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Abstract: To elucidate the molecular mechanisms underlying the differential metabolism of albino
(white), green, and purple pericarp coloration, biochemical profiling and transcriptome sequenc-
ing analyses were performed on three different tea pericarps, Zhongbaiyihao (Camellia sinensis L.
var. Zhongbai), Jinxuan (Camellia sinensis L. var. Jinxuan), and Baitangziya (Camellia sinensis L. var.
Baitang). Results of biochemical analysis revealed that low chlorophyll content and low chloro-
phyll/carotene ratio may be the biochemical basis for albino characteristics in the ‘Zhongbaiyihao’
pericarp. The differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, including
DFR, F3′5′H, CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in the purple ‘Baitangziya’
pericarp. In the chlorophyll synthesis of white pericarp, GUN5 (Genome Uncoupled 5) and 8-vinyl-
reductase both showed high expression levels compared to the green one, which indicated that albino
‘Zhongbaiyihao’ pericarp had a higher chlorophyll synthesis capacity than ‘Jinxuan’. Meanwhile,
chlorophyllase (CLH, CSS0004684) was lower in ‘Baitang’ than in ‘Jinxuan’ and ‘Zhongbaiyihao’ peri-
carp. Among the differentially expressed transcription factors, MYB59, WRKY41-like2 (CS ng17509),
bHLH62 like1 (CS ng6804), and bHLH62-like3 (CSS0039948) were downregulated in Jinxuan pericarp,
suggesting that transcription factors played a role in regulating tea pericarp coloration. These find-
ings provide a better understanding of the molecular mechanisms and theoretical basis for utilizing
functional components of tea pericarp.

Keywords: Camellia sinensis; pericarp; coloration; anthocyanin; albino

1. Introduction

Tea (Camellia sinensis (L.) O. Kuntze) is one of the most important economic crops
in South China. In recent years, tea production has become a powerful driver of rural
revitalization in less-developed mountainous regions in Southwest China. In efforts to en-
hance tea production, an enormous amount of research has been conducted on the primary
metabolic processes involved in bud and leaf development in different tea varieties [1].
Fruits of tea plant, on the other hand, are often dismissed, with the exception of small
amounts used in propagation and oil extraction [2]. Due to the lesser economic value of
pericarp compared with young shoots, significantly less research has focused on secondary
metabolism during pericarp development. Specifically, albino pericarp is a rare mutation
in tea plants, which has not been reported yet.

The fruit of the tea is a capsule that can be divided into three parts based on resource
utility: the pericarp, the seed husk, and the seed kernel [2]. Chlorophyll is an important
pigment in the chloroplast involved in photosynthesis, and significant changes in its
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contents can lead to changes in plant color [3]. The albino phenotype is a leaf color mutation
that has been identified in a variety of plants, including Arabidopsis [4], maize [5] and
rice [6]. Normally, the biosynthesis and degradation of chlorophylls in plants are in dynamic
equilibrium. Once the expression levels of genes involved in the chlorophyll degradation
pathway change, this balance can be disrupted, leading to abnormal pericarp color [7].
Numerous studies have shown that carotenoids, flavonoids, and alkaloids play critical roles
in the formation of plant color [8]. In particular, carotenoids and flavonoids have received
particular attention due to their ability to produce bright colors on flower petals and leaves
and because of their wide distribution across plants. Carotenoids provide flowers with a
range of colors from orange to yellow [9], while flavonoids have been considered the most
important secondary metabolites in plants [10]. Anthocyanins are important water-soluble
compounds extensively distributed throughout the plant kingdom that provide fruits and
flower tissue a red to blue color [11]. In research studies on ornamental plants of the genus
Camellia or the family Camelliaceae, anthocyanin chemical composition and color have
been widely studied [12]. Moreover, anthocyanins are among the main taste mediators of
bitterness in tea [13]. Exploring the similarities between the coloring mechanism of pericarp
and leaves of tea and investigating the accumulation mechanism of anthocyanin and other
pigments in pericarp may be beneficial to improving the quality of tea production.

Transcriptome high-throughput sequencing (RNA-Seq) technology has been widely
used to study the secondary metabolic mechanism of crops [14]. Analysis of gene expression
profile by high-throughput sequencing technology is an effective method to study the
overall gene expression difference from the transcriptional level. Its advantage is that
it can analyze the transcriptional expression profile of new species without a genomics
background or cDNA cloned by bacteria and effectively discover and identify target
genes [15]. Transcriptomics has opened up new approaches for tea genetic research and
can also be used to create markers to assist in breeding, for reducing the cost of marker
selection and shortening the breeding process [16–18]. In recent years, anthocyanin-rich tea
varieties, such as Zijuan (Camellia sinensis var. assamica) have been extensively studied for
their anthocyanin accumulation mechanism in leaf tissue [19,20]; however, the coloration
mechanisms of tea pericarp of different varieties remains unclear. Studies have suggested
that albino mutants in plants may be formed by a variety of factors, including reductions
in chlorophyll anabolism [10,21]. Reduced chlorophyll content subsequently inhibits the
development of the chloroplast, causing leaf whitening or yellowing [22].

In the present study, the chemical compositions of albino (Zhongbaiyihao), green
(Jinxuan), and purple (Baitang) pericarps were analyzed, and the differentially expressed
genes (DEGs) related to pericarp color formation were identified by RNA-seq. The aim of
this study was to evaluate key compounds responsible for the pericarp color formation
of different tea varieties, and to draw connections between well-studied mechanisms of
vegetative growth and the lesser-known mechanisms of reproductive growth in tea.

2. Results
2.1. Pigment Content in Different Tea Pericarps

Phenotypic characteristics of different tea pericarp colors revealed that the pericarp of
JX was a normal green color, while ZB was white and BT was purple (Figure 1A). Consistent
with phenotypic characteristics, the analysis of tea pericarp pigment contents showed that
the levels of total chlorophyll in BT were higher than that of JX. The carotenoid content
in the pericarp of ZB was significantly lower than that of the normal green variety JX
(Figure 1B,C). The concentrations of tea polyphenols in the ZB pericarp were higher than
BT and JX (Figure 1D), while the concentrations of anthocyanin were higher in BT than in
JX and ZB (Figure 1E). Catechin analysis revealed that total catechins were higher in white
pericarp (ZB), while EGC, GC, and C showed relatively higher levels in BT than in ZJ. The
content of C (catechin) in ZB was significantly higher than JX and BT.
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(BT) (B–E). Errors bar represent standard deviation of three independent replicates. Bars showing 
different lower-case letters indicate significant differences between groups (p < 0.05, one-way 
ANOVA, Student’s t-test). BT is ‘Baitang’ (purple pericarp), JX is ‘Jinxuan’ (green pericarp), ZB is 
‘Zhongbaiyihao’ (white pericarp). C, catechin; EC, epicatechin; ECG, epicatechin gallate; GC, gal-
locatechin; EGC, epigallocatechin; GCG, gallocatechin gallate; ECGC, epigallocatechin gallate. 
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To reveal the molecular mechanism of coloration in different pericarps, transcrip-

tome analysis was performed using the different colored pericarps of ZB, JX, and BT. 
After data cleaning and raw read quality control, 60,293,150, 65,004,398 and 66,416,772 
clean reads were obtained from the ZB, JX, and BT libraries, respectively, with clean data 
of 5.73 Gb for each sample, Q30 base percentages of 87.22% and above, and an average 
GC content of 44.73% (Supplementary Table S1). All clean data were mapped to the 
‘Shuchazao2’ reference genome of Camellia sinensis var. sinensis (CSS, 
http://tpia.teaplants.cn/, accessed on 3 August 2022). Clean reads ranging from 72.90 to 
89.49% were mapped (Supplementary Table S1). The PCA score plot of sequencing data 
is shown in Figure 2A and suggests that all pericarp samples were clustered and well 
separated into three groups. These results implied that the RNA sequencing data were 
reliable for subsequent analysis. 

  

Figure 1. Phenotypic characteristics of Zhongbaiyihao (white), Jinxuan (green), and Baitangziya
(purple) pericarp (A) and pigment contents of Zhongbaiyihao (ZB), Jinxuan (JX), and Baitangziya (BT)
(B–E). Errors bar represent standard deviation of three independent replicates. Bars showing different
lower-case letters indicate significant differences between groups (p < 0.05, one-way ANOVA, Stu-
dent’s t-test). BT is ‘Baitang’ (purple pericarp), JX is ‘Jinxuan’ (green pericarp), ZB is ‘Zhongbaiyihao’
(white pericarp). C, catechin; EC, epicatechin; ECG, epicatechin gallate; GC, gallocatechin; EGC,
epigallocatechin; GCG, gallocatechin gallate; ECGC, epigallocatechin gallate.

2.2. Transcriptomic Profiling of Different Tea Pericarps

To reveal the molecular mechanism of coloration in different pericarps, transcriptome
analysis was performed using the different colored pericarps of ZB, JX, and BT. After data
cleaning and raw read quality control, 60,293,150, 65,004,398 and 66,416,772 clean reads
were obtained from the ZB, JX, and BT libraries, respectively, with clean data of 5.73 Gb
for each sample, Q30 base percentages of 87.22% and above, and an average GC content
of 44.73% (Supplementary Table S1). All clean data were mapped to the ‘Shuchazao2’
reference genome of Camellia sinensis var. sinensis (CSS, http://tpia.teaplants.cn/, accessed
on 3 August 2022). Clean reads ranging from 72.90 to 89.49% were mapped (Supplementary
Table S1). The PCA score plot of sequencing data is shown in Figure 2A and suggests that
all pericarp samples were clustered and well separated into three groups. These results
implied that the RNA sequencing data were reliable for subsequent analysis.
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Figure 2. Differentially expressed genes (DEGs) in different tea pericarps. (A) Principle component
analysis of pericarp samples indicates a high degree of clustering among intra-group samples.
(B) DEGs among BT vs. JX, ZB vs. BT, ZB vs. JX. (C) Venn diagram of DEGs between three groups. BT
is ‘Baitang’ (purple pericarp), JX is ‘Jinxuan’ (green pericarp), ZB is ‘Zhongbaiyihao’ (white pericarp).
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2.3. Identification of Differentially Expressed Genes between ZB, JX, and BT

To identify differentially expressed genes (DEGs) involved in color formation in
different pericarps, fragmentation mapping in millions (FPKM) values for each gene in
pericarps of ZB, JX, and BT were analyzed using a false discovery rate (FDR) ≤0.01 and
fold change (FC) ≥2 as screening criteria. A total of 10,181, 10,341 and 10,598 DEGs were
identified in pairwise comparisons of BT with JX, ZB with BT, and ZB with JX, respectively
(Figure 2B). Both BT vs. JX and ZB vs. JX included more down-regulated DEGs than up-
regulated genes. ZB vs. BT had significantly more up-regulated DEGs than down-regulated.
The Venn analysis results showed that there were a total of 1573 common differentially
expressed genes (FC ≥ 2, Q-value ≤ 0.05) among the three types of pericarp (Figure 2C).
Among the common DEGs, HYC85, dehydrin DHN1-like, and oleosin 1-like showed the
highest expression level in BT pericarp (Supplementary Table S2).

2.4. KEGG Enrichment Analysis

In order to determine the mechanisms of differential color formation in the three
varieties of pericarp samples, DEGs involved in the flavonoid pathway, photosynthetic
pathway, and the phenylpropane biosynthetic pathway were enriched and classified. In
a pairwise comparison of BT and JX pericarp, DEGs in 117 biosynthetic and metabolic
pathways were enriched, including phenylpropane biosynthesis (ko00940, 138 genes),
flavonoid and flavonol biosynthesis (ko00944, 13 genes), flavonoid biosynthesis (ko00941,
56 genes), and anthocyanin biosynthesis (ko00942, 5 genes) (Figure 3A, Supplementary
Table S3). In the paired comparison of ZB and BT pericarp DEGs, the genes were enriched
to 117 KEGG pathways. DEGs involved in flavonoid biosynthesis included phenylala-
nine metabolism (ko00360, 31 genes), phenylpropanoid biosynthesis (k000940, 152 genes),
flavonoid biosynthesis (ko00941, 69 genes), flavonol biosynthesis (ko0944, 15 genes), and
anthocyanin biosynthesis (k00942, 3 genes) (Figure 3B, Supplementary Table S3). In com-
parison with JX, 119 DEGs in ZB were enriched in biosynthetic and metabolic pathways,
including anthocyanin biosynthesis (ko00942, 6 genes), flavonoid biosynthesis (ko00941,
46 genes), phenylpropane biosynthesis (ko00940, 139 genes), photosynthesis (ko00195,
33 genes), and others (Figure 3C, Supplementary Table S3).Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 19 
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‘Zhongbaiyihao’ (white pericarp).
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KEGG enrichment analysis indicated that 82 genes were up-regulated and 56 were
down-regulated in the benzopropane biosynthetic pathway in BT and JX pairwise compar-
isons. A total of 38 genes were down-regulated in the flavonoid biosynthetic pathway in
the ZB and BT pairwise comparison, and the remaining 45 genes were up-regulated. In
the flavonoid and flavonol biosynthetic pathways, 15 DEGs were screened, 10 of which
were up-regulated in white pericarps (ZB). In addition, three DEGs involved in the phenyl-
propane biosynthetic pathway were screened, namely, CCoAOMT (caffeoyl coenzyme A
O-methyltransferase, CSS0043057), CCR (cinnamoyl coenzyme A reductase, CSS0026943),
and the CsnewGene_15860 (Supplementary Table S3). The expression levels of these genes
were significantly lower in white pericarp than in purple pericarp.

In the photosynthetic pathway, photosystem II10 kDa polypeptide (PSII10 kDa polypep-
tide, CSS0001445), chlorophyll a-b binding protein 13 (CSS0015941), photosystem I subunit
O (photosystem I subunit O (CSS0045008), photosystem I reaction center subunit psaK
(CSS0016265), photosystem I reaction center subunit N (CSS0016265), photosystem I re-
action center subunit N (CSS0010064), HY5 (HY5, CSS00048476) in the plant circadian
rhythm pathway, and chlorophyllase (CLH, CSS00004684) in the porphyrin and chlorophyll
metabolism pathway were also major DEGs. Excluding CLH, the expression levels of all
the above DEGs in white pericarp (Zhongbaiyihao) were significantly higher than those in
the conventional green pericarp (Jinxuan) (Supplementary Table S3). These data indicate
a key role of DEGs in photosynthesis in photosystem I and photosystem II, as well as in
response to light signals and regulation of participation in life activities on a circadian basis.

2.5. Identification of DEGs Involved in Flavonoid Biosynthesis

In order to distinguish the critical genes involved in flavonoid and phenylpropanoid
pathways in different pericarps, a clustering heat map was created to investigate the expres-
sion characteristics of relevant genes using KEGG enrichment analysis. Results showed that
compared with ZB, the expression levels of CCoAOMT (CS ng11691), beta glucose 47-like 1
(CSS0034311), peroxidase3-like (CSS0028431), peroxidase 42-like (CSS0021668), 4CL-like
(CSS0016246), 4CL-like 2 (CSS0016246), CCR-like (CSS0046131), and VS-like 1 (CS ng4184)
were higher in JX pericarp (Figure 4A, Supplementary Table S4). Meanwhile, CCoAOMT
like (CSS0043057), peroxidase 42-like (CSS0021668), peroxidase 42-like (CSS0050111), F3,5H
(CSS0022212), 4CL-like (CSS0016246), VS-like 2 (CS-ng15860), DFR-like (CSS0016543),
CCR-like (CSS0026943), and raucaffricine-O-beta-D-glucosidase-like (CSS0042207) showed
higher expression levels in BT pericarp than in that of ZB (Figure 4B, Supplementary Table
S4). Similarly, GH1 (CSS0038038), CCR-2 (CSS0026943), CAD like (CSS0036540), CAD like
(CSS0028327), raucaffricine-O-beta-D-glucosidase like (CSS0042207), DFR (CSS0016543),
ANR (CSS0013982), CHS (CSS0004474), peroxidase 42 like (CSS0050111), peroxidase 42
like (CSS0039867), CCR-1 (CSS0026887), ALDH (CSS0002426), VS-like 1 (S-ng15860), and
CCR-3 (CSS0031353) were more highly expressed in BT than JX (Figure 4C, Supplementary
Table S4). Comprehensive KEGG enrichment analysis showed that the expression level
of genes involved in anthocyanidin synthesis in purple pericarp (BT) was high (such as
DFR, ANR, etc.), while in white pericarp (ZB), the expression level of genes involved in
downstream anthocyanidin synthesis pathway was relatively low.
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Figure 4. DEGs involved in flavonoid and phenylpropanoid biosynthesis in different tea pericarps.
JX vs. ZB (A), ZB vs. BT (B), and BT vs. JX (C). BT is ‘Baitang’ (purple pericarp), JX is ‘Jinxuan’ (green
pericarp), ZB is ‘Zhongbaiyihao’ (white pericarp).

2.6. Validation of Gene Expression Levels

Based on the RNA-Seq results of three different colored pericarps, eleven DEGs
involved in color formation of tea pericarps were selected to confirm the accuracy of
the RNA-Seq results using qRT-PCR (Figure 5A). Correlation analysis was performed to
establish correlations between RNA-Seq and qRT-PCR results. The results revealed that
the qRT-PCR and RNA-Seq data were highly correlated (correlation coefficient of 0.8171,
Figure 5B). These results indicated that the transcriptome data were credible.Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 7 of 19 
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Figure 5. Expression analysis for key genes and transcription factors involved in pigment biosynthe-
sis. (A) Expression level analysis of key genes and transcription factors in different pericarp. Errors
bar represent standard deviation of three independent replicates. Bars showing different lower-case
letters indicate significant differences between groups (p < 0.05, one-way ANOVA, Student’s t-test).
(B) Correlation analysis based on RNA-seq and qRT-PCR data. CLH, Chlorophyllase; HY5, ELON-
GATED HYPOCOTYL5; VR, Vestitone reductase; CHS, Chalcone synthase; DFR, Dihydroflavonol
reductase; F3′5′H, Flavonoid 3′,5′-hydroxylase; CoAOMT, Caffeoyl coenzyme A O-methyltransferase;
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reductase; LAR, Leucoanthocyanidin reductase. BT is ‘Baitang’ (purple pericarp), JX is ‘Jinxuan’
(green pericarp), ZB is ‘Zhongbaiyihao’ (white pericarp).
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3. Discussion
3.1. Differences in Pigment Accumulation Lead to Differences in the Pericarp Color

Previous studies revealed that leaf color formation in purple tea may be due to
variations in flavonoid content [23,24]. While higher concentrations of chlorophyll are
responsible for green leaf color and photosynthesis [3], albino or etiolated leaves are mainly
attributed to lower chlorophyll and higher carotenoid concentrations in leaf tissue [10,21,25].
Some research suggested that carotenoids protect chlorophyll from photo-oxidative damage
through certain reductive properties as well as the absorption and transfer of light energy in
photosynthesis [26]. Therefore, if carotenoid synthesis is blocked, its chlorophyll protection
capacity may be lost and eventually cause abnormal chloroplast development [27]. Some
research has suggested that chloroplast in etiolated leaves is inhibited, thereby inhibiting
the synthesis of chlorophyll [28]. Similar findings have been confirmed in specific photo-
sensitive etiolated leaf cultivars ‘Yujinxang’ [21], ‘Huangjinya’ [29], and ‘Anjibaicha’ [30].

Similar results have been reported in studies on different fruit peels; the formation of
the red color was proposed to be a combination of decreased chlorophyll and increased
anthocyanin accumulation during litchi maturation [31,32], while the purple color of the
mangosteen fruit pericarp was mainly due to anthocyanins [33]. In addition to anthocyanin,
flavones and some flavonols also act as major pigments or co-pigments [31]. Flavonoids
affect the colors of both fruits and vegetables as well as that of the grain pericarp [34–36].
In a study of sweet osmanthus pericarp, Han et al. found that lignans and phenolic acids
were higher in green pericarps than in purple-black pericarps, while the opposite was true
of anthocyanins and flavonoids [37].

The results of this study show that the total chlorophyll content of the white pericarp
of ‘Zhongbaiyihao’ was significantly lower than the normal green pericarp of ‘Jinxuan’
and the purple pericarp of ‘Baitangziya’, with the Chl/Car ratio showing a similar trend
(Figure 1C). Meanwhile, although the Chla/b of ZB was relatively high, the absolute content
of chlorophyll in ZB was low (Figure 1B,C), which is not conducive to the formation of
purple and green pericarps. Nearly all the chloroplast-related genes appeared to be highly
expressed in the white pericarp, which may be related to the lower chlorophyll content
in white pericarp and the need to synthesize related substances to maintain normal life
activities. In addition, while the content of catechins is relatively high in ZB, catechins
are coloress in plants, which could partially explain the white appearance of ZB pericarp.
The carotenoid content varied in a similar way to the chlorophyll content of the three tea
pericarp varieties. For BT with purple pericarp, high levels of anthocyanins, chlorophyll-a,
chlorophyll-b, and carotenoids may be the main reasons for the formation of its purple
phenotype (Figure 1B–D). Of course, because anthocyanins and catechins compete for
substrate in the flavonoid synthesis pathway, the accumulation of anthocyanins in the
purple pericarp reduced the substrate for catechin synthesis, resulting in less accumulation
of catechins in the purple pericarp (Figure 1E). We also found that the expression of an
R2R3-MYB, MYB114, was up-regulated in purple pericarp, suggesting that this gene may
be involved in the regulation of anthocyanins during pericarp coloration (Supplementary
Table S3).

The present research results are consistent with previous studies – that is, the purple
phenotype was positively correlated with total anthocyanin content [33,37–39]. Likewise,
the low chlorophyll content in the white pericarp of ‘Zhongbaiyihao’ may be due to the
abnormal synthesis and enhanced chlorophyll degradation. For Jinxuan, an adequate
amount of chlorophyll may explain its green pericarp.

3.2. Expression of Different Structural Genes Affects the Synthesis of Chlorophylls, Carotenoids,
and Flavonoids

Presently, the CCoAOMT, DFR, and F3’5’H genes are significantly up-regulated in the
BT pericarp relative to Jinxuan, which is consistent with results of Liu et al. that found that
the expression pattern of CCoAOMT was highly correlated with flavonoid concentrations
in other plants [40,41]. Although CCoAOMT is not essential for anthocyanin accumulation,
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up-regulation of CCoAOMT may contribute to the production of more flavonoid derivatives
in the pericarp. Flavonoid 3’,5’-hydroxylase (F3’5’H, CYP75A) is responsible for the con-
version of the substrate dihydrokaempferol to dihydroquercetin [42], and dihydroflavonol
reductase (DFR) is responsible for catalyzing the conversion of dihydromyricetin and
dihydroquercetin to leucovorin [43]. Studies have shown that competition between the
flavonoid/flavonol pathway and the anthocyanin pathway is primarily a substrate compe-
tition between the FLS and DFR, with FLS preferentially utilizing dihydroquercetin and
dihydrokaempferolin [44]. FLS facilitates a metabolic shift towards flavonols, resulting in
lower anthocyanin accumulation [12,45].

In this study, the higher expression levels of DFR indicates that flavonoid metabolism
in purple pericarp shunted more substrate than green pericarp into the anthocyanin biosyn-
thetic pathway (Figure 6A). The results of RNA-seq and qRT-PCR showed a relatively high
FLS expression in green and white pericarp compared with the purple pericarp, implying
that substrates might be shunted from the anthocyanins’ biosynthesis pathway towards
the flavonol pathway in the substrate competition between FLS and DFR (Figure 6A).

Flavonoids and isoflavonoids are important secondary metabolites for plant defence
that can function as inhibitors of fungal growth [46]. Vestitone reductase (VR) is a key
reductase in the isoflavanone biosynthesis pathway. Previous studies found that VR activity
corresponded with the synthesis of vestitone, which improved plant disease resistance
[47,48]. The results of this study indicated that the VR gene has a high expression level,
which may be due to unique isoflavanone metabolism in tea percarps. It is particularly
noteworthy that ZB is a mutant variety of small leaf tea (Camellia sinensis var. sinensis)
that was found previously to possess strong disease resistance, which may relate to its
special accumulation of flavonoids. Moreover, we speculate that low anthocyanin and high
tea polyphenol concentrations observed in ZB could relate to its high VR gene expression,
because both anthocyanins and isoflavanones are metabolized through chalcone substrates.
Such substrate competition could also affect the white appearance of ZB pericarp, because
isoflavanones are colorless, unlike anthocyanins [49].

Meanwhile, we identified four DEGs related to the chlorophyll pathway, i.e., GUN5
(CSS0016317), HEME (CSS0012339), 8-vinyl-reductase (CSS0011936), and CLH (CSS0004684)
(Figure 6B). Previous studies have reported that Genome Uncoupled 4 (GUN4) could bind
ChlH/GUN5 to enhance chlorophyll biosynthesis by activating magnesium-chelatase,
while the function of GUN5 is to shift protoporphyrin IX towards chlorophyll biosynthesis
metabolism [50]. Meanwhile, HEME can catalyze uroporphyrinogen III to synthesize copro-
porphyrinogen III. Previous studies have shown that the content of heme and chlorophyll
will decrease in transgenic tobacco with HEME-RNAi silenced [51]. Zhu et al. [52] con-
firmed that the levels of HEME expression in purple leaf tea were markedly different from
green leaves, which resulted in variations in chlorophyll content. Similarly, our previous
research also indicated that the lower expression levels of GUN5 and HEME resulted in the
lower chlorophyll levels in yellow ‘Huangyu’ tea [53].

In this study, the chlorophyll concentration of white pericarp, in addition to higher
GUN5 and 8-vinyl-reductase expression levels compared with green pericarp, indicated
that ‘Zhongbaiyihao’ pericarp had a higher chlorophyll synthesis capacity than ‘Jinxuan’.
Meanwhile, chlorophyllase (CLH, CSS0004684), which is involved in the chlorophyll degra-
dation pathway, was higher in ‘Baitang’ than in ‘Jinxuan’ and ‘Zhongbaiyihao’ pericarps,
suggesting that chlorophyll degradation activity in the pericarp of ‘Baitang’ was higher
than those of ‘Jinxuan’ and ‘Zhongbaiyihao’ pericarps, resulting in reduced chlorophyll ac-
cumulation. The above results indicate that the higher chlorophyll level in ‘Zhongbaiyihao’
pericarp may be attributed to the higher expression of GUN5, HEME, and 8-vinyl-reductase
(Figure 6B), while formation of the purple pericarp of ‘Baitang’ tea fruit may be due to
the higher expression of DFR, which promotes the flow of substrates to the anthocyanin
biosynthesis pathway.
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Figure 6. DEGs involved in the flavonoids and chlorophyll biosynthetic pathway. (A) DEGs involved
in the flavonoids biosynthetic pathway; (B) DEGs involved in the chlorophyll biosynthetic pathway.
Heat maps were created based on average expression levels (FPKM values). The color scale represents
the FPKM value. Red indicates high expression, and green indicates low expression. BT is ‘Baitang’
(purple pericarp), JX is ‘Jinxuan’ (green pericarp), ZB is ‘Zhongbaiyihao’ (white pericarp). PAL,
Phenylalanine ammonia-lyase; C4H, Cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoAligase; HCT,
Hydroxycinnamoyl-CoA shikimate/quinatehydroxy-cinnamoyltransferase; CCR, Cinnamoyl Co-A
reductase; CoAOMT, Caffeoyl coenzyme A O-methyltransferase; CHS, Chalcone synthase; CHI,
Chalcone isomerase; FLS, Flavonol synthase; F3’H, Flavonoid 3′-hydroxylase; F3’5’H, Flavonoid
3′5′-hydroxylase; DFR, Dihydroflavonol 4-reductase; LAR, Leucoanthocyanidin reductase; ANS,
Anthocyanidin synthase; HEMA, Glutamyl-tRNA reductase; HEML, glutamate 1-semialdehyde
aminotransferase; HEMB, porphobilinogen synthase; HEME, Uroporphyrinogen III decarboxylase;
GUN5, Genome Uncoupled 5.

3.3. Transcription Factors Involved in Pigment Accumulation

The content of anthocyanins is determined by structural genes as well as specific
transcription factors (TFs) [54]. The structural genes of key enzymes in anthocyanin
synthesis are subject to transcriptional regulation by transcription factors, and some of the
more widely studied transcription factors include the MYB family, the bHLH family, and
WD40 proteins, which regulate anthocyanin biosynthesis by binding to elements acting
in the promoter regions of structural genes [55–58]. This has been well demonstrated in
rice [59], cocoa [60], cotton [61], and several other plant species.

In previous research, MYBs3 was found to be a single DNA-binding repeat MYB
(R1-MYB) transcription factor that played a key role in cold adaptation in rice, likely by
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activating relevant genes when plants were subjected to various stressors [62]. Gan et al
found that transgenic banana that over-expressed MpMYBS showed significantly higher
cold tolerance than wild type, possibly by increasing proline levels in the transgenic banana
line [63]. MYBs3 was also found to positively regulate anthocyanin biosynthesis during
flower development in Hibiscus syriacus L. var. Shigyoku [64]. Wang et al. found that
MYBs3 was involved in regulating resistance-related pathways in Eureka lemon, including
phenylpropanoid, flavone/flavonol, and isoflavonoid pathways [65].

Presently, the expression of MYBS3-like (CSS0028896) transcription factor was signifi-
cantly lower in ZB than in JX and BT (Figure 7). The reason may be that MYBS3-like was
involved in regulating flavonoid biosynthetic processes in JX and BT pericarp.
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Red indicates high expression, and green indicates low expression. BT is ‘Baitang’ (purple pericarp),
JX is ‘Jinxuan’ (green pericarp), ZB is ‘Zhongbaiyihao’ (white pericarp).

Interestingly, transcription factors involved in suppressing anthocyanin biosynthesis
were significantly downregulated in the ZJ pericarp, including bHLH51-like3 (CSS0022994),
HY5 (CSS0048476), WRKY41-like2 (CS-ng17509), ERF4-like1 (CSS0025246), bZIP53-like2
(CSS0019770), bHLH62-like1 (CS-ng6804), and WRKY41-like1 (CS-ng3178) (Figure 7). In
Arabidopsis thaliana, the WRKY41-1 transcription factor was significantly negatively cor-
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related with anthocyanin levels, acting as a repressor of anthocyanin biosynthesis [66].
Similarly, MYB4-like (R2R3-MYB) and bHLH62 might also repress structural genes in-
volved in anthocyanin synthesis, as it showed a significant negative regulatory relationship
in the fruit skin of ‘Red Delicious’ [67]. The expression level of bZIP53 was up-regulated
as anthocyanin levels decreased with fading flower color in the chrysanthemum, with a
higher expression level of bZIP53 found to occur in response to high temperature [68].
Recent research found that ERF4 affected fruit firmness through TPL4 by reducing ethylene
levels [69].

These findings discussed above indicate that the low expression of anthocyanidin
transcriptional inhibitors may be related to the accumulation of anthocyanidin in BT
pericarp. Correspondingly, due to the high expression of such transcriptional inhibitors,
there was a reduction in the accumulation of flavonoids and anthocyanidins in white ZB
pericarp. Among the transcription factors mentioned above, MYB59-like3 (CSS0008521),
WRKY41-like2 (CS ng3178), bHLH62-like1 (CS ng6804), and bHLH62-like3 (CSS0039948)
were down-regulated in JX purple pericarp.

Lai et al. reported that the R2R3-MYB TF, MYB59, played a key role in some biological
processes during development in Arabidopsis, negatively regulating leaf senescence when
induced by jasmonic acid and salicylic acid in [70]. MYB59 can participate in circadian
rhythm regulation by directly targeting CIRCADIAN CLOCK-ASSOCIATED 1 [71]. Other
research showed that MYB59 could resist potassium deficiency stress by the positive
regulation of Nitrate Transporter1.5 [72], represses calcium homeostasis, and regulates
plant growth and stress response [73]. Wiśniewska et al. [74] reported that AtMYB59 may
play an extensive role from metabolism modulation to the responses to abiotic and biotic
stresses. Considering that the flavonoid content in the Jinxuan pericarp was in between ZB
and ZJ, the down-regulation of the transcription factors mentioned above may be related
to the metabolic balance of flavonoids, indicating that transcription factors play a role in
regulating tea pericarp coloration.

3.4. Accumulation of Pericarp Pigments May Be Related to Light Induction

As a basic leucine zipper (bZIP) transcription factor, HY5 (ELONGATED HYPOCOTYL5)
plays an important role in regulating plant growth and development by acquiring light
signals through different light responsive cis-elements and transmitting them to down-
stream action elements [75]. It is the first transcription factor found to be involved in
photomorphogenesis and plays a key role in regulating plant anthocyanidin biosynthe-
sis. It was reported that HY5 might regulate GUN5 and HSP90 involved in chlorophyll
biosynthesis [76]. Abbas et al. revealed that the HY5 transcription factor was involved in
regulating nitrogen uptake and photogenesis, as well as assimilation in plants, and that the
above regulatory mechanisms are completed through light response processes [77]. The
function of the HY5 transcription factor is also related to phenotypes associated with pho-
tomorphogenesis in plants, such as hypocotyl elongation in seedlings and yellowing and
de-yellowing of plants [78,79]. In addition, HY5 initiates downstream photomorphogenesis
in photosensitive pigments, cryptochromes, and UV-B photoreceptors [80]. Furthermore,
HY5 plays a critical role in chlorophyll accumulation and chloroplast development in plants,
and can act as a central repressor in light signaling to enhance photomorphogenesis [81].
A recent study found that HY5 and CLH were up-regulated while POR and HemA genes
were down-regulated in ‘Xiangfei Huangye’ etiolated tea, suggesting that chlorophyll
synthesis was inhibited through increased expression of HY5, causing an increased rate of
catabolism. [82].

In the present study, the expression profile of HY5 corroborated previous research
results, in that the expression level of HY5 (CSS0048476) was higher in white pericarp than
in the normal green pericarp. Interestingly, the expression level of HY5 was not significantly
different between white ZB pericarp and purple ZJ pericarp. However, the expression level
of CLH (CSS0004684) was significantly higher in the purple BT pericarp than the white and
green pericarps. Considering that CLH can have a degrading function in the chlorophyll
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pathway, it appeared to show a negative effect on chlorophyll synthesis and accumulation.
Therefore, in the purple pericarp, we speculate that the high expression level of CLH led
to enhanced catabolism of chlorophyll, while the high levels of flavonoids promoted the
shunting of upstream substances towards the anthocyanin metabolic pathway, resulting in
the purple color of the pericarp.

4. Materials and Methods
4.1. Plant Material

Tea (Camellia sinensis (L.) O. Kuntze) fruits were collected under natural conditions
from tea plant varieties having white pericarp (Camellia sinensis var. Zhongbaiyihao),
green pericarp (Camellia sinensis var. Jinxuan), and purple pericarp (Camellia sinensis var.
Botangziya) grown in the tea garden of South China Agricultural University, Guangzhou,
Guangdong Province, on 30 June 2022. The fruit samples were stripped of their pericarps
and immediately frozen in liquid nitrogen, then promptly ground into powder and stored
at −80 ◦C for further analysis. The samples were then subjected to further RNA-seq and
chemical composition analysis. Each sample consisted of three biological replicates.

4.2. Extraction and Determination of Pigments
4.2.1. Total Chlorophylls and Carotenoids

The total chlorophyll and carotenoids contents were determined by spectroscopy [83].
An amount of 500mg of sample was extracted in 25 mL of 95% ethanol (v/v) for 24 h
at room temperature, and the extract was filtered and then fixed to 25 mL using 95%
ethanol (v/v). The absorbance values were determined using an automatic microplate elisa
reader (Sunrise, TECAN, Austria) as described by Rothenberg et al. [83]. The content of
chlorophyll a, chlorophyll b, and carotenoids was calculated as follows:

Chl a = (12.21 × A663 − 2.81 × A646)/(1000 ×W) × L;

Chl b = (20.13 × A646 − 5.03 × A663)/(1000 ×W) × L;

Caro = (1000 × A470 − 3.27 × Chl a - 104 × Chl b)/(229 × 1000 ×W) × L.

where A646, A663, and A470 indicate absorbance values at 646 nm, 663 nm, and 470 nm
respectively; L indicates the total volume of the extract solution (mL), and W indicates the
fresh weight (FW) of the sample (g); and the chlorophyll and carotenoid contents were
determined in mg/g (FW).

4.2.2. Determination of Total Anthocyanins

The total anthocyanin was determined as reported by Wei et al. [84]. An amount of
100 mg of sample powder was extracted in 3 mL of extraction solution (1% HCl in methanol)
for 16 h at 4 °C. The extract was filtered and then fixed to 10 mL. The absorbance was
measured at 530 nm and 657 nm by a spectrophotometer, using 1 cm cells. Total anthocyanin
contents were calculated by the following formula: total anthocyanin = ((A530 − A620) −
0.1(A650 − A620) × 100)/(4.62 ×W).

4.2.3. Determination of Total Contents of Polyphenols

Total tea polyphenol contents were determined by the Folin reagent method, which
is a modification of the method previously reported by Yu et al. [85]. Briefly, 200 mg
of sample powder was extracted in 5 mL of extraction solution (70% methanol solution)
in a 70 ◦C water bath for 10 min. Then, 1 mL extraction was supplemented with 5 mL
Folin reagent to react for 8 min. Then, 4 mL of 7.5% Na2CO3 solution was added, and
the reaction system was shaken for 60 min at room temperature. The absorbance of the
reaction solution was measured at 765 nm by a spectrophotometer (UV-160 Shimadzu,
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Tokyo, Japan). The tea polyphenol concentration was quantitatively calculated with gallic
acid as a calibration standard.

4.2.4. HPLC Analysis of Catechins

The content of catechins was analyzed as described by Mei et al. [86]. Briefly, 200 mg
of tea powders were extracted with 8 mL of 70% methanol in a 75 ◦C water bath for 30 min.
The extraction solution was filtered through a 0.22 mm Millipore filter before conducting
HPLC analysis. The chromatographic column was a C18 SB column (4.6 × 250 mm, 5 mm,
Waters Technologies, Milford, MA, USA). The chromatographic conditions were as follows:
Mobile phase A was decreased linearly from 92% in 5 min to 75% at 14 min and then
increased linearly from 75% at 14 min to 92% at 30 min. Mobile phase A contained 0.1%
acetic acid and 99.9% ultrapure water, and mobile phase B was 100% acetonitrile. The flow
rate was 0.80 mL/min, and the column temperature was 30 ◦C; the injection volume was
20 µL.

4.2.5. RNA Extraction and Transcriptome Sequencing

Trizol (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from dif-
ferent pericarps [87]. The construction of a cDNA library and sequencing employed a
Novaseq6000 by Biomarker Technologies Corporation (Beijing, China). The raw data
were uploaded to Beijing Institute of Genomics, National Genomics Data Center, China
(https://bigd.big.ac.cn/gsa, accessed on 3 September 2022), and the accession number is
CRA007882. The raw data from the sequencing machines were initially filtered to obtain
clean data by using SeqPrep software (Version 4.6.1). The HISAT2 program [88] was used
to compare the clean reads of the filtered rRNA to the reference genome sequence (Camellia
sinensis var. sinensis (CSS), ShuchazaoV2 genome, http://tpia.teaplants.cn/download.html,
accessed on 3 August 2022).

4.3. Gene Function Annotation and Expression Level Analysis

In order to annotate the assembled genes, seven public databases were searched for
homology, namely, NR (Non-Redundant Protein Sequence Database), KEGG (Kyoto En-
cyclopedia of Genes and Genomes), COG (Clusters of Orthologous Group of proteins),
Swish-Prot database, KOG (Eukaryotic orthologous groups) database, Pfam (Pfam protein
family database), and GO (gene ontology) database. The gene expression level was esti-
mated by FPKM (every thousand base segments in the transcript mapped by every million
segments). Based on the value of genes in the three varieties of samples, the differentially
expressed genes were screened using DESeq2 software (version 1.38.0), with|log2FC| ≥ 1
and p-adj < 0.05 as the threshold. KEGG enrichment was performed using R-Package.

4.4. Quantitative Real-Time PCR and Expression Verification

In order to verify the RNA-Seq results, β- Actin was selected as an internal refer-
ence gene. The DEGs involved in chlorophyll metabolism and anthocyanin metabolism
pathways were identified through transcriptome data analysis and the KEGG database,
and eleven genes were screened for quantitative real-time PCR (qRT-PCR) verification.
Total RNA was extracted using RNA Simple Total RNA Kit (TIANGEN) according to the
protocol. The thermal profile for the PCR amplification was 95 ◦C for 5 min, and then
40 cycles of 10 s at 95 ◦C and 40 cycles of 30 s at 60 ◦C. The qRT-PCR primers are listed in
Supplementary Table S5. Relative expression levels of the genes were quantified using the
2 −∆∆CT method [89].

4.5. Statistical Analysis

Statistical analysis was performed using SPSS software (version 24.0 for Windows,
SPSS Inc., Chicago, IL, USA). Significant differences between different groups were deter-
mined using Tukey’s post hoc test. A p value less than 0.05 was considered statistically
significant. Excel 2010 (Microsoft, Redmond, WA, USA) was applied to drawbar graphs of
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the experimental data. Some figures and tables related to transcriptomes were prepared on
the BMKcloud platform (https://international.biocloud.net/, accessed on 29 May 2023).

5. Conclusions

In this study, chemical components and RNA-seq data were analyzed to explore
the mechanisms underlying tea pericarp coloration. A total of 17,133 DEGs were identi-
fied. Some DEGs involved in the anthocyanin biosynthesis pathway, such as DFR, F3’5’H,
CCoAOMT, and 4-coumaroyl-CoA, were highly expressed in purple BT pericarps, where
they were positively correlated with the anthocyanin accumulation. In addition to the
CLH gene, 33 DEGs involved in chlorophyll synthesis and degradation and 64 DEGs
involved in photosynthesis-related proteins were identified. The low chlorophyll content
of ZB may be due to the low expression level of HEME (heme A synthetase, CSS0016239)
involved in chlorophyll synthesis and the high expression level of CLH involved in chloro-
phyll degradation. The high expression of CLH genes was negatively correlated with
chlorophyll content in ZB pericarps. Multiple genes involved in repressing anthocyanin
biosynthesis pathways were significantly down-regulated in the purple pericarp, including
bHLH51-like3 (CSS0022994), HY5 (CSS0048476), WRKY41-like2 (CS-ng17509), and ERF4-
like1 (CSS0025246). The expression level of HY5 (CSS0048476) was higher in the white
pericarp than in the normal green pericarp, suggesting that transcription factors play a role
in regulating the coloration of tea pericarp. Overall, the different colors in the pericarps
of different tea varieties might be attributed to flavonoid and chlorophyll biosynthetic
pathways. Our results provide new insights for clarifying the molecular mechanisms
underlying pericarp coloration.

Supplementary Materials: The following supporting information can be downloaded at https:
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