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Abstract: We conducted the first comprehensive investigation on the impact of head group modifi-
cations on the anticancer activities of fatty-acid-like Pt(IV) prodrugs (FALPs), which are a class of
platinum-based metallodrugs that target mitochondria. We created a small library of FALPs (1–9)
with diverse head group modifications. The outcomes of our study demonstrate that hydrophilic
modifications exclusively enhance the potency of these metallodrugs, whereas hydrophobic modifica-
tions significantly decrease their cytotoxicity. To further understand this interesting structure–activity
relationship, we chose two representative FALPs (compounds 2 and 7) as model compounds: one
(2) with a hydrophilic polyethylene glycol (PEG) head group, and the other (7) with a hydropho-
bic hydrocarbon modification of the same molecular weight. Using these FALPs, we conducted a
targeted investigation on the mechanism of action. Our study revealed that compound 2, with hy-
drophilic modifications, exhibited remarkable penetration into cancer cells and mitochondria, leading
to subsequent mitochondrial and DNA damage, and effectively eradicating cancer cells. In contrast,
compound 7, with hydrophobic modifications, displayed a significantly lower uptake and weaker
cellular responses. The collective results present a different perspective, indicating that increased
hydrophobicity may not necessarily enhance cellular uptake as is conventionally believed. These
findings provide valuable new insights into the fundamental principles of developing metallodrugs.

Keywords: platinum(IV) prodrugs; structure–activity relationship; anticancer

1. Introduction

Platinum-based chemotherapy has been a cornerstone of cancer treatment for several
decades [1,2]. Key agents such as cisplatin, carboplatin, and oxaliplatin have assumed
critical roles in the management of diverse malignancies, encompassing testicular, ovarian,
lung, head and neck, and colorectal cancers. These chemotherapeutic agents exert their
anticancer effects by instigating the formation of DNA cross-links, which, in turn, impede
cancer cell proliferation and elicit apoptosis [1,3,4]. Nonetheless, despite their widespread
application, the clinical utilization of platinum-based drugs is encumbered by notable
toxicity concerns, culminating in adverse effects such as nephrotoxicity, neurotoxicity, and
ototoxicity [1,2]. Furthermore, the regrettably common development of drug resistance and
the subsequent cancer relapse in patients underline an imperious necessity to explore novel
approaches to platinum-based chemotherapy [5–7]. The pursuit of such innovative strate-
gies is envisaged to surmount the prevailing limitations and offer improved therapeutic
outcomes for cancer patients [8–35].

Fatty-acid-like Pt(IV) prodrugs (FALPs) have emerged as a promising new class of Pt-
based anticancer agents that utilize innovative drug delivery strategies and cancer biology
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to overcome the challenges associated with conventional Pt(II) drugs [8,36–41]. Designed
to mimic the structure of fatty acids, these prodrugs utilize non-covalent interactions with
human serum albumin (HSA) for efficient drug delivery [36]. FALPs have demonstrated
remarkable stability in whole human blood, reducing their rate of reduction via reduc-
ing agents. Furthermore, they possess a distinctive mechanism of action that involves
accumulation in mitochondria, inducing mitochondrial damage with the release of Pt(II)
payloads, and resulting in increased proapoptotic peroxidase activity and elevated reactive
oxygen species (ROS) levels [39]. FALPs have shown potent in vitro activity against a
broad range of cancer types and promising in vivo efficacy in various mouse models [42].
Importantly, FALPs can be readily chemically modified to alter their biological activities
and chemical properties [37,41,43–46]. Recent studies have also demonstrated the potential
of incorporating these novel Pt(IV) prodrugs into nanoparticles for drug delivery using
either non-covalent encapsulation or covalent conjugation based on their amphiphilic struc-
tures [37]. Overall, FALPs represent a highly diverse and unique Pt scaffold with promising
mechanisms of action that could serve as powerful tools in developing new approaches for
cancer therapy. Although the modification of FALPs has predominantly centered around
their carboxylic head group, there has not been a comprehensive exploration of the effects
of modifying these groups on cellular responses.

This new study focuses on exploring the structure–activity relationship of FALP
derivatives (1–9 in Figure 1A), with a specific emphasis on how modifications of the
carboxylic head group’s hydrophobicity influence their anticancer activity and cellular
responses (Figure 2A). Understanding the impact of hydrophobicity on the uptake
of therapeutic molecules is widely recognized as a crucial factor in drug
development [36,47–53]. Remarkably, contrary to the widely accepted notion that in-
creased hydrophobicity enhances the cellular uptake of therapeutic molecules, the primary
findings of this study demonstrate that FALPs with hydrophilic modifications exhibit
exceptional penetration into cancer cells and mitochondria. This, in turn, triggers a cas-
cade of events, leading to substantial mitochondrial and DNA damage, and effectively
eradicating cancer cells. On the other hand, increased hydrophobicity in the modifications
unexpectedly hinders cellular uptake and mitochondrial accumulation, resulting in weaker
cellular responses and a lower in vitro therapeutic efficacy. These findings provide valuable
new insights into the fundamental principles of developing metallodrugs.
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Figure 2. Structure–activity relationship of fatty-acid-like Pt(IV) prodrugs. (A) Graphical represen-
tation of the hydrophobicity of the head group tuning the cytotoxicity of FALPs. (B) A bar graph 
depicting the IC50 values of FALPs (2–8) with varying levels of hydrophobicity in comparison to 
unmodified 1 against A2780cis ovarian cancer cells. (C) Correlation of the IC50 values and the calcu-
lated Log P of the head groups of FALPs (2–8). (D) Killing curves of 5 and 9 against A2780cis cells 
for 24 h. (E) Killing curves of 2 and 7 against A2780cis cells for 24 h. (F) Live/dead cell assay images 
of A2780cis cells treated with 2 and 7 ([Pt] = 1 µM) for 24 h. Scale bar = 100 µm. 
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terials. Briefly, amino moieties with different hydrophobicities (10–16) were conjugated to 
compound 1 via the HATU-catalyzed amide bond formation reaction. The final com-
pounds were purified via flash column chromatography and/or recrystallization. The 
overall yields were 44–78%. The synthesis of the Pt(IV) prodrug (9) was accomplished in 
a similar manner, as shown in Figure S1B. The conjugated Pt(IV) compounds (2–9) were 
characterized via 1H and 13C NMR spectroscopy, electrospray ionization mass spectrome-
try (ESI-MS), and HPLC, and they can be found in the Supplementary Materials (Figures 
S2–S9). In the 1H NMR spectra, the broad signal at ~6.6 ppm corresponds to the amine 
groups of the Pt(IV) center. The signal at ~2.8 ppm is the CH2 group adjacent to the carba-
mate. The signals at 6.8–8.6 ppm are attributed to the amides in 2–8. In ESI-MS, the iso-
topically resolved signals agree with the theoretical value of 2–9. The HPLC analysis of 

Figure 2. Structure–activity relationship of fatty-acid-like Pt(IV) prodrugs. (A) Graphical represen-
tation of the hydrophobicity of the head group tuning the cytotoxicity of FALPs. (B) A bar graph
depicting the IC50 values of FALPs (2–8) with varying levels of hydrophobicity in comparison to un-
modified 1 against A2780cis ovarian cancer cells. (C) Correlation of the IC50 values and the calculated
Log P of the head groups of FALPs (2–8). (D) Killing curves of 5 and 9 against A2780cis cells for 24
h. (E) Killing curves of 2 and 7 against A2780cis cells for 24 h. (F) Live/dead cell assay images of
A2780cis cells treated with 2 and 7 ([Pt] = 1 µM) for 24 h. Scale bar = 100 µm.

2. Results and Discussion

Synthesis and characterization of FALP derivatives with various head groups. The
synthesis of the Pt(IV) prodrug (2–8) is depicted in Figure S1A in the Supplementary Mate-
rials. Briefly, amino moieties with different hydrophobicities (10–16) were conjugated to
compound 1 via the HATU-catalyzed amide bond formation reaction. The final compounds
were purified via flash column chromatography and/or recrystallization. The overall yields
were 44–78%. The synthesis of the Pt(IV) prodrug (9) was accomplished in a similar manner,
as shown in Figure S1B. The conjugated Pt(IV) compounds (2–9) were characterized via
1H and 13C NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and
HPLC, and they can be found in the Supplementary Materials (Figures S2–S9). In the 1H
NMR spectra, the broad signal at ~6.6 ppm corresponds to the amine groups of the Pt(IV)
center. The signal at ~2.8 ppm is the CH2 group adjacent to the carbamate. The signals at
6.8–8.6 ppm are attributed to the amides in 2–8. In ESI-MS, the isotopically resolved signals
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agree with the theoretical value of 2–9. The HPLC analysis of the final product indicated
that the purity of compounds 2–9 from the described synthetic method was >95%.

Cytotoxicity profiles of FALP derivatives with various head groups. The in vitro an-
ticancer activity of the Pt(IV) prodrugs (1–9) was assessed using the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. This study utilized two human cancer
cell lines, namely A2780cis and MDA-MB-231. A2780cis is an ovarian cancer cell line
known for its resistance to conventional platinum chemotherapy, making it a formidable
challenge to treat. On the other hand, MDA-MB-231 represents a triple-negative breast
cancer cell line, which is currently recognized as one of the difficult-to-treat cancer types.
The cells were treated with 1–9 or cisplatin for 24 h, and the cell viability was evaluated.
The IC50 values, which represent the concentration of the drug required to inhibit the
growth of cells by 50%, are reported in the table in Figure 1B. The results show that 2–5
have lower IC50 values compared to those of 1 and have lower cisplatin in general. For
example, in the A2780cis ovarian cancer cell line, the IC50 (2) = 0.30 ± 0.06 µM is 36 times
lower than that of cisplatin (IC50 = 109.2 ± 13.5 µM) and 3 times lower than that of 1
(IC50 = 1.00 ± 0.06 µM). Notably, head group modifications do not always increase cyto-
toxicity more than FALP-1. For example, 7 and 8 exhibit much lower cytotoxicity than
1. Overall, in the A2780cis ovarian cancer cell line, the IC50 (7) = 3.75 ± 0.47 µM is
three times higher than that of 1, but it is still more potent than cisplatin. Notably, the
IC50 (8) = 5.07 ± 0.71 µM is 15 times higher than that of 2. Overall, the head group modifi-
cations of FALPs result in an alternation of therapeutic effects, which is a promising way to
fine-tune the anticancer activity of this class of metallodrugs.

Structure–activity relationship of FALP derivatives with head groups of different
hydrophobicity. Our goal was to study the relationship between the structure and activity
to gain a better understanding of how modifications to the head group affect the anticancer
properties of FALP derivatives. We hypothesized that the hydrophobicity of these modifi-
cations is a key factor in determining the cytotoxicity of the compounds (Figure 2A). To test
this hypothesis, we calculated the Log P values for all the modifications with the ALOGPS
2.1 program, which ranged from −0.28 to 4.22, as shown in Figure 1B. Compounds 2–5
had head group modifications with low hydrophobicity (or high hydrophilicity), while
compounds 7 and 8 had head groups with high hydrophobicity (or low hydrophilicity).
Our results, presented in Figure 2B, indicate that hydrophilic modifications lead to lower
IC50 values and a higher potency of FALPs, while hydrophobic modifications result in
increased IC50 values and reduced anticancer activity. To better illustrate the correlation
between the hydrophobicity of the head group modifications, we plotted the calculated Log
P values against the corresponding IC50 values in Figure 2C, which clearly demonstrates
the inverse impact of hydrophobicity on the anticancer activities of FALPs in general. Ad-
ditionally, we sought to determine if this observation was solely based on hydrophobicity,
so we engineered two isomers, 5 and 9. The head group modification of compound 9
was changed from amide to carbamate compared to compound 5, and interestingly, the
cytotoxicity profiles of both 5 and 9 were identical, as shown in Figures 1B and 2D. These
results suggest that the hydrophobicity of the structure plays a major role in the structure–
activity relationship. Finally, we focused on the two FALPs, 2 and 7, to illustrate this effect.
Although both 2 and 7 were very similar compounds, 2 had a hydrophilic polyethylene
glycol (PEG) modification (Log P = −0.28), while compound 7 carried a C6 hydrocarbon
chain (Log P = 4.02) of the same molecular weight. As shown in Figure 2E, compound
2 exhibited a much higher potency than 7 in a wide range of concentrations tested, and
the IC50 (7) = 3.75 ± 0.47 µM was 12 times higher than that of 2. The live/dead cell imag-
ing assays further validated this drastic difference in their in vitro anticancer activity, as
shown in Figure 2F, where compound 2 effectively eliminated all drug-resistant A2780cis
ovarian cancer cells, while compound 7 was deemed ineffective at the tested concentration
((Pt) = 1 µM). Overall, the combined evidence points out that the hydrophobicity of the
head group modifications dictate the anticancer activities of the FALPs.
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Cell entry and mitochondrial accumulation of FALP derivatives with head groups
of different hydrophobicities. Our next objective was to gain a more detailed understand-
ing of how modifications to the head group of FALPs affect their anticancer activities
through hydrophobicity. Cellular uptake is widely recognized as a critical factor in the
activity of metallodrugs. The influence of hydrophobicity on the cellular uptake of ther-
apeutic molecules has been widely acknowledged, with an increase in hydrophobicity
typically promoting cell entry. To this end, we conducted a graphite furnace atomic ab-
sorption spectroscopic (GFAAS) analysis of the cellular uptake for FALPs with various
head group modifications, including 2 and 7. The Log P values of compounds 2 and
7, as determined via GFAAS, are 1.97 and 2.57, respectively. This indicates that com-
pound 7 exhibits greater hydrophobicity than compound 2. Surprisingly, our results in
Figure 3A indicate that the hydrophilic modification of 2 (496.6 ± 16.09 pmol Pt/million
cells) led to an uptake of over eight times greater than the hydrophobic modifications of
7 (60.03 ± 8.01 pmol Pt/million cells). We previously discovered that mitochondria play
significant roles in the mechanism of action of FALPs, so we further investigated how the
hydrophobicity of the head group modifications affects the mitochondrial accumulation
of FALPs. As shown in Figure 3B, the mitochondrial Pt content of 2 (31.7 ± 5.1 pmol
Pt/million cells) was three times higher than that of 7 (11.72 ± 2.76 pmol Pt/million cells).
Nevertheless, all FALPs demonstrated a higher cellular uptake and mitochondrial accu-
mulation than cisplatin, despite using a higher Pt concentration in the cisplatin sample. In
summary, the introduction of a hydrophilic head group in FALPs promotes cell entry and
mitochondrial accumulation.
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Cellular Responses of FALP derivatives with head groups of different hydropho-
bicity. Based on the observation that hydrophilic head group modifications lead to in-
creased intracellular Pt levels, we formulated the hypothesis that such modifications would
result in greater mitochondrial and DNA damage, as well as increased apoptosis. MitoSOX
was utilized to assess the levels of mitochondrial ROS, while the γH2AX levels were an-
alyzed to determine DNA damage. As mitochondrial and DNA damage are known to
promote apoptosis, Annexin V/PI assays were also conducted to examine the apoptotic
effects. A flow cytometric analysis was used to evaluate the mitochondrial ROS, γH2AX,
and apoptosis in the cancer cells treated with FALPs (2 and 7) in the experiments. As
illustrated in Figure 1A, compound 2 has a hydrophilic head group, while compound 7 has
a hydrophobic head group. According to the flow cytometric results in Figure 4A, treatment
with 2 (1 µM, 24 h) significantly increased the mitochondrial ROS levels compared to the
control or 7. Additionally, the treatment of cisplatin at a higher concentration (10 µM, 24 h)
resulted in an insignificant change in the mitochondrial ROS levels, which is consistent with
its mechanism of action. The treatment of 2 (0.25 µM, 24 h) also induced DNA damage in
the treated A2780cis cells, as shown in Figure 4B. Furthermore, 7 at a higher concentration
(1 µM, 24 h) triggered DNA damage, but to a lesser extent than 2. Likewise, our flow
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cytometric analysis of Annexin V/PI showed that a larger population of cells were in the
late stages of apoptosis (23.3% for 2) compared to the effect of 7, which induced only 3.58%
of cells to undergo the late stages of apoptosis (Figure 4C). Based on the results, it can be
inferred that the FALP derivative (2) with a hydrophilic head group modification induces
mitochondrial and DNA damage as well as apoptosis more effectively than the one (7) with
a hydrophobic modification.
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analysis of MitoSOX in the A2780cis cells treated with FALPs (2 or 7) or cisplatin for 24 h. (B) Flow
cytometric analysis of γH2AX in the A2780cis cells treated with FALPs (2 or 7) or cisplatin for 24 h.
(C) Flow cytometric analysis of apoptosis in the A2780cis cells treated with FALPs (2 or 7) or cisplatin
for 48 h.

3. Materials and Methods

General information. All reagents were purchased from Strem, Aldrich, or Alfa
and used without further purification. Compound 1 was synthesized according to the
literature [36]. All reactions were carried out under normal atmospheric conditions. A
Bruker 400 NMR was used for NMR data acquisition (frequency: 400 M Hz for 1H NMR;
100 MHz for 13C NMR). Chemical shifts in 1H and 13C{1H} NMR spectra were internally
referenced to solvent signals (1H NMR: DMSO at δ = 2.50 ppm; 13C NMR: DMSO at
δ = 40.45 ppm). The high-resolution mass spectra of created ions were recorded on an
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Exactive Plus mass spectrometer (Thermo Scientific, Bremen, Germany). Analytical HPLC
was conducted on an Agilent 1100 system using C18 reverse-phase columns (Hypersil
GOLD; 100 mm × 3 mm; 5 µm). Graphite furnace atomic absorption spectroscopic (GFAAS)
measurements were taken on a PinAAcle 900Z spectrometer (PerkinElmer, Shelton, CT,
USA). Fluorescence spectra were taken on a FluoroMax-3 Fluorescence spectrophotometer
(Horiba, Japan) using the software called FluorEssence. Fluorescence images were acquired
using an IX70 (Olympus, Japan) inverted epifluorescence microscope equipped with a digi-
tal CCD camera (QImaging, Surrey, BC, Canada). Images were processed, and intensities
were quantified with ImageJ software v1.53t. Live/dead cell assay was carried out using
Invitrogen (Thermo Fisher Scientific) LIVE/DEADTM Cell Viability Kit (Cat. No. L3224).
Flow cytometry was carried out on a Accuri C6 flow cytometer (Becton, Dickinson and
Company Biosciences, Lakes, NJ, USA).

Synthesis of Compound 2. An amount of 1 mL of anhydrous DMF was added to
compound 1 (70 mg; 0.10 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a stream
of Ar and stirred at r.t. for 15 min. 2-(2-aminoethoxy) ethanol (28 µL; 0.28 mmol) was
added to the mixture. After 20 min of stirring at r.t., DIPEA (70 µL; 0.41 mmol) was
added. The reaction mixture was stirred in the dark at r.t. overnight, centrifuged, and
the supernatant was added into 3 mL of brine. Then, the precipitation was collected
via centrifugation, washed with water, and lyophilized overnight. Lyophilized product
was dissolved in small amount of MeOH and purified with flash chromatography. Yield:
53 mg (67%). 1HNMR (400 MHz, DMSO-d6): δ: 0.856 (NHCH2(CH2)14CH3, t, 3H), 1.23
(NHCH2(CH2)14CH3, m, 28H), 2.36 (CO(CH2)2CO, m, 4H), 2.88 (NHCH2(CH2)14CH3, q,
2H), 3.19 (NHCH2CH2O, q, 2H), 3.40 (CH2CH2OCH2CH2, m, 4H), 3.49 (OCH2CH2OH, q,
2H), 6.52 (NHCH2(CH2)14CH3, t, 1H), 6.62 (NH3, m, 6H), 7.90 (CONH(CH2)2O, t, 1H);
13C NMR(100 MHz, DMSO-d6): δ: 180.4, 172.0, 164.4, 72.6, 69.5, 60.6, 41.4, 40.0, 31.8, 30.3,
29.5, 29.4, 29.2, 27.0, 22.6, 14.4; HR-MS (positive mode) for [C25H54Cl2N4O7Pt]+: m/z calc:
787.3088, obsd: 787.3064. Purity: 99% determined via HPLC.

Synthesis of Compound 3. An amount of 1 mL of anhydrous DMF was added to
compound 1 (70 mg; 0.10 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a stream of
Ar and stirred at r.t. for 15 min. 2-methoxyethylamine (24 µL; 0.28 mmol) was added to the
mixture. After 20 min of stirring at r.t., DIPEA (70 µL; 0.41 mmol) was added. The reaction
mixture was stirred in the dark at r.t. overnight, centrifuged, and the supernatant was
added into 3 mL of brine. Then, the precipitation was collected via centrifugation, washed
with water, and lyophilized overnight. Lyophilized product was dissolved in small amount
of MeOH and purified with flash chromatography. Yield: 59 mg (78%). 1H NMR (400 MHz,
DMSO-d6): δ: 0.836 (NHCH2(CH2)14CH3, t, 3H); 1.23 (NHCH2(CH2)14CH3, m, 28H);
2.26 (CO(CH2)2CO, m, 4H), 2.85 (NHCH2(CH2)14CH3, q, 2H); 3.16 (NHCH2CH2O, 2H);
3.34 (CH2CH2OCH3, m, 4H); 3.23 (CH2CH2OCH3, s, 3H); 6.40 (NHCH2(CH2)14CH3 and
NH3, m, 7H); 7.84 (CONH, 1H); 13C NMR (400MHz, DMSO-d6): δ: 180.45,171.98, 164.49,
71.09, 58.33, 31.94, 31.73, 30.30, 29.48, 29.12, 26.92, 22.51, 14.36; HR-MS (positive mode)
for [C24H52Cl2N4O6PtH]+: m/z calc: 758.2986, obsd: 758.2985. Purity: 95% determined
via HPLC.

Synthesis of Compound 4. An amount of 1 mL of anhydrous DMF was added to
compound 1 (70 mg; 0.10 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a stream
of Ar and stirred at r.t. for 15 min. To the mixture, 0.5 mL anhydrous DMF solution of
aminoacetonitrile bisulfate (43 mg; 0.28 mmol) was added. After 20 min of stirring at
r.t., DIPEA (70 µL; 0.41 mmol) was added. The reaction mixture was stirred in the dark
at r.t. overnight, centrifuged, and the supernatant was added into 3 mL of brine. Then,
the precipitation was collected via centrifugation, washed with water, and lyophilized
overnight to afford yellowish-white-colored solid. Yield: 47 mg (65%). 1H NMR (400 MHz,
DMSO-d6): δ: 0.856 (NHCH2(CH2)14CH3, t, 3H), 1.23 (NHCH2(CH2)14CH3, m, 28H), 2.42
(CO(CH2)2CO, m, 4H), 2.87 (NHCH2(CH2)14CH3, q, 2H), 4.10 (NHCH2CN, d, 2H), 6.51
(NHCH2(CH2)14CH3, t, 1H), 6.66 (NH3, m, 6H), 8.68 (CONHCH2CN, t, 1H); 13C NMR
(100 MHz, DMSO-d6): δ: 180.2, 172.5, 170.5, 118.2, 60.8, 41.1, 31.8, 30.3, 29.5, 29.4, 29.2,
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26.9, 22.6, 14.4; HR-MS (positive mode) for [C23H47Cl2N5O5Pt]+: m/z calc: 739.2677, obsd:
739.2673. Purity: 95% determined via HPLC.

Synthesis of Compound 5. An amount of 1 mL of anhydrous DMF was added to
compound 1 (70 mg; 0.1 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a stream
of Ar and stirred at r.t. for 15 min. To the mixture, 0.5 mL anhydrous DMF solution
of glycine ethyl ester hydrochloride (39 mg; 0.28 mmol) was added. After 20 min of
stirring at r.t., DIPEA (70 µL; 0.41 mmol) was added. The reaction mixture was stirred
in the dark at r.t. overnight, centrifuged, and the supernatant was added into 3 mL of
brine. Then, the precipitation was collected via centrifugation, washed with water, and
lyophilized overnight to collect yellowish-white-colored solid. Yield: 47 mg (60%). 1HNMR
(400 MHz, DMSO-d6): δ: 0.853 (NHCH2(CH2)14CH3, t, 3H, J = 6.9 Hz), 1.15 (COOCH2CH3,
t, 3H, J = 7.1 Hz), 1.23 (NHCH2(CH2)14CH3, m, 28H), 2.39 (CO(CH2)2CO, m, 4H), 2.87
(NHCH2(CH2)14CH3, q, 2H), 3.792 (NHCH2COOCH2, d, 2H), 4.08 (COOCH2CH3, q, 2H),
6.50 (NHCH2(CH2)14CH3, t, 1H), 6.69 (NH3, m, 6H), 8.37 (CONHCH2COOCH2, t, 1H);
13C NMR(100 MHz, DMSO-d6): δ: 180.2, 172.4, 170.4, 60.8, 41.1, 31.6 30.3, 29.5, 29.4, 29.2,
26.9, 22.6, 14.6, 14.4; HR-MS (positive mode) for [C25H52Cl2N4O7Pt]+: m/z calc: 786.2936,
obsd: 786.2933. Purity: 98% determined via HPLC.

Synthesis of Compound 6. An amount of 1 mL of anhydrous DMF was added
to compound 1 (70 mg; 0.1 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a
stream of Ar and stirred at r.t. for 15 min. To the mixture, 0.5 mL anhydrous DMF
solution of propylamine (23 µL; 0.28 mmol) was added. After 20 min of stirring at r.t.,
DIPEA (70 µL; 0.41 mmol) was added. The reaction mixture was stirred in the dark at
r.t. overnight, centrifuged, and the supernatant was added into 3 mL of brine. Then,
the precipitation was collected via centrifugation, washed with water, and lyophilized
overnight to collect yellowish-white-colored solid. Lyophilized product was dissolved
in small amount of MeOH and purified with flash chromatography. Yield: 53 mg (72%).
1H NMR (400 MHz, DMSO-d6): δ: 0.814 (NHCH2(CH2)14CH3 and NHCH2CH2CH3 m,
6H); 1.23 (NHCH2(CH2)14CH3 and NHCH2CH2CH3 m, 28H); 2.25 (CO(CH2)2CO, m, 4H,
J = 7.1, 42.4 Hz), 2.87 (NHCH2(CH2)14CH3, q, 2H); 6.34 (NH and NH3, 7H); 7.73 (NH,
s, 1H); 13C NMR (100 MHz, DMSO-d6): δ: 180.54,171.68, 164.46, 32.03, 31.73, 30.30, 29.49,
29.44, 29.35, 29.12, 26.93, 22.80, 14.37; HR-MS (positive mode) for [C24H52Cl2N4O5PtH]+:
m/z calc: 742.3037, obsd: 742.3034. Purity: 95% determined via HPLC.

Synthesis of Compound 7. An amount of 1 mL of anhydrous DMF was added to
compound 1 (70 mg; 0.1 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a stream of Ar
and stirred at r.t. for 15 min. To the mixture, 0.5 mL anhydrous DMF solution of hexylamine
(37 µL; 0.28 mmol) was added. After 20 min of stirring at r.t., DIPEA (70 µL; 0.41 mmol)
was added. The reaction mixture was stirred in the dark at r.t. overnight, centrifuged,
and the supernatant was added into 3 mL of brine. Then, the precipitation was collected
via centrifugation, washed with water, and lyophilized overnight to collect yellowish-
white-colored solid. Lyophilized product was dissolved in small amount of MeOH and
purified with flash chromatography. Yield: 54 mg (69%). 1H NMR (400 MHz, DMSO-d6):
δ: 0.83 (NHCH2(CH2)14CH3 and NHCH2(CH2)4CH3, 6H); 1.23 (NHCH2(CH2)14CH3
and NHCH2(CH2)4CH3, 36H); 2.24 (CO(CH2)2CO, m, 4H), 2.87 (NHCH2(CH2)14CH3,
q, 2H); 2.97 (NHCH2(CH2)4CH3, 4H); 6.48 (NH and NH3, 7H); 7.79 (NH, 1H); 13C NMR
(100 MHz, DMSO-d6): δ: 180.47,171.60, 164.41, 31.99, 31.75, 31.46, 29.51, 29.16, 26.94, 26.57,
22.55, 22.52, 14.42; HR-MS (positive mode) for [C27H58Cl2N4O5PtH]+: m/z calc: 784.3507,
obsd: 784.3504. Purity: 95% determined via HPLC.

Synthesis of Compound 8. An amount of 1 mL of anhydrous DMF was added to
compound 1 (70 mg; 0.1 mmol) and HATU (46 mg; 0.12 mmol) in a vial under a stream
of Ar and stirred at r.t. for 15 min to obtain pale-yellow-colored solution. To the mixture,
0.5 mL anhydrous DMF solution of 1-adamantylamine (42 mg; 0.28 mmol) was added. After
20 min of stirring at R.T., DIPEA (70 µL; 0.41 mmol) was added. The reaction mixture was
stirred in the dark at r.t. overnight. The solution turned into a golden yellow color. It was
centrifuged, and the supernatant was added into 3 mL of brine. Then, the precipitation was
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collected via centrifugation, washed with water, and lyophilized overnight. Lyophilized
product was dissolved in small amount of MeOH and purified with flash chromatography.
Yield: 56 mg (67%). 1H NMR (400 MHz, DMSO-d6): δ: 0.858 (NHCH2(CH2)14CH3, t, 3H
1.23 (NHCH2(CH2)14CH3, m, 28H), 1.60 (CHCH2CH, Adamantyl, t, 6H), 1.90 (CCH2CH,
Adamantyl, d, 6H), 1.98 (CH2CH(CH2)2, Adamantyl, m, 3H), 2.31 (CO(CH2)2CO, m,
4H), 2.87 (NHCH2(CH2)14CH3, q, 2H), 6.52 (NHCH2(CH2)14CH3, t, 1H), 6.66 (NH3,
m, 6H), 7.30 (CONHC(CH2)3, s, 1H); 13C NMR(100 MHz, DMSO-d6): δ: 180.7, 171.2,
164.4, 51.0, 41.5, 41.4, 36.6, 31.8, 29.5, 29.4, 29.3, 26.9, 22.6, 14.4; HR-MS (positive mode)
for [C31H60Cl2N4O5Pt]+: m/z calc: 834.3664, obsd: 834.3660. Purity: 96% determined
via HPLC.

Synthesis of Compound 9. To PtC16 (80 mg; 0.122 mmol) and ethyl isocyana-
toacetate (16 µL; 0.14 mmol) in a vial, 1.5 mL of anhydrous DMF was added under a
stream of Ar and stirred at r.t. overnight. The product was extracted with Et2O, washed
with H2O, and lyophilized overnight to obtain a yellowish-white-colored solid. Yield:
42 mg (44%). 1HNMR (400 MHz, DMSO-d6): δ: 0.854 (NHCH2(CH2)14CH3, t, 3H), 1.18
(COOCH2CH3, t, 3H), 1.23 (NHCH2(CH2)14CH3, m, 28H), 2.34 (CO(CH2)2CO, m, 4H),
2.97 (NHCH2(CH2)14CH3, m, 2H), 3.72 (NHCH2COOCH2, d, 2H), 4.06 (COOCH2CH3, q,
2H), 6.647 (NH3, m, 6H), 6.83 (NHCH2(CH2)14CH3, t, 1H), 7.85 (CONHCH2COOCH2, t,
1H); 13C NMR(100 MHz, DMSO-d6): δ: 180.4, 171.7, 171.6, 158.4, 60.6, 41.9, 40.0, 31.9, 31.8,
30.4, 29.5, 29.3, 29.2, 27.0, 22.6, 14.6, 14.4; HR-MS (positive mode) for [C25H52Cl2N4O7Pt]+:
m/z calc: 786.2936, obsd: 786.2933. Purity: 95% determined via HPLC.

GFAAS analysis of Log P values for 2 and 7. The samples were first dissolved with
DMSO to create 200 µM stocks. From these stocks, 50 µL was added to a H2O:Octanol
mixture with a 1:1 volume ratio. This mixture was vortexed for 5 min and subsequently
centrifuged for 3 min at 3000 rpm. Following centrifugation, the H2O and octanol layers
were isolated for analysis. The Pt content in each phase was quantified using GFAAS to
calculate the Log P value.

Cell culture. A2780cis cell lines were purchased from Sigma-Aldrich and cultured in
RPMI 1640 with L-glutamine (Corning, New York, NY, USA) supplemented with 10% FBS
(Atlanta Biologicals, USA) and 1% penicillin-streptomycin (Corning). The MDA-MB-231
cell line was obtained via American Type Culture Collection, and cultured in DMEM 1 g/L
glucose, with L-glutamine and sodium pyruvate (Corning) supplemented with 10% FBS
and 1% penicillin-streptomycin (Corning). All cell lines were cultured at 37 ◦C under an
atmosphere containing 5% CO2. Cells were passaged upon reaching 80–90% confluence
via trypsinization and split in a 1:5 ratio.

MTT assays. Cytotoxicity profiles of compounds 1–9 and cisplatin against different
cell lines (A2780cis and MDA-MB-231) were evaluated using the MTT assays. A volume
of 100 µL of a RPMI or DMEM containing 8 × 104 cells/mL was seeded in 96-well plates.
The plates were incubated for 24 h at 37 ◦C with 5% CO2 to allow for adherence of cells. A
volume of 50 µL of RPMI or DMEM with various concentrations of cisplatin or compounds
1–9 were added to each well of the microplates. The Pt concentrations were determined via
GFAAS. After 24 h, a volume of 30 µL of MTT (5.0 mg/mL in PBS, Alfa Aesar, Haverhill,
MA, USA) was added to each well of the microplates. After 24 h, the medium was aspirated,
and 200 µL of DMSO was added to each well. The plates were shaken gently on a shaker at
r.t. for 10 min. Then, the absorbance of purple formazan was recorded at 562 nm with a
BioTek ELx800 plate reader. IC50 values were determined using Origin software v7.0. All
experiments were performed in triplicate.

LIVE/DEAD cell viability assays. A2780cis cells were cultured in imaging disks
(MatTek, Ashland, MA, USA) at a concentration of 5 × 104 cells with 2 mL of complete
medium and incubated for 24 h at 37 ◦C with 5% CO2. The cells were then treated with
compound 2 or 7 ((Pt) = 1 µM) and incubated for 24 h at 37 ◦C with 5% CO2. Before the
assay, the cells were washed with 1 mL PBS and 1 mL dye-free RPMI to remove serum
esterase activity that is generally present in serum-supplemented growth media. A 100 µL
volume of LIVE/DEAD working solution (formed by mixing 2 µM of calcein AM and 2 µM
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ethidium homodimer-1 in PBS) was carefully added to the disk, which was then incubated
at r.t. for 30 min. Images were acquired using an Olympus IX70 inverted epifluorescence
microscope equipped with a digital CCD camera (QImaging, Surrey, BC, Canada). Images
were processed, and intensities were quantified with ImageJ software (NIH).

GFAAS analysis of cellular platinum contents in A2780cis cells. A2780cis cells were
seeded in a 6-well plate at a concentration of 5 × 105 cells per well and incubated at
37 ◦C with 5% CO2 overnight. Next day, the cells were treated with compound 2 or 7
((Pt) = 1 µM) or cisplatin ((Pt) = 30 µM) for 24 h at 37 ◦C with 5% CO2. The remaining
live cells were harvested via trypsinization and counted. The cells were then digested in
200 µL 65% HNO3 at r.t. overnight. The Pt contents in the cells were analyzed via GFAAS.
All experiments were performed in triplicate.

Measurements of mitochondrial platinum contents in A2780cis cells. A2780cis cells
were seeded on a 6-well plate and incubated at 37 ◦C with 5% CO2 overnight. The cells
were treated with cisplatin ((Pt) = 30 µM) or compound 2 or 7 ((Pt) = 1 µM) for 24 h
at 37 ◦C with 5% CO2. Next, the wells were washed with PBS (1 mL) and harvested
via trypsinization (1 mL) and counted. Mitochondrial fractions were isolated using the
Thermo Scientific™ Mitochondria Isolation Kit for Mammalian Cells. The mitochondrial
fraction was then dissolved in 200 µL 65% nitric acid and shaken at 400 rpm on an Eppen-
dorf ThermoMixer™ F1.5 at r.t. overnight. Next, the fractions were diluted 4× in water
and the platinum content was analyzed using GFAAS. All experiments were performed
in triplicate.

Flow cytometric analysis of MitoSOX. A2780cis cells were seeded in 6-well plate at a
concentration of 6 × 104 cells/mL and incubated overnight. Then, the cells were treated
with cisplatin ((Pt) = 10 µM) or compound 2 or 7 ((Pt) = 1 µM) and incubated overnight.
The medium was aspirated, and cells were washed with 1 mL PBS. Next, the cells were
incubated with 5 µM MitoSOX reagent in fresh medium for 60 min at 37 ◦C with 5% CO2
in the dark. Cells were trypsinized and collected. The cell pellet was washed 2 times with
PBS. The cells were then re-suspended in PBS with 0.5% BSA to reach 106 cells/mL and
analyzed with BD Accuri C6 flow cytometer using FL-2 channel, and data were processed
with FlowJo v10.

Flow cytometric analysis of γH2AX. A2780cis cells were seeded in a 6-well plate at
a concentration of 4 × 105 cells/well. Cells were then incubated at 37 ◦C with 5% CO2
for 24 h. Next, the cells were treated with compound 2 ((Pt) = 0.25 µM), 7 ((Pt) = 1 µM) or
cisplatin ((Pt) = 30 µM) and incubated for 24 h. Live cells were collected and 250 µL BD
Permeabilization solution was added to re-suspend the cells, which were then incubated
for 20 min at 4 ◦C. Cell pellets were collected, washed twice with 1X BD Perm/Wash buffer,
and resuspended in 50 µL of buffer. Alexa 488-anti γH2AX antibody solution was then
added, and the samples were incubated in the dark for 60 min at r.t. The final cell pellets
were suspended in 500 µL of PBS with 0.5% BSA and analyzed with BD Accuri C6 flow
cytometer using FL-1 channel, and data were processed with FlowJo.

Flow cytometric analysis of apoptosis. A2780cis cells were seeded in a 6-well plate
at a concentration of 3 × 105 cells/well. Cells were then incubated at 37 ◦C 5% CO2 for 24 h.
Next, compound 2 or 7 ((Pt) = 0.5 µM) or cisplatin ((Pt) = 7 µM) was added and incubated
for 48 h. Both live and dead cells were collected, resuspended in 1mL PBS, and counted.
A 1X binding buffer from the FITC Annexin V Apoptosis Detection Kit 1 (BD Biosciences,
Franklin Lakes, NJ, USA) was then added to reach a concentration of 106 cells/mL. An
amount of 100 µL cell solution was transferred to a fresh 2 mL Eppendorf tube, and 5 µL
of both Annexin V-FITC and PI solutions were added to cells. Cells were incubated for
15 min at r.t. in the dark and then brought to 400 µL volume by adding required volume of
binding 1X buffer. Cells were then analyzed with FL-1 and FL-3 channels on a BD Accuri
C6 flow cytometer and data were processed with FlowJo.
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4. Conclusions

Our study represents the first comprehensive investigation of the structure–activity
relationship of FALPs. We synthesized a small library of FALPs with diverse head group
modifications and found that such modifications can greatly affect the cytotoxicity profiles
of FALPs, ranging from low to highly potent. Interestingly, a further analysis revealed
that only hydrophilic modifications led to a high potency, while hydrophobic moieties
resulted in a much lower cytotoxicity. To explore the impact of hydrophobicity on the
cytotoxicity of FALPs, we focused on two similar FALPs, one with a hydrophilic PEG head
group and the other with a hydrophobic hydrocarbon modification of the same molecular
weight. Using these model compounds, we evaluated cellular uptake and mitochondrial
accumulation through GFAAS, as well as mitochondrial and DNA damage and apoptosis
through flow cytometry. Our comprehensive findings reveal that FALPs incorporating
hydrophilic modifications can readily penetrate cancer cells and mitochondria, initiating
subsequent cellular responses that effectively eradicate cancer cells. Conversely, FALPs with
hydrophobic modifications showed a notably lower uptake and weaker cellular responses.
These combined results present an alternative perspective, differing from the conventional
belief that increased hydrophobicity invariably enhances cellular uptake. These findings
provide valuable new insights into the fundamental principles of developing metallodrugs.
It underscores the significance of developing FALPs with hydrophilic modifications, which
hold the potential to yield more potent and effective anticancer agents. This study lays the
groundwork for future research endeavors aimed at optimizing the structural design of
FALPs, with the objective of enhancing anticancer activity while minimizing side effects.

Supplementary Materials: The synthetic schemes and characterization of FALPs can be downloaded
at https://www.mdpi.com/article/10.3390/ijms241713301/s1.
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