sample
at a ratio of 1:1. Two centrifugation steps were performed: 300 g for 10 min, 4 ◦C, to
remove cells, bacteria, and food residue, and 10,000× g for 20 min, 4 ◦C, to remove
cellular debris and other particulate matter. Next, 500 µL of each sample was mixed
with an equal volume of filtered PBS and then filtered with a 0.22 µm filter (Millex®-GV,
Merck Millipore, Cork, Ireland).

4.3. EV Characterization

Due to limited patient material, EV characterization was performed on pooled samples.
EVs were isolated from pooled patient saliva samples (n = 11) and pooled control saliva
samples (n = 11) using size-exclusion chromatography (SEC) with IZON qEV original 70 nm
(Izon Science, Lyon, France) isolation columns. Pooled samples (500 µL) were diluted 1:1 with
filtered PBS (0.1 µm), applied to pre-washed SEC columns, and EVs eluted into 10 fractions of
500 µL. Combined joint fractions 8–10 were further used for EV characterization.

Due to the relatively low EV yield following SEC-EV isolation, EVs were also isolated
using a modified Qiagen exoRNeasy EV isolation technique for use in Western blotting. Briefly,
200 µL of pooled patient saliva (n = 4) and 200 µL of pooled control saliva (n = 4) were used
in the first spin column steps of the exoRNeasy protocol to isolate and capture the EVs in the
column filters; see Section 4.4. EVs were then lysed with 100 µL of a RIPA buffer/protease-
inhibitor mix (RIPA 5× Buffer, Thermo Fisher Scientific, Oslo, Norway/cOmplete, Mini,
EDTA-free Protease Inhibitor Cocktail 25×, Roche, Oslo, Norway). The eluates were then
used for Western blotting together with filter-concentrated SEC-isolated EV samples. SEC-
isolated EV samples were concentrated from 250 µL to 100 µL using Amicon® Ultra-2, 100 K
(Merck Millipore, Cork, Ireland).

The size distribution and particle concentration of EVs in the pSS and control samples
were examined by nanoparticle tracking analysis (NTA) using a Nanosight NS500 Instrument
(Malvern Instruments Ltd., Amesbury, UK) [56], with detection threshold 3 and camera level 14.

Transmission electron microscopy (TEM) was performed on the patient samples.
Formvar-carbon coated copper grids were placed on top of 5 µL drops of sample, incubated
for 5 min at RT, washed 3 times with distilled H2O, incubated with 2% methylcellulose
containing 0.3% uranyl acetate for 10 min on ice, and then air-dried. A Tecnai G2 Spirit
transmission electron microscope (FEI, Hillsboro, OR, USA) was used together with a
Morada digital camera and RADIUS imaging software (version 2.1) to create images which
were further processed using Adobe Photoshop.

Immunoaffinity capture and detection of EV-membrane protein CD9 were performed
in conjunction with flow cytometry to identify EVs in the patient sample, as previously
described [56]. EVs were captured with the Exosome-Human CD9 Flow Detection Reagent
(cat. no. 10620D, Thermo Fisher Scientific, Oslo, Norway) and the captured EVs were
stained with anti-CD9-phycoerythrin (PE) (cat. no. 555372, BD Biosciences, Oslo, Norway)
or isotype-matched control (IgG1-PE, cat. no. 559320, BD Biosciences, Oslo, Norway).
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The median fluorescence intensity (MFI) of each sample was recorded and the ∆MFI was
calculated by subtracting the MFI of the isotype control from the sample MFIs.

Western blotting was performed as previously described [56]. In addition to the four
salivary EV-isolated samples (SEC- and exoRNeasy isolated EVs), a recombinant Exosome
standard (Merck Life Science, Oslo, Norway, Cat no SAE0193) and an SW480 cell lysate were
used as controls. Primary antibodies were used against recognized EV markers: anti-CD9
1:750 (Invitrogen, Thermo Fisher Scientific, Oslo, Norway, Cat no 10626D), anti-CD63 1:600
(Invitrogen, Cat no 10628D), anti-Hsc70/Hsp70 1:1000 (Enzo Life Science, AH Diagnostics
AS, Oslo, Norway, Cat no ADI-SPA-820), and anti-Calnexin 1:1000 (Abcam, Cambridge, UK,
Cat no ab22595). SeeBlue® Plus 2 Pre-Stained Protein Standard (Thermo Fisher Scientific,
Oslo, Norway) was used as a ladder.

4.4. EV-RNA Isolation Using a Qiagen exoRNeasy Midi Kit

EV-RNA isolation was performed on all individual saliva samples using a Qiagen ex-
oRNeasy Midi Kit (Qiagen, Hilden, Germany), according to the manufacturer’s guidelines.
Sample volumes of 500 µL were applied to the Qiagen exoRNeasy isolation columns and
200 µL of the aqueous phase was transferred. Additionally, a DNase step was included fol-
lowing the 100% ethanol-centrifugation step. RNA was recovered using RNAse-free water,
producing elutes of approximately 12 µL, and subsequently quantified and characterized.
The samples were frozen at −80 ◦C until further use.

4.5. RNA Quantification, Purity Assessment, and Characterization

A Qubit® 2.0 Fluorometer (Life Technologies Corporation, Carlsbad, CA, USA) was used
in conjunction with a Qubit® microRNA Assay Kit (Invitrogen by Thermo Fisher Scientific,
OR, USA) to determine the RNA concentration of all salivary EV-RNA samples. A Nanodrop™
One Spectrophotometer (Thermo Fisher Scientific, Oslo, Norway) was used to assess the pres-
ence of potential contaminants (guanidine or phenol) and a Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) analysis was performed on all samples using an Agilent 6000 Pico Assay
Kit (Agilent Technologies, Santa Clara, CA, USA) to assess the size and quality of the RNA. All
analyses were performed according to the manufacturer’s guidelines and using 1 µL of sample.

4.6. RNA Analysis Using Affymetrix Clariom™ D Microarrays

Clariom™ D microarray chips (Thermo Fisher Scientific, Oslo, Norway) were used to
analyze the salivary EV-RNA samples. The samples were prepared using a GeneChipTM

WT Pico Reagent Kit (Thermo Fisher Scentific, Oslo, Norway, Cat no 902623), in accordance
with the manufacturer’s guidelines. The input quantity of total RNA was 3 ng and pre-IVT
amplification was performed using 9 PCR cycles. Hela RNA (0.5 ng total RNA) was used as
a positive control to verify that the reagents worked as expected, and RNA-free water was
used as a negative control to monitor for RNA and DNA contamination. Loaded ClariomTM

D microarrays were incubated in an Affymetrix GeneChip™ 645 hybridization oven for
17 h at 45 ◦C with a rotation of 60 rpm, then washed and stained in a GeneChip™ Fluidics
Station 450 using a GeneChip™ Hybridization, Wash, and Stain Kit (Thermo Fisher Scientific,
Oslo, Norway, Cat no 901241). A GeneChip™ Scanner 3000 System was used to read the
generated fluorescence signal values, corresponding to RNA transcript levels, and scanned
data were processed with Affymetrix Command Console® Software version 4.0 (AGCC), pro-
ducing DAT files ready for bioinformatic processing (all instruments provided by Affymetrix,
Santa Clara, CA, USA).

4.7. RNA Validation Using RT-qPCR

Reverse transcription-quantitative PCR (RT-qPCR) was used to validate the presence
of selected RNA transcripts (Ribosomal Protein L9, RPL9, and beta-2-microglobulin, B2M)
based on the availability of assays in the laboratory and sufficiently high and even signal
values across all the samples applied to the arrays (RPL9 Taqman® Gene Expression Assay,
Hs01552541_g1 and B2M Taqman® Gene Expression Assay, Hs99999907_m1). A Taqman™
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Fast Advanced Master Mix (ref 4444557) was used. Three patient samples and three control
samples were used to generate the cDNA library with SuperScript™ Enzyme Mix (Cat no
11754-050) and VILO™ Reaction Mix (Cat no 11754-250). Total cellular RNA and RNA-free
water were used as positive and negative controls, respectively. All reagents were provided
by Thermo Fisher Scientific, Oslo, Norway.

4.8. Bioinformatic Processing

Partek® Genomics Suite® software (version 6.6) was used for the normalization and
statistical analysis of the Affymetrix microarray results. The DAT files were normalized
using Robust Multichip Average (RMA) normalization and the resulting CEL files were
filtered to remove transcripts with signal values under 5, thereby reducing background
interference. A one-way Analysis of Variance (ANOVA) was then performed to determine
any statistically significant difference in transcript levels between the patient and control
groups, with p-values less than 0.05 considered indicative of statistical significance. q-values
and fold changes were also determined. Additionally, a Principal Component Analysis
(PCA) and a hierarchical cluster heatmap were produced, with the heatmap incorporating
the 100 transcripts with the most statistically significant differences in signal value between
the groups.

5. Conclusions

This present study uncovered several differentially abundant salivary EV-RNA tran-
scripts between pSS patients and controls. These transcripts included both mRNAs and
ncRNAs, specifically miRNAs, tRNAs, and lncRNAs. The most striking finding was the
differential abundance of tRNA transcripts between the groups, in particular, transcript
tRNA-Ile-AAT-2-1, indicating their potential use in biomarker discovery.
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