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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
restrictive interests and/or repetitive behaviors and deficits in social interaction and communication.
ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing
factors are not yet fully understood, especially large structural variations (SVs). In this study, we
aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions,
duplications, and mobile element insertions, to ASD and related language impairments in the New
Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the
families contain SVs that followed expected segregation or de novo patterns and passed our filtering
criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic
etiology of the disorders. Gene Ontology and protein–protein interaction network analysis suggested
several clusters of genes in different functional categories, such as neuronal development and histone
modification machinery. Genes and biological processes identified in this study contribute to the
understanding of ASD and related neurodevelopment disorders.

Keywords: whole-genome sequencing; microarray genotyping; autism spectrum disorder; family cohort;
copy number variation; structural variation; language impairment; neurodevelopmental disorder

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) that can cause
difficulties in the everyday life of affected individuals, specifically in areas of social interaction,
communication, and restrictive behavior. The Diagnostic and Statistical Manual—Fifth Edition
(DSM-5) outlines the criteria for ASD diagnosis as “persistent deficits in (a) social commu-
nication and social interaction across multiple contexts, as manifested by deficits in social–
emotional reciprocity, nonverbal communicative behaviors and developing, maintaining,
and understanding relationships, and (b) manifested by at least two listed symptoms of
restricted, repetitive patterns of behavior, interests, or activities” [1]. Studies across Asia,
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Europe and North America estimate that ASD affects 1–2% of the world’s population.
The disorder prevails in individuals across racial, ethnic, and socioeconomic groups, and
the risk of ASD is about 4.5 times higher in boys than girls [2]. ASD is variable in its
presentation, and has been linked to both environmental and genetic risk factors [3–5]. The
impact of the environment on ASD development is outside the scope of this project, and
we will focus on the genetic components of the ASD etiology.

Researchers estimate the heritability of ASD varies between 50% and 90% [3–6]. Mul-
tiple twin studies showed variable concordance rates for a broad ASD phenotype in
monozygotic (70–90%) and dizygotic (0–30%) twins [5,7]. Current ASD research indicates
that the genetics of ASD are highly heterogeneous [8]: multiple genetic factors work in
concert to produce a cumulative effect in conferring ASD susceptibility, rather than any
single mutation being responsible for the ASD. For example, at least four types of rare
genetic risk factors have been identified: genetic syndromes (~10% cases), chromosomal
abnormalities (~5% cases), copy number variations (5–10% cases), and highly penetrant
gene mutations (~5% cases) [9]. In addition, ASD is polygenic, with many common variants
contributing to ASD susceptibility [10]. However, the majority of ASD cases are classified
as idiopathic [11] and the underlying genetic causes are unknown, especially with regard
to structural variations.

Structural variations (SVs) are large changes in the genome and contribute to many
disorders [12]. Depending on the size and the discovery technology, SVs are often divided
into larger copy number variations (CNVs) identified by genotyping array and smaller
SVs identified by sequencing, referred to as “genomic SVs” or gSVs in the following text
(the term “genomic SV” is simply a label used to describe this specific dataset for the
convenience of reading). CNVs are primarily more than 10 kb in length and the genotypes
are reported as the copy number of a genomic region. In contrast, gSVs are usually
more than 50 bp in length and can include insertions, deletions, duplications, inversions,
and mobile element insertions (MEIs). Both CNVs and gSVs are known risk factors for
ASD [13–17]. Rare CNVs are prevalent in 5–10% of all ASD cases, and typically impact at
least one but potentially several genes. There is an increased global burden for rare CNVs
in ASD-affected individuals when compared to controls [18], and ASD probands inherit
more rare CNVs than their unaffected siblings [16]. In particular, de novo CNVs attribute to
an increased risk of ASD [19–21]. Furthermore, gSVs, especially de novo gSVs, also showed
higher burden in ASD cases than controls and contribute to ASD genetic etiology [17].
Although gSVs are usually smaller than CNVs, they are more prevalent in populations
and could have major functional impact on genes, both through direct gene disruption and
affecting gene expression [22–24]. Compared to CNVs, the contributions of gSVs to ASD
have not been studied extensively.

The New Jersey Language and Autism Genetics Study (NJLAGS) collected a cohort
focused on understanding the shared genetic etiology for language impairment in ASD
with more common language impairments, including specific and nonspecific language
impairment disorders in a family setting [25]. Specific language impairment (SLI) is a promi-
nent language disorder that affects approximately 7–8% of English-speaking 5-year-olds in
the United States [26]. The disorder manifests with difficulties in language skills with no
effect on psychology, neurology, or signs of intellectual disabilities [27]. ASD has a strong
language component and genetic mapping studies showed shared genetic risks between
ASD and SLI [28–30]. Linkage analyses of the NJLAGS cohort also identified peaks for
SLI in families affected by both ASD and SLI [25,31]. Therefore, examining families with
both ASD and SLI individuals could identify genes that contribute to both phenotypes and
potentially explain the manifestation of SLI in some family members as opposed to ASD in
others [25].

In this study, we aimed to specifically assess the contribution of SVs to ASD and
SLI in the NJLAGS cohort. We analyzed SVs across the size spectrum, including CNVs
identified using the genotyping array and gSVs identified using whole-genome sequencing
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(WGS). Across the cohort, we identified variants and genes contributing to both ASD and
language impairment.

2. Results
2.1. Family Samples and Project Overview

The NJLAGS cohort recruited families that had at least one ASD patient. Many
families also have additional individuals with language impairments (LI or RI). In this
study, we focused on three phenotypes: ASD, LI* (the union of individuals diagnosed
with either ASD or LI), and RI* (the union of individuals diagnosed with either ASD or RI)
(see Methods Section 4.1 for phenotype definition details). These phenotype definitions
allow us to examine the genetic variants contributing to ASD, as well as related language
impairments. Microarray genotyping and WGS were conducted for 524 and 272 individuals
from 109 and 73 families, respectively (Table 1). For this study, CNVs were identified using
the microarray data, MEIs were identified using the WGS data, and gSVs were obtained
from a previous study using the WGS data [32]. After merging the MEIs and gSVs into a
gSV/MEI call set, the CNV and gSV/MEI call sets were annotated, filtered, and prioritized
to obtain candidate variants and candidate genes. The final candidate genes from the two
pipelines were combined into one gene set, which was then subjected to enrichment and
pathway analysis.

Table 1. Summary of families and patients.

Phenotype Patients Male Female Families Dominant Recessive/De
Novo

CNV ASD 147 119 28 109 0 109

LI* 196 146 50 109 7 109

RI* 235 160 75 109 8 108

Cohort 524 300 224 109 - -

gSV/MEI ASD 83 65 18 73 0 73

LI* 117 86 31 73 7 73

RI* 134 96 38 73 8 73

Cohort 272 166 106 73 - -

Patients, male, female: the number of affected individuals and their sexes. Families: the number of families
represented by affected individuals. Dominant, recessive/de novo: the number of families whose phenotype
matches a particular segregation pattern. Families with multiple trios can fall within multiple segregation
categories, so the sum of the last two columns may be greater than the count of total families.

2.2. Candidate CNV Identification

First, we identified candidate CNVs and associated candidate genes. The overall
workflow is outlined in Figure 1. The initial genotyping was carried out in three batches.
To improve the accuracy of CNV identification, we applied two CNV calling algorithms:
PennCNV and QuantiSNP (see Methods Section 4.3 for detail). After merging CNVs from
PennCNV and QuantiSNP with >70% reciprocal overlap, we excluded 21 individuals
who had an excess number of CNVs (>19, cohort median = 7). After QC, 524 individuals
from 109 families were included in the CNV analysis. In total, 2528 CNVs passed QC
and filtration (see Methods Section 4.4 for details). The sizes of CNVs range from 10 kb
to 6309 kb, with a median size around 45 kb. The copy number of CNVs ranges from
0 (homozygous deletion) to 4 (homozygous duplication), with CN1 (heterozygous deletion)
being the most common genotype (1641 CNVs, Figure S1A). No candidate CNV had more
than four copies in any individual. ASD and unaffected individuals had the same median
count of CNVs (7) as did LI* and RI* individuals (6) (Figure S1B).
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Figure 1. Workflow for candidate CNVs and gene identification.

Next, we prioritized the 2528 CNVs according to the absence of benign annotation,
overlap with coding region, fit of an inheritance pattern, and cohort allele frequency (see
Methods Section 4.5 for details). We prioritized 174 CNVs for ASD, 196 for LI*, and
151 for RI* (Figure 1, Table 2). The majority of candidates have both StrVCTVRE and
SvAnna predicted pathogenicity scores >0, suggesting potential functional impact of these
variants. The top candidate CNVs (StrVCTVRE score > 0.5 and SvAnna score > 1) and
their associated genes are listed in Table 3. Several CNVs are known to cause congenital
neurodevelopmental disorders (e.g., cerebellar atrophy, mental retardation, etc.). Finally,
genes overlapping candidate CNVs were extracted and filtered on brain expression patterns.
The candidate genes were later combined with candidate genes from the gSV/MEI analysis
for joint analysis (see Candidate Gene Analysis Section 2.5 below).
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Table 2. Summary of candidate CNVs for the three phenotypes.

Phenotype Prioritized
CNVs

Median
Length

(bp)
Deletion Duplication StrVCTVRE

>0
SvAnna

>0

ASD 174 58,649 111 63 135 114

LI* 196 54,899 139 57 152 130

RI* 151 64,567 106 45 102 96

Table 3. Top candidate CNVs and associated genes.

Chr Start End Geno-
type Family Genes Known Phenotype

(OMIM) StrVCTVRE pSV

1 19,540,528 19,988,894 CN1 FAM96

AKR7A2|AKR7A3|AKR7L|CAPZB
|EMC1|EMC1-

AS1|LOC100506730|LOC105378614
|MICOS10|MICOS10-

NBL1|MRTO4|NBL1|RPS14P3|SL
C66A1

Cerebellar atrophy, visual
impairment, and

psychomotor retardation
0.707 9

1 19,545,053 19,596,156 CN1 FAM96 AKR7L|EMC1|EMC1-AS1|MRTO4 0.673 2

1 19,622,270 19,715,311 CN0 FAM96 AKR7A2|CAPZB|SLC66A1 0.699 3

1 19,733,320 19,988,894 CN1 FAM96 CAPZB|LOC105378614|MICOS10
|MICOS10-NBL1|NBL1|RPS14P3 0.627 4

1 46,721,155 46,782,409 CN1 FAM19 LRRC41|RAD54L|UQCRH 0.752 2

1 241,829,586 241,843,408 CN1 FAM5 WDR64 0.594 2

2 98,317,685 98,391,355 CN1 FAM88 C2orf92|TMEM131|ZAP70

Autoimmune disease,
multisystem,

infantile-onset, 2;
Immunodeficiency 48

0.627 2

6 30,337,738 30,541,852 CN1 FAM2 ABCF1|GNL1|HLA-
E|LINC02569|PRR3 0.745 4

7 87,436,780 87,514,832 CN1 FAM138 DBF4|RUNDC3B|SLC25A40 0.652 3

8 176,818 2518,930 CN1 FAM30

ARHGEF10|CLN8|DLGA
P2|DLGAP2-

AS1|ERICH1|FAM87A|FBXO25
|KBTBD11|KBTBD11-

OT1|LOC101927752|LOC101927815
|LOC101928058|LOC105377777

|LOC286083|LOC401442|MIR3674
|MIR596|MIR7160|MYOM2|RPL23

AP53|TDRP|ZNF596

Ceroid lipofuscinosis,
neuronal, 8; Ceroid

lipofuscinosis, neuronal,
8, Northern

epilepsy variant

0.732 7

11 94,681,989 94,732,407 CN1 FAM44 CWC15|KDM4D 0.694 2

15 90794,757 90,950,358 CN3 FAM27 CIB1|GABARAPL3|IQGAP1|NGRN
|TTLL13P|ZNF774 0.561 1.2

17 27,187,789 27,434,490 CN3 FAM21
DHRS13|ERAL1|FLOT2|LOC101927018
|MIR144|MIR451A|MIR451B|MIR4732
|MYO18A|PHF12|PIPOX|SEZ6|TIAF1

0.725 1.6

17 29,107,588 29,262,773 CN3 FAM21 ADAP2|ATAD5|CRLF3|SUZ12P1|TEFM 0.529 1.2

17 56,584,205 57,229,716 CN3 FAM21
MIR301A|MIR454|MTMR4|PPM1E

|RAD51C|SEPTIN4|SEPTIN4-
AS1|SKA2|TEX14|TRIM37

0.592 1.4

17 56,717,956 57,017,420 CN1 FAM2 PPM1E|RAD51C|TEX14

Fanconi anemia,
complementation group O;

Breast-ovarian cancer,
familial, susceptibility to, 3

0.581 2
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Table 3. Cont.

Chr Start End Geno-
type Family Genes Known Phenotype

(OMIM) StrVCTVRE pSV

17 57,567,551 57,875,554 CN1 FAM104 CLTC|DHX40|LINC01476|PTRH2
|VMP1

Infantile-onset
multisystem neurologic,

endocrine, and pancreatic
disease; Mental

retardation, AD 56,

0.813 2

22 31,190,639 31,375,585 CN1 FAM27 LOC107985544|MORC2|MORC2-
AS1|OSBP2|TUG1

Charcot–Marie–Tooth
disease, axonal, type 2Z 0.742 2

2.3. A Candidate Syndromic CNV in Individual FAM23-003

We compared candidate CNVs in our patients with CNVs implicated in syndromic
ASDs. One ASD patient (FAM23-003), was determined to have two CNVs overlapping the
1q21.1 duplication syndrome region, which is associated with ASD [13,14]. Both CNVs
within the region are de novo heterozygous duplications (CN3): one was identified by Pen-
nCNV (chr1:146497779-147826789; DUP_1 in Figure 2) that had a >50% reciprocal overlap
with the 1q21.1 locus. A second CNV was identified by QuantiSNP (chr1:146089404-
146769831; DUP_2 in Figure 2), which shows partial overlap with the DUP_1. In combina-
tion these two CNVs covered 84.1% of the1q21.1 duplication syndrome locus and are likely
to be one CNV that each program provided a partial definition of. Medical records for
this patient indicated overlapping symptoms with the 1q21.1 duplication syndrome (see
Discussion for details). Therefore, patient FAM23-003’s ASD diagnosis might be explained
by this de novo CNV.
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Figure 2. Candidate syndromic CNVs at the 1q21.1 locus. Genome Browser tracks show the 1q21.1
duplication syndrome locus (red), the duplication in the patient called by PennCNV (DUP_1, green)
and the duplication called by QuantiSNP (DUP_2, blue).

2.4. Candidate gSV/MEI Identification

Next, we determined the contribution of gSVs and MEIs to the phenotypes. The overall
workflow is described in Figure 3. For gSV analysis, 272 individuals from 73 families were
included, including 83, 117, and 134 ASD, LI*, and RI* patients, respectively (Table 1). We
identified 32,243 high-quality gSVs in the WGS data set previously [32]. Because standard
gSV detection programs have low sensitivities for MEIs, we applied the program MELT
to identify MEIs using the WGS data. Overall, 12,587 MEIs in 259 individuals passed QC.
As expected, Alu is the dominant polymorphic MEIs in the cohort, followed by LINE-
1 and SVA. The size distribution of the MEIs is shown in Figure S2. When combined,
42,950 gSV/MEI loci were included in the downstream analysis (see Methods Section 4.7
for QC and and Section 4.8 for merging details). After applying the inheritance pattern and
known benign variant filtering, 1816 variants were identified.

To identify variants contributing to each phenotype, we applied two pipelines (Figure 3),
the first of which was an “AF-focused” pipeline that is focused on rare variants within the
genic regions (i.e., exonic and intronic variants). The pipeline identified five exonic variants,
including two for ASD (Table S4). Because of the large number of intronic variants, we
applied additional filters on the overlapping genes (see Methods Section 4.9 for details).
After the filtering, 32 intronic variants in 30 genes were identified for the three phenotypes.
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Second, an “eQTL-focused” pipeline that identifies intronic and intergenic eQTL variants in
brain tissues was applied. We identified gSVs and MEIs in our dataset that are considered
causal eQTL variants in brain tissues in the GTEx project samples. A total of 26 intronic
variants and 10 intergenic variants met these criteria and 29 and 12 eQTL genes were
identified, respectively. The exonic variants and eQTL variants that are associated with
gene expression in at least three tissues are listed in Table 4.
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Table 4. Candidate exonic and top eQTL gSV/MEIs and their associated genes.

Chr Start End Type Gene Sample
AF Pop AF Tissue

Count Pipeline

10 94,707,842 94,708,290 INS EXOC6 2.32% 1.14% - ExonicAF

17 78,356,535 78,356,813 INS RNF213 4.44% 4.49% - ExonicAF

22 36,561,302 36,561,477 INS APOL3 1.16% 3.08% - ExonicAF

3 155,656,737 155,656,738 INS GMPS 0.39% 0.04% - ExonicAF

8 66,927,128 66,927,399 INS DNAJC5B 0.39% 0.26% - ExonicAF

10 104,645,257 104,645,587 DEL AS3MT 42.88% - 14 IntronicEQTL

4 152,340,722 152,341,553 DEL SH3D19;FAM160A1 51.68% 37.30% 6 IntronicEQTL

6 170,038,129 170,038,446 DEL WDR27 23.78% 26.38% 7 IntronicEQTL

6 170,044,824 170,045,154 DEL WDR27 30.41% - 3 IntronicEQTL

14 92,619,420 92,620,656 INS CPSF2 14.67% 20.65% 15 IntronicEQTL

17 76,052,946 76,053,029 INS DNAH17 9.07% - 3 IntronicEQTL

20 1,546,228 1,546,508 INS SIRPB2 32.82% 40.56% 5 IntronicEQTL

20 34,458,566 34,458,843 INS FER1L4;CPNE1 8.30% 4.21% 6 IntronicEQTL

5 167,619 167,899 INS CCDC127;LRRC14B 9.65% 4.23% 3 IntronicEQTL

6 110,102,982 110,103,230 INS MICAL1;AK9 61.00% 26.96% 4 IntronicEQTL

6 116,898,686 116,898,965 INS RSPH4A;KPNA5 17.95% 17.27% 13 IntronicEQTL

8 61,526,797 61,527,076 INS RAB2A 25.68% 20.85% 6 IntronicEQTL

4 120,244,573 120,244,904 DEL C4orf3 24.06% - 4 IntergenicEQTL

10 124,736,004 124,736,285 INS PSTK 63.71% 42.99% 3 IntergenicEQTL

4 152,732,823 152,738,842 INS FAM160A1 10.81% 2.90% 3 IntergenicEQTL

9 95,680,508 95,680,786 INS ZNF484;BICD2;CENPP 14.67% 9.60% 4 IntergenicEQTL

2.5. Candidate Gene Analysis

The CNV and gSV/MEI pipelines each prioritized a list of candidate genes across
three phenotypes. These genes were then combined into a single gene list. Table 5 shows
the counts of these genes, as well as the counts of families where the candidate genes were
identified from. A total of 274 candidate genes were prioritized from the CNV data and
75 genes from the gSV/MEI data, including 344 total unique genes (Table S5). Among the
candidate genes, 46 were reported previously in the SFARI database, and 13 additional
genes were reported in the ADHDgene database or other NDD studies (Table S5). The
majority of the families (86 of 112 families, ~77%) contained at least one candidate gene for
each phenotype.

Table 5. Summary of genes prioritized from both CNV and SV data sets.

Phenotype CNV SV/MEI Total (Unique)

Genes Families Genes Families Genes Families

ASD 212 50 49 51 258 77

LI* 203 54 50 41 252 76

RI* 161 43 57 48 217 73

Total 274 62 75 58 344 86
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Five genes were identified in both CNV pipeline and gSV/MEI pipelines: DIP2C,
SH3D19, WWC1, DNAH17, and FN3K. DIP2C, SH3D19, WWC1, and FN3K are candidate
genes for all three phenotypes, while DNAH17 is a candidate gene for ASD. Variants in
DIP2C (disco interacting protein 2 homolog C) and DNAH17 (dynein axonemal heavy
chain 17) have been previously linked to ASD [33,34], and WWC1 was identified as a risk
gene for Tourette syndrome, another NDD known to be comorbid with ASD [35].

From the gSV pipeline, five genes were prioritized in the exonic AF pipeline, with two
genes for ASD: EXOC6 and RNF213. EXOC6 (exocyst complex component 6) contains a
LINE1 insertion that overlaps its exon 16 and meets the recessive segregation pattern for
all three phenotypes. EXOC6 was reported in the SFARI database as a strong candidate for
ASD, and GO analysis links it to the axon development. EXOC6 knockout mice demonstrate
a lack of response to tactile stimuli and hyperactivity, indicating a disruption of nervous
signaling. RNF213 (ring finger protein 213) contains an Alu insertion that overlaps its
exon 58 and meets the recessive segregation pattern for all three phenotypes. RNF213
was reported as a candidate gene for Tourette’s syndrome [35]. Besides exonic variants,
many genes identified from the intronic AF pipeline are strong candidates for ASD, such as
RIMS2 (regulating synaptic membrane exocytosis 2, RI*), and ANK3 (ankyrin 3, RI*).

From the eQTL focused pipeline, we identified 40 candidate genes (Table S4). For
example, an Alu insertion on chromosome 18 (chr18:73953939-73954219) was identified
as a causal eQTL variant for TSHZ1 (teashirt zinc finger homeobox 1) in the cerebellum
samples in GTEx. The insertion segregates in two NJLAGS families for all three phenotypes
(Table S4). TSHZ1 is a high-confidence ASD gene in the SFARI database and it is important
for motor neuron development in mouse [36].

2.6. GO Term and Pathway Enrichment Analysis

Using the final gene list, we performed GO term (Table S6) and pathway (Table S7)
enrichment analysis. We found enrichment in several GO terms related to neuronal devel-
opment, including axon part, which comprises 15 candidate genes, such as the gSV/MEI
exonic candidate EXOC6 (see candidate genes analysis) and a high-confidence ASD gene
ANK3. Another candidate gene in the term is NRSN1 (neurensin 1). NRSN1 is identified
overlapping a CNV (chr6: 24139942-24151395) in patient FAM44-005 with an RI* phenotype.
NRSN1 plays a role in neurite extension and has been identified as a risk gene for reading
impairment [37]. Related terms, such as “dendrite extension,” “distal axon,” and “nervous
system development,” were all likewise enriched. Another enriched GO term is “histone
demethylase activity,” including genes KDM4C, KDM4D, and JMJD1C, all of which are
known to contribute to susceptibility for NDDs [38–40]. In our cohort, KDM4C and JMJD1C
were prioritized across all three phenotypes, and KDM4D for the RI* phenotype.

Along with the GO term analysis, we also looked for enrichment in pathways for NDD
association. The most significant pathway (q = 0.0023) was the aforementioned “1q21.1 copy
number variation syndrome”, discussed above in the syndromic CNV section. Likewise
represented is the “complement and coagulation cascades” pathway, chiefly related to
thrombin formation and blood cell development, but with some annotation in genes known
to be associated with Tourette’s syndrome, epilepsy, and intellectual disability.

2.7. Protein–Protein Interaction Network Analysis

Finally, we constructed a PPI network for the candidate genes to examine the shared
etiology among families and phenotypes. Out of the 344 candidate genes, 116 genes
connected into a single network (Figure 4, Table S8), including 29 known NDD genes.

We identified one cluster centered on hub genes DLGAP2 (DLG associated protein 2),
RBFOX1 (RNA-binding protein, fox-1 homolog (C. elegans) 1), and RIMS2. DLGAP2 is a
known ASD risk gene associated with dysfunction of social cognition in knockout mice [41].
RBFOX1 is a neuronal RNA-binding protein previously demonstrated to be a regulator of
cytoplasmic RNA metabolism necessary for cortical development, and has also been linked
to ASD [42]. RIMS2 is also a known ASD risk gene that has been discussed in the candidate
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genes section above. In addition to known NDD genes, the networks include genes that
were not included in our NDD gene lists but showed close association with the known
genes. For example, the WNT signaling pathway genes WNT3 and WNT9B have been
shown to be involved in neurodevelopment and could contribute to ASD etiology [43].
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Figure 4. PPI Network for candidate genes. PPI network of 116 candidate genes. PPI network edges
were defined by three databases: ConsensusPathDB (C), STRING (S), and GIANT_v2 (G). Edges
defined by multiple databases are denoted as M. Genes that are also present in the known NDD gene
list are colored accordingly (see Methods Section 4.12 for details).

The network also contains many genes involved in the histone modification process.
For example, genes that overlap the GO term for “histone demethylase activity” (KDM4C;
JMJD1C; KDM4D) form a cluster linked by KAT2B (lysine acetyltransferase 2B). KAT2B and
KAT6A (lysine acetyltransferase 6A) are lysine acetyltransferases and have been identified
as NDD genes. Specifically, KAT6A is specific to the RI* phenotype and has been linked to
impaired speech development [44].

3. Discussion

ASD is a complex disorder with a highly heterogeneous genetic background. The
current SFARI Gene database listed 1128 genes that have been associated with ASD.
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Large SVs, especially de novo CNVs and gSVs, have been consistently shown to have
a higher burden in ASD cases than normal controls [13–17]. By systematically examin-
ing the association of different types of SVs with ASD and language impairments in the
NJLAGS cohort families, we identified variants and candidate genes that are associated
with ASD/language impairments.

Among the ASD patients, we identified one patient who has de novo CNVs that
overlap the 1q21.1 duplication syndrome region. Duplications in this region were linked to
macrocephaly/microcephaly and other NDDs, including ASD [45]. The patient with the
CNVs was nonverbal and unable to take any of the diagnostic batteries. The patient also
has a history of erratic moods, self-injurious behavior, and obsessive–compulsive disorder.
These observations are consistent with some of the 1q21.1 duplication syndrome symptoms,
including impaired communication skills. The patient does not have macrocephaly or
microcephaly, another common feature of 1q21.1 duplication syndrome. A clinical test
would be needed to confirm the presence of the CNV and provide a clinical diagnosis
for the patient. In addition to the candidate syndromic CNVs, we identified more than
250 candidate CNVs that could contribute to the phenotypes in the cohort. Consistent with
previous studies, most candidate CNVs are de novo CNVs (Table S3). Because of their
large sizes and potential severe impact on affected genes, these CNVs are likely to be under
strong purifying selection and will not be passed down from generation to generation.

Besides large CNVs, we also examined the contribution of other SVs, including inser-
tion, deletion, and MEIs in the cohort using WGS data. gSVs are important contributors
to ASD, although their contribution has not as been extensively studied as CNVs [17].
In addition to assessing the direct impact of gSV/MEIs at the integration sites, we also
identified gSV/MEIs that are potential causal brain eQTL loci and affect nearby gene
expressions. gSVs have been shown to affect nearby gene expression and typically have a
bigger effect than single-nucleotide variants (SNVs) [22,23]. In our cohort, we identified
36 intronic/intergenic gSV/MEIs that passed our filtering criteria and were causal variants
for brain eQTLs in the GTEx project. These variants could affect the expression of the
associated brain-expressed genes in the cohort and contribute to the genetic etiology of
the disorders.

Combining the candidate genes from both CNVs and gSV/MEIs, we identified 344 can-
didate genes, including more than 200 genes that are not included in the current database.
Many new genes showed enrichment in GO terms and showed connection with known
NDD genes in the PPI network. The GO enrichment and PPI network analyses pointed to
several biological processes that are important for ASD etiology, such as neuronal develop-
ment and histone modification. Several of the terms (e.g., “histone modification”, “actin
binding”) also showed enrichment in the cohort in our previous studies of SNVs [32,46].
These genes are strong candidates for future study of their contribution to ASD.

Our study has a few limitations. One is the moderate sample size of the cohort. The
family setup of the NJLAGS cohort allowed us to define and select segregating and de
novo variants, which vastly reduced the number of false-positive variants. However, the
comparatively small number of unaffected individuals in the sample may have hidden
the signal of enrichment for CNVs in ASD probands. Furthermore, our sample was
collected in two separate waves: the first with diagnoses made under DSM-IV and the
second with diagnoses under DSM-5. Individuals meeting DSM-IV criteria for Asperger’s
disorder would not have been considered affected in our first collection wave, having
neither DSM-IV autistic disorder nor language impairment. Similar individuals would
have been diagnosed with ASD under our second collection wave, due to the change in
clinical diagnostic guidelines, potentially leading to a small degree of clinical heterogeneity
across the two study waves. Additionally, the number of high-confidence candidate genes
are limited by the sample size. Given the large number of genes involved in ASD, future
study with a larger sample size could further increase the statistical power for candidate
variant/gene identification.
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Another limitation is that the variant discovery was based on a combination of geno-
typing array and short-read sequencing technologies. Using both technologies allowed
us to cover most of the size spectrum and types of SVs, but neither technology is ideal for
SV detection [47,48]. In particular, microarray genotyping is unable to detect inversions
with neutral copy number changes. Previous studies have identified potentially causal
inversions and balanced chromosomal rearrangements in certain cases of ASD [49,50].
Similar cases in our cohort would have been invisible using our current methodology. In
the future, long-read sequencing technologies could provide a more complete and accurate
SV profile and improve the accuracy of variant discovery [51]. Lastly, we limited our
analysis to interactions among SVs. Several types of data, including coding SNVs, and
microRNA variants have been identified in the NJLAGS cohort [32,46]. Integrative analysis
of candidate genes from multiple types of variants could further improve the power of
the analysis.

In conclusion, our multimodal analysis of SVs in the NJLAGS cohort has resulted in
a list of high-confidence candidate genes that are likely to be involved in the etiology of
ASD and SLI. Drawn from CNV, gSV, and MEI results, we prioritized a set of genes and
biological processes that emphasize the effect of neuron growth and histone modification in
ASD patients. Experimental study of the function and effect of these candidate genes could
further clarify their role in the underlying mechanisms of ASD and its related phenotypes.

4. Materials and Methods
4.1. Family Selection and Phenotyping

The samples were collected by the NJLAGS [25] and the study was approved by the
Institutional Review Board at Rutgers, The State University of New Jersey (IRB: 13–112Mc).
NJLAGS gathered data from individuals with ASD and their family members to conduct
genetic analysis. To assess their condition, each person was evaluated for ASD, oral
language impairment (LI), written language impairment or reading impairment (RI), and
social responsiveness during recruitment. The diagnostic process and evaluation criteria
have been described in detail previously [25]. Briefly, ASD diagnoses were based on a
combination of three resources: (1) the Autism Diagnostic Interview (ADI-R), (2) the Autism
Diagnostic Observation Schedule (ADOS), and (3) either the Diagnostic and Statistical Manual
of Mental Disorders IV (DSM-IV) or DSM-5, depending on date of the assessment (see [25]
for details). In this study, LI is defined as either (1) receiving a score of either less than
85 on the Clinical Evaluation of Langue Fundamentals-4 (CLEF-4) test or (2) a history of
language/reading difficulties with at least a score one standard deviation (SD) below their
peers on at least 60% of oral language subtests. RI is defined as a score of one SD below
the mean of 60% on all reading tests. Ascertainment of families in wave 1 (N = 79 families)
required one person with DSM-IV autistic disorder and an additional family member with
SLI, while wave 2 (N = 32 families) required one person with DSM-5 ASD and an additional
family member with LI or RI [32]. To determine any shared genetic causes of ASD and LI,
three phenotypes were used to define affected individuals, similar to a previous study [25]:
ASD, the union of individuals diagnosed with either ASD or LI (termed LI* in the following
text), and the union of individuals diagnosed with either ASD or RI (termed RI* in the
following text). Because of our interest in shared genes between these conditions, the union
phenotypes allow for the analysis of inherited genes that contribute to different diagnoses
across generations. For example, a gene that contributes to the LI phenotype in a parent
might contribute to the language phenotype in their child with ASD. These combined
categories are useful for prioritizing shared genes as well as identifying de novo variants.

4.2. Microarray Genotyping and Quality Control

The genetic material of the NJLAGS cohort was housed and maintained at the National
Institute of Mental Health (NIMH) Repository and Genomics Resource (NRGR), with the
genetic and clinical data incorporated into the NRGR Autism Collection and the NIMH
Data Archive (NDA). For microarray genotyping, samples were genotyped using two types
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of genotyping microarrays: Affymetrix Axiom 1.0 Genome-Wide CEU 1 (Affymetrix, CA,
USA) and Illumina Infinium PsychArray (Illumina, CA, USA). The Illumina genotyping
was performed in two batches (Table S1). The microarray genotyping was performed at
Rutgers University Cell and DNA Repository (RUCDR, Piscataway, NJ, USA) following
the manufacturer’s protocols. The single-nucleotide polymorphism (SNP) genotyping and
quality matrix (e.g., log R ratio and B allele frequency) calculations were performed with
the Axiom Analysis Suite (v4.0.3.3) and GenomeStudio Software (v2.0.4) for the Affymetrix
and Illumina microarrays, respectively.

At the sample level, for the Axiom dataset, samples that had a call rate <0.95 were
removed. For the PsychArray dataset, the protocol outlined in [52] for Illumina genotyping
arrays was followed and all samples passed quality control (QC). At the SNP level, the
Axiom samples were processed using “Best practices workflow” of Axiom Analysis Suite
(v4.0.3.3) software [53], and probes that were not labeled as “best and recommended”
by the software were removed. PLINK [54] was then used to filter out SNPs with <98%
genotype rate (geno 0.02) or failing the Hardy–Weinberg equilibrium test at a p-value
of 0.001 (hwe 0.001). The PsychArray samples were processed using the “Best practices
workflow” in [52]. Probes with a GenTrain score less than 0.7 were excluded. Similarly to
the Axiom samples, PLINK [54] was then used to filter out SNPs with <98% genotype rate
or failing the Hardy–Weinberg equilibrium test at a p-value of 0.001.

4.3. CNV Identification and Quality Control

To improve the CNV identification accuracy using the microarray data, two CNV
identification algorithms were used: PennCNV [55] and QuantiSNP [56]. For PennCNV,
a PFB file containing the population frequency of B alleles and SNP genome coordinates
was created for SNPs that passed genotyping QC. Following instructions in the PennCNV
protocol, a new HMM file (Hidden Markov Model) was trained using the first 100 samples
in each batch, and the resulting model file was used for CNV calling. For QuantiSNP,
library files and GC files included in the program were used.

Raw CNVs were then filtered to remove CNVs that were too small to be reliably called
(<10 kb), too large that they were most likely to be a chromosomal aberration or cell-line
anomalies (>7.5 Mb), or called by too few probes (<5 probes). For QuantiSNP calls, CNVs
with a max log Bayes factor score <10 were removed. Samples with CNV counts that were
significantly greater than the rest of the samples (>median + 1.5 interquartile range) were
considered outliers and removed. Sex chromosomes were excluded from the downstream
analysis. Raw genotyping data and the CNV call set were deposited to the NDA under
collections C1932 and C2933 and NRGR under study 39.

4.4. CNV Merging, Annotation, and Segregation Analysis

The following CNV analyses were carried out in a customized pipeline (https://
github.com/JXing-Lab/NJLAGS_SV/tree/master/CNV_Pipeline, 20 August 2023). First,
the two CNV call sets for each of the three batches were combined. The merging was
performed by the custom script CNV_Builder.py. Positions were considered overlapping
and merged if they shared at least a 70% reciprocal overlap with each other, with their
outermost breakpoints used to define the region. Nonreciprocal overlaps, such as one
variant being entirely encompassed by another but accounting for <70% of the second
variant, were considered separate and were not merged. The merged CNV calls were
converted into a standard variant call format (VCF) file.

CNV calls in VCF format were then annotated with AnnotSV (V. 3.0.9) [57] using
the default parameters. Candidate CNVs were also compared to known ASD-related
syndromic CNVs from SFARI (SFARI CNV module, https://gene.sfari.org/database/cnv/,
access on 19 May 2023). The comparison was performed using bedtools intersect requiring
a 50% reciprocal overlap [58]. The results were visualized using UCSC Genome Browser
custom tracks.

https://github.com/JXing-Lab/NJLAGS_SV/tree/master/CNV_Pipeline
https://github.com/JXing-Lab/NJLAGS_SV/tree/master/CNV_Pipeline
https://gene.sfari.org/database/cnv/
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To annotate CNVs for their inheritance patterns, the GEMINI (GEnome MINIng)
framework was used. GEMINI is an SQL-based framework that allows querying allele
information, including allele segregation in families [59]. Because GEMINI was not de-
signed to work with CNVs, a Python program (Geminesque_2023.py) was written to apply
segregation logic similar to GEMINI. The segregation pattern for each CNV was then anno-
tated and filtered using Geminesque_2023.py and CNVs were assigned to the following
inheritance patterns: de novo, autosomal recessive, and autosomal dominant. Criteria
were similar to the “strict” setting in GEMINI: for de novo, parents cannot be affected, the
affected child must be heterozygous for the variant, and no unaffected individuals can have
the alternative allele. For autosomal recessive, all known parents must be unaffected and
heterozygous for the alternative allele, while the affected children must be homozygous for
the alternative allele. For autosomal dominant, affected children must have at least one
affected parent and unaffected individuals cannot be homozygous or heterozygous for the
alternative allele.

4.5. CNV Filtration and Prioritization

Subsequent steps in the filtration and prioritization processes were conducted using
a custom Python script—CNV_Prioritizer.py. Candidate CNVs were filtered according
to the following criteria: present in at least one affected individual; overlap with protein-
coding regions; and segregated with a defined inheritance pattern. Variants with AnnotSV
annotation for the benign variants (i.e., annotations in “B_gain_source,” “B_loss_source,”
“B_ins_source,” or “B_inv_source”) were filtered out. For CNVs identified as a de novo
variant, variants present in more than two individuals in the cohort were filtered out.

Given the neurological basis of ASD and SLI, candidate genes were filtered based on
expression in brain tissues. A candidate CNV needed to contain at least one gene that is
expressed in brain tissue with >5 TPM (transcripts per million). The gene expression in brain
tissues was obtained from three databases: Gene Tissue Expression Project (GTEx) [60,61],
the BrainSpan Atlas of the Developing Human Brain [62], and the Human Developmental
Biology Resource (HDBR) [63].

4.6. Whole-Genome Sequencing Data and the gSV Call Set

WGS was performed on 272 individuals across 73 families in four batches by three
vendors (Table S1), as described previously [32]. The gSV call set was generated using
MetaSV [64]. For details of sequencing and gSV identification, see [32]. Raw sequencing
data and the gSV call set were deposited to the NDA under collections C1932 and C2933
and NRGR under study 39.

4.7. Mobile Element Insertion Identification and Filtering

Three types of MEIs—Alu, LINE1, and SVA—were identified from the WGS data using
MELT (V2.1.5) [65], as described previously [22]. MEIs that are present in the sequenced
individual but not the reference genome are defined as “MEI Insertions.” MEIs that are
present in the reference genome but not the individual are defined as “MEI Deletions.”
The “MELT-SPLIT” and the “MELT-Deletion” modes were used under default settings to
identify MEI Insertions and Deletions, respectively. The six MEI VCF files (three insertions,
three deletions) were concatenated into one composite VCF using bcftools [66].

A series of filters were then applied to the combined MEI call set to reduce false posi-
tives. Thirteen individuals from the Knome sequencing batch (Table S1) had high no-call
rates (average 43.8%) compared to the rest of the batches (average 0.09%), indicating poor
variant calling quality. Therefore, these individuals were removed from the dataset. Next,
loci with a missing rate >5% or a Hardy–Weinberg equilibrium test p-value < 1 × 10−20

were removed. MEI Insertions were further filtered for loci with MELT ASSESS score ≥3,
VCF “FILTER” column with “PASS” or “rSD,” and split reads >2. CrossMap (v. 0.2.7) [67]
was then used to lift over the genomic coordinates of the loci from the human reference
genome version GRCh38 to GRCh37/hg19.
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4.8. Merging gSV and MEI Call Sets

The following gSV and MEI analyses were carried out in a customized pipeline (https:
//github.com/JXing-Lab/NJLAGS_SV/tree/master/gSV_Pipeline, 20 August 2023). SUR-
VIVOR [68] was used to merge the gSV and the MEI call sets in two steps. First, gSVs and
MEIs from the same individual were merged using the following parameters: (1) breakpoint
distance ≤ 100 bp, (2) supported by at least one caller, (3) agree on SV types, (4) agree on
strand, and (5) no minimum length requirement. Once one gSV/MEI file was generated
for each individual, all individual gSV/MEI files were merged using the same parameters
to generate a combined gSV/MEI call set. This combined call set will be referred to as
“gSV/MEI call set” in the following text.

4.9. gSV/MEI Annotation, Segregation Analysis, and Filtering

AnnotSV [57] was used to annotate the merged gSV/MEI call set using the default
parameters. Variants located in known benign regions of the genome, as defined by
AnnotSV, were filtered out. GEMINI v0.20.1 [59] was used to identify the inheritance
patterns of gSVs, including autosomal recessive, autosomal dominant, de novo, X-linked
recessive, X-linked dominant, and X-linked de novo. Variants that met any of these
segregation patterns were included in the candidate prioritization.

For genes overlapping the candidate variants, brain expression data were obtained
as described in the CNV section. Brain expression quantitative trait loci (eQTL) data
for gSVs and MEIs were obtained from studies of GTEx samples [22,23]. For SVs, a
brain eQTL variant was defined using the following criteria: “lead_variant_type” = “SV”;
“tissue” = “Brain_*”; “lead_sv_caviar_prob” > 0.1; “lead_sv_caviar_rank” ≤ 5. For MEIs,
a brain eQTL variant was defined using the following criteria: “tissue” = “Brain_*”;
“eqtl_origin” = “MEI”; “tissue_count_ME_isCausal” > 0.

Population allele frequency (AF) data was obtained from two sources. For MEIs,
AF were extracted from the previous study of GTEx samples [22], allowing a max of
100 bp distance between the GTEx MEIs and our MEIs. For all variants that had no
match in the GTEx MEI data set, the gnomAD SVs 2.1 database [69] was used to extract
population AF, allowing a max of 100 bp distance between the gnomAD variants and our
gSV/MEIs. A list of known NDD genes was obtained from a previous study [32] and SFARI
Gene (https://gene.sfari.org//wp-content/themes/sfari-gene/utilities/download-csv.
php?api-endpoint=genes, accessed on 19 May 2023) (Table S2). Gene biotype annotations
were retrieved from GENCODE (v14).

4.10. gSV/MEI Candidate Prioritization

Filtered variants were partitioned based on their locations in the genome: exonic,
intronic, and intergenic using the AnnotSV annotation. Intergenic variants were identified
as variants with a null value in their “Gene_name” field. Intronic variants were identified
as variants that had an annotated gene name and satisfied two criteria: (1) the “Location”
field was not null, and (2) the start and end locations were within the same intron. Exonic
variants were identified as variants that had an annotated gene name and (1) “Location”
fields not null and (2) start and end locations in an exon or across multiple introns/exons.

Based on the variant location, two types of candidate prioritization pipelines were
performed: AF-focused and eQTL-focused. AF-focused filtering identifies rare variants
(in our sample and in the general population) that affect the gene they are located in.
eQTL-focused filtering finds variants that are known to have a causal impact on a gene
expressed in brain tissues (i.e., a brain eQTL variant in GTEx samples).

Exonic variants are likely to disrupt the function of the overlapped gene; therefore;
the AF-focused pipeline was applied. Intergenic variants do not overlap any gene; so only
the eQTL-focused pipeline was applied. For intronic variants, both AF and eQTL-focused
pipelines were applied.

The AF-focused prioritization pipeline applied three filters: (1) TPM, (2) Sample AF,
and (3) Population AF. For the TPM filter, the expression levels of a gene in brain tissues

https://github.com/JXing-Lab/NJLAGS_SV/tree/master/gSV_Pipeline
https://github.com/JXing-Lab/NJLAGS_SV/tree/master/gSV_Pipeline
https://gene.sfari.org//wp-content/themes/sfari-gene/utilities/download-csv.php?api-endpoint=genes
https://gene.sfari.org//wp-content/themes/sfari-gene/utilities/download-csv.php?api-endpoint=genes
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were obtained from three brain expression databases as described in the CNV section. A
gene is considered expressed if any of the three TPM values was >5. Variants overlapping
only genes that are not expressed in brain tissues were excluded. For the “Sample AF” filter,
variants whose sample AF is higher than 5% were excluded. Similarly, the “Population AF”
filter excluded variants whose population AF was higher than 5%. Due to the large number
of intronic AF-focused candidates, two additional filters were applied: False DeNovo and
NDD. The “False DeNovo” filter excluded variants that had a de novo inheritance pattern
across multiple affected individuals. Under the “NDD” filtering, variants overlapped genes
that were not in a known NDD gene list (Table S2 in [70] and SFARI Gene) were excluded.

The eQTL-focused prioritization pipeline applies two filters: (1) Brain eQTL, and
(2) Brain eQTL gene. The “Brain eQTL” filter selects variants that are considered brain
eQTL variants in GTEx samples (see “Brain eQTL” section above for detail). The “Brain
eQTL gene” filter removes variants whose eQTL gene is not expressed in brain tissues, as
defined in the TPM filter above.

4.11. Pathogenicity Prediction

Two pathogenicity predictors were used to determine the potential pathogenicity of
the candidate variants: StrVCTVRE [71] and SvAnna [72]. StrVCTVRE (Structural Variant
Classifier Trained on Variants Rare and Exonic) is a random-forest classifier designed to
distinguish between benign and pathogenic SVs [71]. SvAnna is a pathogenicity predictor
built off human phenotype ontology (HPO) terms and provides a pathogenicity of structural
variation (pSV) score based on sequence deleteriousness and phenotype similarity [72].
Both StrVCTVRE and SvAnna were run with default parameters.

4.12. Gene Ontology and Pathway Enrichment Analyses, Protein–Protein Interaction
Network Analysis

Gene Ontology (GO) and pathway enrichment analyses were performed using Consen-
susPathDB [73]. GO terms and pathways with a false-discovery rate <0.1 were considered
enriched and GO terms with <500 total genes within the group were selected to increase
the specificity of the enrichment results.

Protein–protein interaction (PPI) networks were built for the final candidate genes
using Python package NetWorkX [74]. ConsensusPathDB [73], STRING [75], and GI-
ANT_v2 [76,77] were used to generate a list of known gene interactions. Detailed data
processing procedures have been described previously [46,70].
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