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Abstract: The profound understanding and detailed evaluation of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spike (SCoV2-S) protein and specific antibody interaction mechanism
is of high importance in the development of immunosensors for COVID-19. In the present work,
we studied a model system of immobilized SCoV2-S protein and specific monoclonal antibodies
by molecular dynamics of immune complex formation in real time. We simultaneously applied
spectroscopic ellipsometry and quartz crystal microbalance with dissipation to reveal the features and
steps of the immune complex formation. We showed direct experimental evidence based on acoustic
and optical measurements that the immune complex between covalently immobilized SCoV2-S and
specific monoclonal antibodies is formed in two stages. Based on these findings it was demonstrated
that applying a two-step binding mathematical model for kinetics analysis leads to a more precise
determination of interaction rate constants than that determined by the 1:1 Langmuir binding model.
Our investigation showed that the equilibrium dissociation constants (KD) determined by a two-step
binding model and the 1:1 Langmuir model could differ significantly. The reported findings can
facilitate a deeper understanding of antigen–antibody immune complex formation steps and can
open a new way for the evaluation of antibody affinity towards corresponding antigens.

Keywords: SARS-CoV-2; spike protein; affinity interaction; immune complex formation; QCM–D;
antigen–antibody binding kinetics

1. Introduction

The many health challenges arising from Severe Acute Respiratory Syndrome Coron-
avirus 2 (SARS-CoV-2) resulted in intensive studies of SARS-CoV-2 spike protein (SCoV2-S)
and specific antibodies [1–3]. The key task in this field is the recognition of viral surface
proteins by high-affinity reagents that represents a promising strategy for virus detection
or neutralization. For this reason, in many papers focusing on SARS-CoV-2 properties
research, a great amount of attention was paid to the determination of the equilibrium
dissociation constant (KD) of the interactions between the receptor and the spike protein as
well as the spike protein and the neutralizing antibodies [4–7]. In the case of the SARS-CoV-
2 structural protein and specific antibody interaction, the KD, which is determined as a ratio
of dissociation (kd) and association (ka), rate constants can range from pM up to hundreds
of nM. The KD is calculated by analyzing protein binding or interaction kinetics measured
experimentally in real time. Commonly, techniques for biomolecular interactions and
determination of KD are used: microscale thermophoresis, isothermal titration calorimetry,
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biolayer interferometry, and surface plasmon resonance (SPR) [8–11]. Some of them have
limitations in measuring high-affinity-antibody interaction with immobilized antigens [12].
Spectroscopic ellipsometry (SE) enables us not only to measure the amplitude change of
the light wave after the reflection from the surface similarly to SPR but, in addition, it
can provide information on the phase shift that is much more sensitive to the refractive
index changes at the solid–liquid interface. In the case of applying SE for antigen–antibody
interaction study, it is possible to measure two parameters: (i) Ψ, which corresponds to
light wave amplitude, and (ii) ∆, which represents phase shift evolution in time. As was
previously demonstrated in our work, the ellipsometric parameter ∆(t) has much higher
sensitivity in the initial phase of antigen–antibody immune complex formation, while
the parameter Ψ(t) more sensitive when the steady-state conditions are reached [13]. The
advantage of a label-free SE method is that it can be simultaneously combined with another
highly surface-sensitive method QCM–D and this allows us to investigate not only optical
but also mechanical properties of the layer within the same experiment and obtain a more
detailed analysis of the immune complex formation in real time. Usually, proteins including
SCoV2-S and specific antibody interactions are measured by SPR and analysis is performed
by applying the 1:1 Langmuir mathematical binding model [14]. But in some cases, when
the binding of specific antibodies to target proteins is strong and can be treated as firmly
bound and intermediate complex formation takes place, this model for kinetics constants
measurements can fail [15,16]. For this purpose, the investigation of SCoV2-S and specific
antibody immune complex formation in real time, using label-free, non-contact kinetics
measurement methods that can be applied simultaneously and independently attracts
attention as each technique give different information during the same measurement and
prove the immune complex formation steps. Protein adsorption or covalent immobilization
on a surface is often accompanied by conformational changes that can be reversible or
irreversible, leading to the formation of rigid or viscoelastic layers [17,18]. The viscoelastic
properties of protein layers found in the lungs [19] and saliva [20] are important in the
physiological functions of the organism. Knowledge of the properties of mAbs, particularly
the viscosity and elasticity, is important for the evaluation and a deeper understanding
of the process of immune complex formation and application in drug design. The mAbs
agains SARS-CoV-2 can block the virus from entering and infecting cells. All mAbs bind
to the same epitopes of antigens in contrast to polyclonal antibodies [21]. The mAbs
are used to treat numerous health problems including arthritis, Crohn’s disease, chronic
plaque psoriasis, cryopyrin-associated periodic syndromes, cancers, and postmenopausal
osteoporosis [22–25].

Promising tools for this type of study are non-contact, real-time and surface-sensitive
optical and acoustic methods, which enable one to study the proteins’ behavior at the solid-
liquid interface. The former category includes highly sensitive SE, which can determine the
evolution of protein monolayer mass via measurement of refractive index and evaluate the
thickness of the monolayer [16,26]. SE, in its total internal reflection mode, was successfully
applied to evaluate SARS-CoV-2 nucleoprotein immobilization and interaction with specific
polyclonal antibody kinetics and the associated thermodynamic parameters [15]. The
other contactless, precise, time-resolved and ultra-mass sensitive method is quartz crystal
microbalance with dissipation (QCM–D). It uses acoustic waves by measuring shifts in
frequency (∆F) and energy dissipation (∆D) during the formation of the protein monolayer.
This method can also evaluate the surface mass and give information about the viscoelastic
properties of the protein monolayer [27,28]. The application of combined SE and QCM–D
techniques during one measurement enabled the study of SARS-CoV-2 structural proteins
as a nucleocapsid monolayer formation and interaction with a specific antibody in real
time and provided information about polyclonal antibody flexibility [29]. The advantage of
this combined technique is that it can provide a more precise determination of the surface
mass density and viscoelastic properties. Moreover, further combining these results from
optical-acoustic study allows us to obtain experimental evidence of the immune complex
formation steps and support mathematical modeling results.
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In this work, we present a real-time analysis of the SARS-CoV-2 SCoV2-S protein
covalent immobilization at a solid-liquid interface and affinity interaction with specific
mAb-SCoV2-S using a combination of SE and QCM–D. The experimentally obtained
results were further analyzed using a two-step binding mathematical model, which can be
applied when an intermediate immune complex is formed during antibody and antigen
interactions. The goal of the present study was to demonstrate how information about
dielectric properties of the proteins (SCoV2-S and mAb-SCoV2-S) used as monolayers in the
model system can be combined with viscoelastic properties and how calculated viscosity
and elasticity can validate two-step binding mathematical model eligibility for precise
calculation of affinity constants. The current application of the methods and the proposed
model is not limited to SCoV2-S protein and mAb-SCoV2-S antibody monolayer model
systems and can be further applied for any kind of protein monolayer characterization.

2. Results and Discussion

The covalent immobilization of SCoV2-S on 11-MUA self-assembled monolayer (SAM)
and the subsequent affinity interaction between SCoV2-S and mAb-SCoV2-S were moni-
tored simultaneously using SE and QCM–D techniques.

After reaching steady-state SE and QCM–D signals during both processes, (i) covalent
immobilization of SCoV2-S and (ii) the interaction of immobilized SCoV2-S with mAb-
SCoV2-S, a washing procedure based on the surface treatment with 0.01 M PBS solution,
pH 7.4, was applied. It was determined that in both cases the washing procedure did not
induce any changes in any registered SE and QCM–D signals demonstrating that SCoV2-S
was well immobilized to 11-MUA carboxyl groups and mAb-SCoV2-S were stronglybound
to immobilized SCoV2-S.

2.1. The Determination of Viscoelastic Properties

The protein monolayer viscosity and elasticity were determined in the following way.
The first step was the determination of the frequency ∆Fs and dissipation ∆Ds change when
a QCM–D sensor disc covered by 11-MUA SAM was placed into PBS solution. The second
step was the measurement of ∆Fsc and ∆Dsc kinetics during the covalent immobilization of
SCoV2-S and the formation of a monolayer on the surface. During the last step, ∆Fscm and
∆Dscm changes corresponding to a SCoV2-S/mAb-SCoV2-S immune complex formation
was measured. Figure 1A,B shows the kinetics of (∆Fsc − ∆Fs) = ∆F1 and (∆Dsc − ∆Ds)
= ∆D1, which represent the covalent SCoV2-S immobilization and monolayer formation
process, respectively. Figure 1C,D represents the (∆Fscm − ∆Fsc) = ∆F2 and (∆Dscm − ∆Dsc)
= ∆D2 kinetics obtained when mAb-SCoV2-S monolayer was formed onto SCoV2-S.

During the initial phase of SCoV2-S covalent immobilization (Figure 1A,B), the ∆F1 and
∆D1 signals shifted rapidly, reaching 50% of the total signal value (50 Hz for 3rd harmonic)
in the first 3 min; then, as SCoV2-S immobilization continued, the system saturated, slowing
the evolution of the ∆F1 and ∆D1 signals. After covalent immobilization of SCoV2-S, the
∆F1 values changed in the range of 90–100 Hz, depending on the monitored harmonic, with
the lower harmonics (3rd, 5th) exhibiting higher change in ∆F1. The ∆D1 values are positive
when monitoring a layer formation, and range from 4 × 10−6 to 5 × 10−6, depending on
the harmonic measured, with the lower harmonics exhibiting a lower change in ∆D1.
These values indicate that a layer consisting of covalently immobilized SCoV2-S has a
significant amount of hydrodynamically trapped PBS solution [30]. Figure 1C,D shows the
QCM–D signal change for the formation of the SCoV2-S/mAb-SCoV2-S immune complex.
After the formation of the SCoV2-S/mAb-SCoV2-S immune complex, the ∆F2 values for
all monitored harmonics were ~13 Hz, while the ∆D2 values increased in the range of
0.2 × 10−6–0.4 × 10−6. Injection of PBS solution after immune complex formation did not
cause dissociation of the proteins (no significant increase in frequency was observed), i.e.,
the monoclonal antibodies that entered the chamber formed a stable complex with the
immobilized SCoV2-S. The control experiment for the evaluation of nonspecific binding of
antibodies was performed by injecting 40 nM of anti-BSA antibodies for interaction with



Int. J. Mol. Sci. 2023, 24, 13220 4 of 15

immobilized SCoV2-S (Figure 1E,F). All other experimental conditions were the same as
using mAb-SCoV2-S.
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Figure 1. Real-time monitoring of ∆F1 and ∆D1 evolution in time for covalent immobilization of
SCoV2-S on 11-MUA SAM (A,B) and ∆F2 and ∆D2 for affinity interaction between SCoV2-S and mAb-
SCoV2-S (C,D), and SCoV2-S interaction with anti-BSA antibodies (E,F). Each curve corresponds to a
particular harmonic, n.

The ∆D vs. ∆F plots reveal different time dependencies [30]. By removing time as a
parameter, the slope of the curve shows how much dissipation is caused by an additional
unit of ∆F (mass). However, time can be inferred by the density of data points in the ∆D vs.
∆F plots. Figure 2A,B represents the plots for SCoV2-S covalent immobilization and ∆D2
vs. ∆F2 for SCoV2-S/mAb-SCoV2-S immune complex formation, respectively.

A ∆D1 vs. ∆F1 plot of the covalent immobilization of SCoV2-S, presented in Figure 2A,
shows a nearly linear behavior [30,31] with a calculated slope K1 = 0.0548. As can be seen
from Figure 2A, the points are further apart in the region from 0 to 40 Hz. This corresponds
to a fast immobilization rate on an activated surface with a large number of immobilization
sites. In the interval from 40 to 90 Hz, the rate of immobilization slows down as the
coverage of SCoV2-S increases, and it is seen by densely placed data points. The linear
behavior of the ∆D1 vs. ∆F1 plot in Figure 2A is consistent with the formation of a SCoV2-S
monolayer with no significant conformational changes, which is typically observed during
the immobilization of globular proteins [31,32]. The formed monolayer of SCoV2-S can
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be described as dissipative and laterally heterogeneous [33]. The total dissipation value is
5 × 10−6 and can be attributed to the movement of protein molecules, with dissipation
mainly occurring at the boundary between SCoV2-S and PBS solution [34].
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The ∆D2 vs. ∆F2 plot in Figure 2B for the formation of the SCoV2-S/mAb-SCoV2-S
immune complex is more intricate than for the covalent immobilization of SCoV2-S and
exhibits two linear regimes. The initial one, with slope K2 = 0.0624, shows a higher ∆D2
per unit of ∆F2 and a faster SCoV2-S/mAb-SCoV2-S interaction rate (is reflected by points
further apart). Compared to the following regime, with slope K3 = 0.0065, where the ∆F2
change during the interaction between SCoV2-S and mAb-SCoV2-S does not significantly
increase the ∆D2 values, the interaction rate is slower (points are closer to each other). The
initial increase in ∆D2 can be associated with molecular rearrangement of surface-bound
SCoV2-S upon injection of mAb-SCoV2-S [35], as well as with conformational changes
of surface-bound mAb-SCoV2-S antibody (Fab fragments flexibility, changes in Fab-Fab
angles, movements of side-chains or some structural changes of the antibody CDR loops).
The differences in ∆D vs. ∆F traces that are related to the processes taking part at the
sensing surface were also reported by other authors investigating the reduced antibody
fragments interaction with bovine leukemia virus antigen gp51 [35], bovine serum albumin
and specific antibodies [31], and other proteins adsorption and cells adhesion [32]. The
higher ∆D2 vs. ∆F2 ratio shows that at the initial phase of SCoV2-S and mAb-SCoV2-S
interaction more flexible SCoV2-S/mAb-SCoV2-S immune complexes are formed. The same
tendency at the initial phase of immune complex formation with the following slight change
of slope was observed with SARS-CoV-2 nucleocapsid protein and specific polyclonal
antibodies [29]. The change of ∆D2 vs. ∆F2 slope (Figure 2B) in the 7–8 Hz range could
be related to decreasing amount of water after firm bivalent binding of mAb-SCoV2-S,
producing a more rigid and unyielding layer of the SCoV2-S/mAb-SCoV2-S immune
complexes [36]. In contrast, during non-specific interaction between bovine serum albumin
and gp51, a gradual increase in dissipation was observed from the initial stage [35].

2.2. The Assessment of Optical Properties

Using the SE/QCM–D technique during the covalent immobilization and immune
complex formation acoustic and optical signals were registered simultaneously. It enables
us to measure the normalized refractive index (∆nnormalized = ∆n(t)/∆nmax) evolution in
time (here ∆nmax is maximal refractive index change) for SCoV2-S immobilization kinetics
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(A) and SCoV2-S/mAb-SCoV2-S immune complex formation kinetics (B). The results of
these investigations are presented in Figure 3A,B.
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correspond to experimental points and curves to the fit of the mathematical model.

In order to obtain the surface mass density of covalently immobilized SCoV2-S mono-
layer and bound mAb-SCoV2-S monolayer it is necessary to calculate the refractive index
and thickness of the layers using regression analysis. The applied optical model consisted of
a QCM–D gold-coated substrate with thickness dAu= 200 nm coupled with a self-assembled
monolayer of 11-MUA SAM with thickness dSAM = 0.9 nm [37]. Taking into account the
dimensions of the SCoV2-S protein [6] and the disordered nature of the SCoV2-S protein
immobilization on 11-MUA SAM, SCoV2-S monolayer thickness of dSCoV2-S = 12.93 nm was
calculated from regression analysis. The gold-coated substrate of QCM–D was modeled
with a B-Spline function with gold as a starting material from the Complete EASE software
database (version 5.08gsc). The 11-MUA SAM was modeled using Cauchy dispersion [38]
with corresponding parameters A = 1.491; B = 0.006. The SCoV2-S monolayer was modeled
using the Bruggeman effective media approach (EMA) with two components: SCoV2-S and
PBS solution. Both SCoV2-S and PBS solution components were modeled using Cauchy
dispersion A = 1.572; B = 0.010 for SCoV2-S and A = 1.318; B = 0.005 for PBS. During the
regression analysis, the thickness of the SCoV2-S monolayer was fixed, while the SCoV2-S
and PBS solution percentage in EMA was the free-fitted value resulting in 20.7% of SCoV2-S
and 79.3% of PBS solution for a fully formed monolayer. The formation of the SCoV2-
S/mAb-SCoV2-S immune complex was modeled using an analogous Bruggeman EMA,
with the fraction of PBS solution in the mAb-SCoV2-S monolayer as the fitting parameter.
The calculations showed that the fully formed monolayer of mAb-SCoV2-S consisted of
3.8% mAb-SCoV2-S and 96.2% PBS. After that, the surface mass density (ΓSE) of both the
SCoV2-S and mAb-SCoV2-S monolayer was calculated using the de Feijter formula [39]:

ΓSE =
d(nlayer − nPBS)

dn/dc
·100 (1)

Here, d is the thickness of the formed monolayer (SCoV2-S or mAb-SCoV2-S), dn/dc
is the refractive index increment (for globular proteins it is estimated as 0.18 [40]), nlayer
and nPBS are the refractive indices of the SCoV2-S or mAb-SCoV2-S monolayer and the
surrounding PBS solution, respectively.

2.3. The Evaluation of SCoV2-S and mAb-SCoV2-S Monolayers Hydration

Since the SCoV2-S monolayer exhibits high dissipation (∆D ≥ 1 × 10−6), it is possible
to use QCM–D data for analysis based on the Voigt–Voinova viscoelastic model and
calculate the surface mass density (ΓQCM−D) of SCoV2-S.
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The ΓQCM−D is usually referred to as wet mass, whereas ΓSE, which does not include
PBS solution, is referred to as dry mass. So the fraction of PBS solution (f PBS) inside the
SCoV2-S monolayer, also referred as hydration, can be calculated using the following
formula [27]:

fPBS = 1− ΓSE

ΓQCM−D (2)

Here, f PBS is the fraction of PBS solution in the formed protein (SCoV2-S or mAb-
SCoV2-S) layer, ΓSE—dry mass, ΓQCM−D—wet mass of SCoV2-S or mAb-SCoV2-S. The f PBS
of both SCoV2-S and mAb-SCoV2-S monolayers calculated from the combined SE/QCM–D
measurements and Equation (2) is shown in Figure 4A,B. As it can be seen from this figure,
the maximal surface mass density after full covalent immobilization of SCoV2-S calculated
from SE was ΓSE = 388 ng/cm2, while the density obtained from QCM–D analysis was
ΓQCM−D = 1873 ng/cm2. The difference is due to the QCM–D method sensitivity to PBS
solution influence. The corresponding fractions of PBS were f PBS = 0.792 for the covalently
immobilized SCoV2-S monolayer and f PBS = 0.962 for mAb-SCoV2-S, respectively.
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2.4. The Determination of Shear Viscosity and Elasticity of Formed SCoV2-S and mAb-
SCoV2-S Monolayers

For the calculation and analysis of shear viscosity coefficient (η) and shear elasticity
modulus (µ) kinetics, we used the Voigt–Voinova model [41], which describes viscoelastic
properties of two layers covering the surface of a piezoelectric sensor oscillating in a pure
shear mode in the bulk liquid. We consider these layers to be the SCoV2-S and mAb-SCoV2-
S monolayers, correspondingly. According to this model, the η and µ are related to changes
in frequency ∆F and dissipation factor ∆D, which are experimentally measurable values.
We adapted the analytical expressions of ∆F and ∆D presented in reference [41] to the
experimental results used in our work by omitting terms representing the influence of the
bulk liquid because the first step of the measurement was dedicated recording of QCM–D
response before the formation of SCoV2-S/mAb-SCoV2-S immune complex. As a result,
the following Equations for ∆F and ∆D are obtained:

∆Fj = −
1

2πρ0d0
∑

j

[
djρjω− 2hj

(
η3

δ3

)2 ηjω
2

µ2
j + ω2η2

j

]
(3)

∆Dj =
1

2π f ρ0d0
∑

j
2dj

(
η3

δ3

)2 µjω

µ2
j + ω2η2

j
(4)
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Here, ρ0 and d0 are the density and thickness of the oscillating quartz crystal, respec-
tively, ω = 2π·f where f is the resonant frequency, δ3 = (2 η3/ρ3 ω)1/2 where η3 and ρ3 are
the viscosity and density of the PBS solution.

We omitted terms representing the influence of the bulk liquid because the first step of
the measurement was to record the QCM–D response before the formation of SCoV2-S and
mAb-SCoV2-S monolayers. The ∆F and ∆D values corresponding to this response were
always excluded from a total QCM–D signal in order to investigate only the viscoelastic
properties of SCoV2-S and mAb-SCoV2-S. The summation in Equations (3) and (4) is carried
out over all viscoelastic layers between the quartz crystal and the bulk liquid. The index
j = 1, and j = 2 for SCoV2-S and mAb-SCoV2-S monolayers, respectively. The corresponding
ηj and µj values can be calculated using Equations (5)–(8) and (3)–(4).

ηj =
Aj

B2
j + A2

j
(5)

µj = ω

√
1
Aj

ηj − η2
j (6)

Aj =
ρ0d0∆Fj + ρjdj f

η3ρ3dj f
(7)

Bj =
ρ0d0∆Dj

ρ3djη3
(8)

In this case, it is reasonable to assume that during the formation of SCoV2-S or mAb-
SCoV2-S monolayers, the main factor influencing the change of refractive index (n) and the
mass of the immobilized molecules is the effective density of SCoV2-S or mAb-SCoV2-S
monolayers ρj, assuming that the thickness of the layers hj is constant. The dependencies n
vs. time (t) obtained using this approach are presented in Figure 3A,B. We then determined
the η and µ of SCoV2-S and mAb-SCoV2-S monolayers as a function of time (t) as well as
a function of the monolayer effective density ρ = ρj. The results of these calculations are
presented in Figure 5.

As can be seen from Figure 5A,C, µ increases with time during the formation of both
SCoV2-S and mAb-SCoV2-S monolayers. The fully formed SCoV2-S monolayer is, however,
more rigid than the mAb-SCoV2-S one. This is a result of significantly stronger covalent
binding of SCoV2-S molecules to the 11-MUA SAM in comparison to the weaker, affinity
interaction of SCoV2-S and mAb-SCoV2-S in the consequently binding state. Moreover,
the dependencies of µ on ρ of both SCoV2-S and mAb-SCoV2-S monolayers are different
(Figure 5B,D). In the case of SCoV2-S, one observes two well-defined linear regions with
different slopes, while for the mAb-SCoV2-S monolayer µ is a nonlinear function of ρ
over the entire range. The η of both monolayers increases with t and ρ at the beginning
of the process and after reaching maximum value gradually decreases. We note that for
the SCoV2-S monolayer, the value of η at the end of monolayer formation is less than the
viscosity of PBS solution (η3). However, in the case of the mAb-SCoV2-S monolayer, η
decreases with t and ρ, although it always remains higher than η3.

The changes in the viscoelastic properties of the SCoV2-S and mAb-SCoV2-S mono-
layers during covalent immobilization and immune complex formation can be explained
by assuming that the total number of proteins immobilized on the 11-MUA SAM or
bounded after affinity interaction to the SCoV2-S monolayer at each time instant is a sum
of temporarily associated and irreversibly bound molecules. At the beginning of the mono-
layer formation process, a large part of the monolayer consists of temporarily associated
molecules, because the association rate of molecules is significantly higher than the rate of
their consequently binding. An increase of SCoV2-S or mAb-SCoV2-S concentration on
the surface during the initial formation period leads to increased viscosity and elasticity,
as is typically observed in protein solutions [42]. The subsequent growth of the protein
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monolayer is accompanied by the formation of strongly bound sites, that have an impact
on the total monolayer mass increase in time (Figure 4). Finally, the fully formed protein
monolayer consists mainly of these strongly and irreversibly bound molecules (Figure 6,
state 2). The number of strongly bonded molecules gradually increases during the whole
monolayer formation process, while the number of weakly associated proteins increases
at the beginning of monolayer formation and then significantly decreases (Figure 5). In
comparison with the buffer solution, the irreversibly bound protein molecules have higher
elasticity but lower viscosity (Figure 5). As the elasticity component during the formation
of the monolayer increases all the time, the effective elasticity µ also increases in time.
However, the viscosity η vs. time dependence exhibits a local maximum. Thus, it can
be concluded that the protein monolayer formation process takes place via a two-step
mechanism. In the first step before the final irreversible immobilization of SCoV2-S on the
11-MUA SAM or stable SCoV2-S/mAb-SCoV2-S immune complex formation molecules
are weakly bonded to the target with the possibility of returning to the PBS solution due to
the dissociation process, while in the second step they are bounded strongly.
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2.5. The Modelling of Covalent SCoV2-S Immobilization and Affinity Interaction with
mAb-SCoV2-S Antibodies Kinetics

For modeling of SCoV2-S immobilization and affinity interaction with mAb-SCoV2-S
antibodies kinetic and calculation of association and dissociation rate constants, the two-
step binding model was applied [13,15,43]. This model takes into account the formation of
the encounter immune complex between the immobilized antigen and specific antibody.
After the encounter complex is formed in state 1 (with rate constant ka), it may become
fixed (rate constant kr), resulting in a stable antigen–antibody complex in state 2, or both
of the molecules may drift apart (at rate constant kd) [44]. The schematic representation of
the stages of covalent SCoV2-S immobilization and the immune complex formation are
presented in Figure 6.

According to this model, in the initial stage of covalent immobilization of SCoV2-
S or affinity interaction of mAb-SCoV2-S proteins are in state 1. This state is reached
with the rate ka × c (here c is the concentration of SCoV2-S or mAb-SCoV2-S in PBS
solution and ka is the association rate constant). Upon reaching state 2, SCoV2-S (during
covalent immobilization) or mAb-SCoV2-S (during affinity interaction) can desorb from the
surface at a rate constant—kd, or become strongly bounded at a rate constant—kr. At the
beginning of the SCoV2-S covalent immobilization, the SCoV2-S monolayer consists mainly
of molecules in state 1. Later, however, they transform to state 2 and finally the monolayer
consists of only irreversibly bound SCoV2-S. The same scenario applies to mAb-SCoV2-S
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during affinity interaction with covalently immobilized SCoV2-S. The two-step consequent
binging process is described by the following system of differential equations:

dr1

dt
= kac(1− r1 − r2)− (kd + kr)r1 (9)

dr2

dt
= krr1 (10)

r = r1 + r2 = 1 + (Me− f+t − Ne− f−t) (11)

Here r1 and r2 are normalized concentrations of proteins in state 1 and state 2 (Figure 6),
respectively. The solution of Equations (9) and (10) that lead to (11) can be used to calculate
the total concentration (r) of bounded molecules.

Here f +, f−, M and N are:

f± =
(kd + kr + kac)±

√
(kd + kr + kac)2 − 4kackr

2
; M = A

(
1− kr

f+

)
; N = A

(
1− kr

f−

)
; A =

kac√
(kd + kr + kac)2 − 4kackr

(12)

Fits of this model to experimental data assuming that r = ∆nnormalized are presented in
Figure 3. The best-fit parameters for the association, dissociation, and consequent binding
kinetic coefficients are ka × c = 3.8 × 10−3 s−1; kd =1.2 × 10−3 s−1 kr =2.6 × 10−3 s−1 for
SCoV2-S covalent immobilization and k′a × c = 1.6 × 10−3 s−1; k′d = 2.5 × 10−3 s−1 k′r =
3.0 × 10−3 s−1 for mAb-SCoV2-S affinity interaction with SCoV2-S. The KD’s are 107 nM
and 62 nM for SCoV2-S and mAb-SCoV2-S, correspondingly.

The two-step binding model better fits the data than with the conventional 1:1 Lang-
muir binding model (see Figure 3). The kinetic coefficients were ka × c = 2.0 × 10−3 s−1;
kd = 2.1 × 10−5 s−1 for SCoV2-S covalent immobilization and ka × c = 9.0 × 10−4 s−1;
kd = 4.5 × 10−5 s−1 for mAb-SCoV2-S affinity interaction. The corresponding KD’s are
3.44 nM and 2.01 nM, respectively. The two-step consequent binding model was previously
applied to other protein systems as granulocyte colony-stimulating factors receptors and
ligands interaction [16] and to SARS-CoV-2 nucleocapsid protein and specific polyclonal
antibody immune complex formation [15]. However, in these works, we used the TIRE
method for obtaining interaction kinetics, and further analysis was performed using only
mathematical equations, without taking into account viscoelastic properties. In the present
study, we support our assumption of the two-step proteins monolayer formation not only
by mathematical equations but also by experimentally obtained monolayer properties,
such as viscosity and elasticity, that come from the application of advanced SE/QCM–D
technique.

3. Materials and Methods
3.1. Materials and Reagents

11-Mercaptoundecanoic acid (11-MUA, 98%), 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC, ≥98%), N-hydroxysuccinimide (NHS, 98%), ethanolamine (ETA)
(≥99%) and phosphate-buffered saline (PBS) tablets were purchased from Sigma Aldrich.
Methanol (99.9%) was purchased from Carl Roth GmbH & Co (Karlsruhe, Germany). Re-
combinant SCoV2-S glycoprotein expressed as secreted trimeric protein in mammalian
(hamster) CHO cells was purchased from Baltymas (Vilnius, Lithuania). Gold-coated QCM–
D quartz crystals with resonance frequency of 4.95 MHz and a diameter of 14 nm were
purchased from Biolin Scientific (Gothenburg, Sweden). Specific monoclonal antibodies
(mAb-SCoV2-S) were purchased from Sino Biological (Beijing, China).

3.2. Combined SE and QCM–D Measurement Setup

The measurement setup used consisted of a combination of SE and QCM–D. Ellipso-
metric measurements were performed with a spectroscopic ellipsometer with a rotating
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compensator M-2000X (J. A. Woolam, Lincoln, NE, USA) at a fixed angle of incidence of
65◦ in a spectral range of 200–1000 nm. The optical response was evaluated using the pro-
prietary software Complete EASE (version 5.08gsc). QCM–D measurements i.e., frequency
(∆F) and dissipation (∆D) were performed using a QSense Explorer (Biolin Scientific, Västra
Frölunda, Sweden) operating at a fundamental frequency of 5 MHz and capable of simul-
taneously registering 7 harmonics up to ~65 MHz (13th harmonic). The measurements
were performed in a special module for simultaneous SE/QCM-D signal monitoring. The
QCM-D measurements were recorded with QSoft401 and analyzed with QSense Dfind. The
flow of all fluids was regulated with an Ismatec IPC4 peristaltic pump (Cole-Palmer GmbH,
Wertheim, Germany) connected via PTFE tubing to a fluid inlet through the measurement
cell. Measurements were recorded under semi-static conditions with the fluid supply set at
1.35 mL/min. The temperature during the measurements was set to 20 ◦C.

3.3. Surface Preparation for Covalent SCoV2-S Immobilization

QCM–D sensors were plasma cleaned using Diener Femto Plasma Etcher (Ebhausen,
Germany) in an oxygen environment for 1 min under 0.4 mbar pressure. The sensor was
then immersed in a 1 mM 11-MUA solution in methanol for 18 h to form a self-assembled
monolayer (SAM) of 11-MUA. The sensor was then rinsed with methanol and air-dried
before being placed in the SE/QCM–D module. The module chamber was then filled with
deionized water and a baseline was established after 30 min. To covalently immobilize the
SCoV2-S molecules, the terminal carboxyl groups of 11-MUA SAM need to be activated.
For this purpose, aqueous solutions of 0.1 M NHS and 0.4 M EDC were mixed in equal
parts before being injected into the chamber for 15 min. Deionized water was then injected
and a baseline was registered.

3.4. Covalent Immobilization of SCoV2-S and Affinity Interaction with mAb-SCoV2-S

After activation of the 11-MUA SAM carboxyl groups, a PBS solution was injected
into the SE/QCM–D chamber for 10 min to establish a baseline. In the next step, 333 nM
of SCoV2-S solution was injected for covalent SCoV2-S immobilization and incubated for
60 min. At the end of incubation, the immobilized SCoV2-S monolayer was washed with
PBS solution. The surface was then further treated with 1 M ethanolamine hydrochloride
solution (pH 8.5) for 10 min to block the remaining unbound activated carboxyl groups.
Finally, the stabilized surface was washed once more with PBS solution. For SCoV2-S/mAb-
SCoV2-S immune complex formation formed SCoV2-S monolayer was exposed to a 40 nM
concentration mAb-SCoV2-S antibody solution for 60 min in order to form a monolayer of
antibodies and ensure sufficient detectable signals. After that washing with PBS solution
was performed.

4. Conclusions

A combined SE and QCM–D technique was used for the simultaneous investigation of
SCoV2-S and mAb-SCoV2-S monolayers. The optical and mechanical properties reveal that
the SCoV2-S monolayer is denser and more rigid than the mAb-SCoV2-S one. The kinetics
of SCoV2-S and mAb-SCoV2-S monolayer formation can be well described with the two-
step partial reversibility model, which assumes that the protein molecules are initially in an
intermediate state that can either desorb or bind strongly. The analysis of SCoV2-S and mAb-
SCoV2-S monolayer viscosity and elasticity time dependence during these monolayer’s
formation process can be understood by assuming that the monolayers consist of two
components, one of which is of relatively higher viscosity and corresponds to proteins in
the intermediate state of two-step model, while the other component is significantly more
rigid and can be associated with strongly bonded proteins. The results obtained suggest that
the two-step SARS-CoV-2 spike protein and specific antibodies immune complex formation
mechanism allows more precise evaluation of affinity constants and should be applied to
study other corona viruses’ structural proteins and specific antibodies interactions as a
model system.
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