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Abstract: The Membrane Attack Complex and Perforin (MACPF) proteins play a crucial role in
plant development and adaptation to environmental stresses. Heretofore, few MACPF genes have
been functionally identified, leaving gaps in our understanding of MACPF genes in other plants,
particularly in the Solanaceae family, which includes economically and culturally significant species,
such as tomato, potato, and pepper. In this study, we have identified 26 MACPF genes in three
Solanaceae species and in the water lily, which serves as the base group for angiosperms. Phylogenetic
analysis indicates that angiosperm MACPF genes could be categorized into three distinct groups, with
another moss and spikemoss lineage-specific group, which is further supported by the examination
of gene structures and domain or motif organizations. Through inter-genome collinearity analysis, it
is determined that there are 12 orthologous SolMACPF gene pairs. The expansion of SolMACPF genes
is primarily attributed to dispersed duplications, with purifying selection identified as the principal
driving force in their evolutionary process, as indicated by theω values. Furthermore, the analysis
of expression patterns revealed that Solanaceae genes are preferentially expressed in reproductive
tissues and regulated by various environmental stimuli, particularly induced by submergence. Taken
together, these findings offer valuable insights into and a fresh perspective on the evolution and
function of SolMACPF genes, thereby establishing a foundation for further investigations into their
phenotypic and functional characteristics.

Keywords: MACPF; evolution; expression pattern; Solanaceae

1. Introduction

The Membrane Attack Complex and Perforin (MACPF) protein encompasses the
membrane attack complex (MAC) and perforin proteins, which are present in various
organisms such as fungi, plants, and animals [1–3]. These proteins play a crucial role
in the organisms defense against bacterial and viral infections, contributing to immune
response and cell lysis [4]. The MACPF protein has the ability to create pores in cellular
membranes [5]. Its structure is closely associated with cholesterol-dependent cytolysins and
the complement system, which includes proteins such as C6, C7, C8α, C8β, and C9 [6–9].
In recent times, the resolution of several MACPF protein structures has revealed that the
MACPF domain of complement proteins undergoes significant structural rearrangements
during the formation of pores. These rearrangements involve a conserved core fold, while
the C-terminal domains exhibit variability, thereby influencing interactions with other
proteins [6,10–13].
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Over the past two decades, extensive research has demonstrated the crucial involve-
ment of certain MACPF proteins in the development and immune responses of organisms,
particularly in the animal kingdom [2,12,14–16]. However, the understanding of regulatory
mechanisms governing MACPF genes in plants has progressed at a considerably slower
pace compared to animals.

However, the precise functions and underlying molecular mechanisms of MACPF pro-
teins in plants are poorly understood. To date, only three MACPF proteins, namely necrotic
spotted lesions 1 (NSL1, At1g28380), CONSTlTUTIVELY ACTIVATED CELL DEATH 1
(CAD1, also referred to as NECROTIC SPOTTED LESIONS 2 or NSL2), and MACP2 in
Arabidopsis thaliana, have been characterized and shown to play roles in regulating plant
immunity and salicylic acid (SA)-mediated defense signaling pathways, as well as in
restricting fungal invasion through the transport of phenolic compounds. Furthermore,
the involvement of MACPF genes in plant stress responses has only been investigated
in three Arabidopsis thaliana genes [15,17–23]. Arabidopsis NSL1 is a crucial factor in the
inhibition of cell death and defense responses, whose mutant displays impaired growth
and development, along with the emergence of spotted necrotic lesions on leaves, even
in the absence of pathogens [17]. Additionally, the nsl1 mutant exhibits elevated levels of
salicylic acid (SA), which is a consequence of the Trp-derived activation of the SA pathway,
implying that NSL1 acts as a negative regulator of cell death and is indispensable for its
prevention [19]. Furthermore, it has been observed that CAD1 is localized in both the
cytosol and plasma membrane [22], which is also found to have a negative regulatory
effect on the expression of SA-related defense genes and the activation of systemic acquired
resistance (SAR) through hypersensitive response (HR) [15,18,21]. Additionally, CAD1
has been implicated in the regulation of autoimmunity by interacting with ENHANCED
DISEASE SUSCEPTIBILITY 1 (EDS1), a key protein in the plant immune system [22]. An-
other protein, MACP2 (At4g24290), has also been shown to induce programmed cell death,
enhance bacterial pathogen resistance, and suppress resistance against necrotrophic fungal
pathogens, which is achieved by stimulating the biosynthesis of indole glucosinolates and
the SA pathway [23]. Furthermore, the regulation of mRNA isoforms of MACP2 was
found to be influenced by alternative splicing and exposure to pathogen attack, which
distinguishes it from other MACPF genes in Arabidopsis [23]. These findings suggest
that MACPF plays a significant role in the plant’s response to environmental stresses, and
further research in other plant species, apart from Arabidopsis, is warranted. To date,
several MACPF genes have been identified at the genome level in Arabidopsis, cotton,
moss, spikemoss, and Poaceae [2,19,23]. Notably, the MACPF gene has not been identified
in algae, with its first occurrence in moss P. patens, which could be related to the plant
landing [2].

In addition, the plant MACPF gene family has been categorized into four groups, with
Group IV being identified as the specific gene family for moss and spikemoss [2]. However,
the distribution of MACPF genes in other plants, particularly in economically significant
crops, like Solanaceae, remains unexplored despite the availability of well-sequenced and
annotated species, such as tomato, potato, and pepper. Additionally, the recent sequencing
of water lily (Nymphaea colorata), which serves as the basal group of angiosperms [24],
offers a valuable opportunity to investigate the evolutionary dynamics of the MACPF gene
family at a more comprehensive level. The systematic and evolution study will fulfill the
functional studies of the MACPF genes in Solanaceae species.

Here, the genomic level of MACPF genes was identified in both Solanaceae and water
lily species, followed by subsequent analyses of their evolution and expression profiles.
The findings will offer novel insights into the evolution and function of SolMACPF genes,
serving as a foundation for future investigation.
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2. Results
2.1. Identification of MACPF Members in Solanaceae Species Genomes

In our previous research, we successfully identified MACPF genes in 15 plant
genomes, encompassing various species, such as green algae, moss, spikemoss, eudi-
cots, and six Poaceae species, which indicated a potential correlation between MACPF
proteins and plant colonization on land [2]. Building on these findings, we have now ap-
plied the same identification criteria to filter MACPF genes in the genomes of Solanaceae
species. Our analysis revealed the presence of six, seven, and six MACPF genes in
Capsicum annuum, Solanum lycopersicum, and Solanum tuberosum, respectively. The longest
transcripts of the MACPF genes were chosen, which were subsequently named according
to the genome location (Table S1). Furthermore, we have successfully identified the
7 MACPF genes in Nymphaea colorata, which belong to the basal group of seed plants.

The predicted Solanaceae MACPF proteins exhibited a comparable size range of
565 to 716 amino acids, as shown in Table S1, which is consistent with the MACPF size
observed in Arabidopsis and rice. Additionally, the physical and chemical properties
of these proteins were calculated using the EXPASY website (http://www.expasy.org,
accessed on 18 August 2023). The findings revealed that the molecular weight (MW)
ranged from 62.8 to 68.8 kDa, and the isoelectric point (pI) ranged from 6.29 to 9.05. No-
tably, the majority of MACPF proteins exhibited basic characteristics, with the exception
of CaMACPF1, StMACPF5, and SlMACPF3, which belong to Group III, and had acidic
pI values below 7.0.

2.2. Phylogenetic and Structure Analysis

To discover the phylogenetic relationship of the selected plant MACPF family,
the MACPF proteins’ catalytic domain, including Solanaceae MACPF proteins, was
constructed using the MEGA X software. The Maximum Likelihood method and JTT
matrix-based model were employed for this analysis. Based on the phylogenetic tree
and the organization of domains or motifs, the MACPF proteins were classified into four
distinct groups (Groups I–IV), with bootstrap values of 88, 99, 100, and 42, respectively
(Figure 1). The bootstrap values among the groups were lower than those within the
groups, indicating the reliability of the classification. Furthermore, the analysis of
the phylogenetic tree and domain organization revealed the presence of characteristic
MACPF genes in bryophyte and lycophyte lineages, which formed Group IV (Figure 1).

Furthermore, it was observed that the Solanaceae MACPF genes were present in
three additional groups, namely Group I, Group II, and Group III, with seven, six, and
six genes, respectively. Apart from the three MACPF members identified in tomato
from Group I, two other Solanaceae genomes also exhibited two MACPF members each
in Group I, Group II, and Group III, suggesting the occurrence of an additional gene
duplication event in tomato (Figure 1). Notably, no segmental duplication or tandem
duplication events of the MACPF genes were detected in the Solanaceae, indicating
that dispersed duplication played a prominent role in MACPF gene expansion in the
Solanaceae genomes.

The classification, based on the phylogenetic tree, was further validated by the
analysis of the MACPF proteins’ domain organization using the multiple EM for motif
elicitation (MEME) website. The high E-values observed among the proteins indicates
a significant sequence conservation of MACPF genes, across plant species, particularly
within the Solanaceae family (Figure 2). In order to gain a deeper comprehension of the
organization of 55 MACPF genes, an exon–intron analysis was conducted using GSDS
tools. The MACPF genes exhibited a notable resemblance in terms of the exon–intron
composition and phase position. Furthermore, the exon–intron gene structures within
the subgroups displayed a significant similarity, aligning with the arrangement of protein
motifs (Figure 2). The findings revealed that 5′ or 3′ UTR regions of MACPF genes, which
are recognized as regulatory regions, were predicted in 86% (47/55) of cases, with the
exception of spikemoss SmMACPF1 and SmMACPF2, pepper CaMACPF1/2/4/5/6, and

http://www.expasy.org
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potato StMACPF2 (Figure 2), which indicates a greater likelihood of diverse regulatory
mechanisms among MACPF genes. Moreover, the absence of regulatory untranslated
regions in pepper MACPF suggests that the evolution of pepper MACPF might have
occurred earlier.
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Figure 1. Plant MACPF proteins’ phylogenetic tree analysis. The phylogenetic tree of 55 MACPF
proteins’ catalytic domain, including Solanaceae MACPF proteins, was constructed with the MEGA
X software, using the Maximum Likelihood method and JTT matrix-based model. Based on the tree,
the MACPF proteins were categorized into four distinct groups, represented by four colors, with
optimization using FigTree software (v1.4.4.).
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Left panel: a phylogenetic tree redrawn from Figure 1, maintaining the same topology. Middle 
panel: the compositions of conserved motifs in MACPF proteins, identified using the MEME web 
tool, with up to 10 conserved motifs. Right panel: the exon–intron structures of the MACPF genes, 
as determined by the GSDS website. Exons and introns are visually represented as filled boxes and 
grey lines, respectively. The fraction of the gene that encodes the MACPF domain is highlighted in 
yellow, while the remaining coding sequences are marked in green. The 5′ and 3′ untranslated re-
gions (UTRs) are indicated in red at the ends of the sequences. 

2.3. Solanaceae MACPF Genes Duplication 
To determine the physical location and expansion of Solanaceae MACPF genes, they 

were mapped to their respective chromosomes and anchored chromosomes 3, 4, and 4 in 
St, Sl, and Ca. According to the duplications classification criteria outlined in Reference 
[25], no instances of tandem duplications were detected in the genomes of the Solanaceae 
family, which aligns with the evolutionary pattern observed in the Poaceae MACPF genes. 
Furthermore, the Solanaceae genome did not exhibit any documented cases of segmental 
duplication of MACPF genes, which contrasts with the evolution trajectory of the Poaceae 

Figure 2. Schematic representation of the conserved motifs and gene structures of plant MACPF.
Left panel: a phylogenetic tree redrawn from Figure 1, maintaining the same topology. Middle panel:
the compositions of conserved motifs in MACPF proteins, identified using the MEME web tool,
with up to 10 conserved motifs. Right panel: the exon–intron structures of the MACPF genes, as
determined by the GSDS website. Exons and introns are visually represented as filled boxes and
grey lines, respectively. The fraction of the gene that encodes the MACPF domain is highlighted
in yellow, while the remaining coding sequences are marked in green. The 5′ and 3′ untranslated
regions (UTRs) are indicated in red at the ends of the sequences.

2.3. Solanaceae MACPF Genes Duplication

To determine the physical location and expansion of Solanaceae MACPF genes, they
were mapped to their respective chromosomes and anchored chromosomes 3, 4, and 4 in St,
Sl, and Ca. According to the duplications classification criteria outlined in Reference [25],
no instances of tandem duplications were detected in the genomes of the Solanaceae fam-
ily, which aligns with the evolutionary pattern observed in the Poaceae MACPF genes.
Furthermore, the Solanaceae genome did not exhibit any documented cases of segmental
duplication of MACPF genes, which contrasts with the evolution trajectory of the Poaceae
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MACPF genes. The observations suggest that the MACPF genes underwent distinct evolu-
tionary processes in monocots and dicots. Moreover, the expansion of the MACPF gene
family in Solanaceae genomes primarily occurred through dispersed duplications.

The calculation of the selective pressure upon gene evolution involved the utiliza-
tion of Ka (non-synonymous distance), Ks (synonymous distance), and ω (Ka/Ks ratio)
values [26,27]. According to the neutral theory, the ω value indicates positive selection
(greater than 1), neutral evolution (equal to 1), purifying selection or negative selection (less
than 1) [28]. To assess the potential variations in selection pressure on MACPF genes within
and between groups and species in Solanaceae, the gene pairs were examined. The results
indicate that the Ka/Ks ratio of Solanaceae MACPF gene pairs was consistently below 1,
suggesting that these genes have undergone purifying selection. Additionally, theω values
for each MACPF group were calculated, resulting in averageω values of 0.15, 0.11, and 0.13
for Group I, Group II, and Group III, respectively (Figure 3a). Group I exhibited a higher
ω value compared to the other two groups, indicating a greater relaxation of purifying
selection in Group I. Conversely, Group II had the smallestω value, suggesting a stronger
susceptibility to functional differentiation in this group than in the other two groups. None
of the Ka/Ks ratios exceeded 1, suggesting a varied purifying selection pressure among the
three Groups and no evidence of positive selection during the expansion of the MACPF
gene family in Solanaceae. The Solanaceae genome species, including the pepper, tomato,
and potato genomes, exhibited similar Ka/Ks ratios (Figure 3b), indicating a comparable
susceptibility to functional differentiation during the evolution of MACPF genes.
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obtained through pairwise comparisons within Groups I, II, and III, (a) as well as within Solanaceae
species; (b) the Y-axis represents the Ka/Ks ratios of MACPF genes for each pair. Boxplots were
generated in R to illustrate the distribution of these ratio values.

2.4. Collinearity Analysis of Solanaceae MACPF Genes

To further investigate the evolutionary relationships among members of the Solanaceae
MACPF gene family, the MCScanX software was utilized to identify collinearity relation-
ships among MACPF genes across various Solanaceae species. A total of 12 orthologous
MACPF genes were identified in three Solanaceae genomes, with an e-value of less than
1 × 10–10 as determined by the MCScanX software. This analysis revealed six blocks
of collinearity between tomato and pepper, as well as six blocks between pepper and
potato (Figure 4). Moreover, all these orthologous MACPF genes displayed a one-to-one
correspondence, indicating a higher level of conservatism among MACPF genes across
Solanaceae species.
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Figure 4. Collinearity analysis of MACPF genes among pepper, tomato, and potato. The chromosomes
of three Solanaceae species are visually represented as distinct colored boxes. Specifically, the topmost
brown boxes correspond to Solanum tuberosum, the middle magenta boxes represent Capsicum annuum,
and the bottom green boxes signify Solanum lycopersicum. MCScanX software was employed to
establish connections between putative orthologous genes within their genomes’ respective genomes,
which are depicted as lines. Collinear relationships among MACPF genes are denoted by the
innermost grey solid lines. In total, 12 orthologous MACPF gene pairs were identified and are
connected by blue solid lines.

2.5. Cis-Regulatory Elements Analysis in Solanaceae MACPF Promoters

According to previous studies, it has been observed that plant MACPF genes take
part in the stress response of Arabidopsis and Poaceae species [2,19,23]. To investi-
gate the potential roles of MACPF genes in response to biotic and abiotic stresses, the
cis-regulatory elements (CREs) of the promoters were analyzed. Specifically, the 2 kb
sequence upstream of the MACPF gene was examined using the PlantCARE website. The
focus was on identifying and characterizing the cis-elements of the gene promoters, partic-
ularly those related to phytohormones and stress responses, excluding light-responsive
elements (Figure 5). A total of 196 potential CREs were identified across the 19 MACPF
promoters, with 111 CREs found in the promoters of 7 NcMACPF genes (Figure 5).

We discovered a total of 44 putative ABA-responsive elements (ABREs) in the promot-
ers of 14 Solanaceae MACPF genes (Figure 5), which have been shown to respond to both
salt and osmotic stress [29]. In addition, we identified nine elements that are potentially
involved in drought stress responses in the promoters of six SolMACPF genes. Additionally,
we have found 11 putative low-temperature responsive elements (LTREs) in the promoters
of eight Solanaceae MACPF genes (Figure 5), indicating their potential role in cold stress.
Moreover, two putative elements associated with wound responsiveness have been iden-
tified in the promoters of two SlMACPF genes. Furthermore, our analysis revealed that
a subset of Solanaceae MACPF genes might be associated with anoxia responses, as evi-
denced by the presence of gibberellin-responsive (GARE) motifs in 10 Solanaceae MACPF
promoters. Additionally, 14 Solanaceae MACPF promoters contained 28 putative anaerobic-
or anoxic-related motifs (ARE and GC-motif), suggesting their involvement in anaerobic or
low oxygen stress (Figure 5).

Moreover, we identified several elements, such as the AT-rich motif (TAAAATACT)
in CaMACPF4, StMACPF2, and SlMACPF5 (Figure 5), which were implicated in elicitor-
mediated activation of plant defenses against biotic stress. In our study, we identified
15 SA-Responsive Element (SARE) motifs associated with SA responses in the promot-
ers of 20 Solanaceae MACPF genes. Additionally, we found eight auxin response ele-
ment (ARE) motifs believed to mediate Auxin responsiveness in eight Solanaceae MACPF
genes (Figure 5). Furthermore, the promoters of 15 Solanaceae MACPF genes contained
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60 putative TGACG or CGTCA motifs, which were known to be involved in methyl jas-
monate (MeJA) responses (Figure 5). These findings provide compelling evidence that
Solanaceae MACPF genes are likely involved in multiple stress responses.
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Figure 5. Prediction and analysis of cis-regulatory elements (CREs) within the promoter sequences
of the MACPF gene family. The left side of the figure displays a phylogenetic tree, which has been
reproduced from Figure 1. On the right side, the PlantCare database was utilized to predict the CREs
within the 2000 bp upstream regions of the 55 MACPF genes. These CREs can be classified into
two distinct categories: phytohormone-responsive elements, including ABA, Auxin, GA, MeJA, and
SA, and stress-related elements, encompassing drought inducibility, low-temperature responsiveness,
elicitor-mediated activation, and wound responsiveness.

We conducted further analysis on the promoters of NcMACPF genes, wherein we iden-
tified a total of 15 putative ABREs in six NcMACPF promoters and nine elements associated
with drought inducibility in four NcMACPF promoters. Additionally, we observed the
presence of five putative LTREs in four NcMACPF promoters (Figure 5). Notably, only
one CRE mediating wound response was identified in NcMACPF7, indicating an early
functional differentiation (Figure 5). Similar to Solanaceae, a subset of NcMACPF genes
might exhibit a response to anoxia, as evidenced by the presence of 2 putative GARE motifs
in 2 NcMACPF promoters, as well as 27 putative ARE and GC-motif elements distributed
across all 7 NcMACPF promoters (Figure 5).

CREs associated with biotic stress can be detected in NcMACPF genes, including
one element component believed to be accountable for triggering plant defense activation
in NcMACPF4. Additionally, there were eight putative AREs in the promoters of four
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NcMACPF genes and three putative SAREs in the promoters of three NcMACPF genes
(Figure 5). Furthermore, 40 putative MeJA-responsive elements can be identified in the
promoters of 6 NcMACPF genes (Figure 5). These findings indicated that NcMACPF, similar
to Solanaceae, exhibits responsiveness to diverse stress stimuli.

2.6. Expression Profile Analysis of Solanaceae MACPF Genes

In order to gain a deeper understanding of the roles played by Solanaceae MACPF
genes in various stages of development, we collected and analyzed RNA sequencing
data from the PepperHub database and Gene Expression Omnibus (GEO) database [30],
following the methodology described in a previous publication [31]. The expression values
of the 6 pepper CaMACPF genes in 57 tissues were resolved and clustered with the value of
Reads Per Kilobase of the transcript, per Million mapped reads (RPKM), with visualization
using the heatmap method (Figure 6). The analysis revealed that all 6 CaMACPF genes
were expressed in all 57 pepper tissues (Figure 6). According to the Tissue specificity index
(TAU) values, it was observed that CaMACPF1 exhibited preferential expression in T11
(Placenta) and CaMACPF6 exhibited preferential expression in T10 (Placenta) with Group
III. Additionally, CaMACPF2 exhibited preferential expression in P10, and CaMACPF5
exhibited preferential expression in L9 (leaf) within Group I. Furthermore, CaMACPF3
exhibited preferential expression in T11 (Placenta), and CaMACPF4 exhibited preferential
expression in G11 (Pericarp) within Group II.
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Figure 6. Expression profile of six CaMCAPF genes. (a) Expression profiles of six CaMACPF genes
in plant developmental stages. The expression values of the CaMACPF genes were resolved from
the Pepperhub database (http://www.hnivr.org/pepperhub, accessed on 18 August 2023). L: leaf;
F: flower; P: Petal; O: Ovary; STA: Anther; FST: Whole Fruit; G: Pericarp; T: Placenta; ST: Placenta
and Seed; S: Seed. The expression values were clustered using heatmap methods. The color bar
represents the Z score of the expression value; (b) CaMATEs regulation upon phytohormone and
stress treatments. L: leaves; R: roots; A: ABA treated; S: SA treated; J: JA treated; I: IAA treated;
G: GA treated; F: freezing treated; R: H2O2 treated; N: NaCl treated; M: mannitol treated; H: heat
treated; Up (Red): upregulated genes; Down (Green): downregulated genes; --: no regulation.

The CaMACPF within the same group exhibited a discernible expression and regu-
lation pattern in various organs of pepper (Figure 6a), which suggests the occurrence of
sub-functionalization or functional diversification among the CaMACPF paralogs. Notably,

http://www.hnivr.org/pepperhub
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our findings indicate that the majority of CaMACPF genes (five out of six) exhibited the
highest expression levels in reproductive tissues compared to vegetative tissues, suggest-
ing their significant involvement in plant reproductive organs and tissues. Furthermore,
Group I displayed a higher expression pattern compared to Group II and III, as illustrated
in Figure 6a.

2.7. Expression Analysis of Phytohormone- and Stress-Responsive Pepper MACPF Genes

The experimental elucidation of MACPF genes has revealed their significant role
in plant response to stress [23]. In order to investigate the function of pepper MACPF
genes in plant stress response, the expression values of CaMACPF genes were obtained
from the PepperHub database. The database includes data on pepper roots and shoots
subjected to five phytohormones (ABA, GA, indole-3-acetic acid (IAA), JA, and SA) and
five stress treatments (freezing, H2O2, salt, mannitol, and heat stress) [30]. Among the
phytohormones, the majority of CaMACPF genes in pepper roots were found to be induced
by at least one phytohormone, with the exception of CaMACPF4 repressed in SA, JA, and
ABA treatments (Figure 6b).

In both the pepper root and leaves, the expression of CaMACPF genes was influ-
enced by various phytohormones. Specifically, CaMACPF1/2/3 genes were induced by all
five phytohormones (ABA, GA, IAA, JA, and SA) in the roots. Additionally, CaMACPF5
was induced by GA3 and ABA, while CaMACPF6 was induced by SA in the root.
In contrast, in the pepper leaves, a greater number of MACPF genes were repressed rather
than induced by phytohormones, exhibiting a regulation pattern opposite to that observed
in the roots. Specifically, CaMACPF1 was induced by SA and JA, CaMACPF2 was induced
by SA and repressed by ABA, CaMACPF3 was induced by SA and repressed by GA and
ABA, CaMACPF4 was repressed by JA and ABA, and CaMACPF6 was induced by SA. In
particular, the presence of the CaMACPF gene regulated by IAA was not observed, and
OsMACPF5 was not regulated by any phytohormone (Figure 6b).

In the root tissues, CaMACPF4 was found to be repressed by all five stress treatments
(freezing, H2O2, salt, mannitol, and heat stress). Conversely, CaMACPF1 and CaMACPF3
were induced by all five stressors. CaMACPF2 showed induction in response to four stres-
sors, excluding NaCl. CaMACPF5 was only induced by heat in both root and leaf tissues.
In the leaf tissues, CaMACPF1 was induced by mannitol and H2O2, while CaMACPF2 and
CaMACPF3 were solely repressed by NaCl. CaMACPF4 exhibited induction by heat stress
but repression by cold stress, and CaMACPF6 was induced by H2O2.

Above all, distinct CaMACPF gene profiles were observed in roots and leaves in re-
sponse to phytohormones and stresses, implying the existence of tissue-specific regulatory
mechanisms. The involvement of pepper MACPF genes, particularly CaMACPF1/2/3, in the
response to freezing, H2O2, salt, mannitol, and heat stresses, suggests their significant roles
in stress adaptation. Notably, a parallel response pattern was observed between phytohor-
mones and stresses, indicating a shared regulatory pathway in plant stress response.

2.8. Pepper MACPF Genes in Response to Submergence

To further investigate the impact of hypoxia stress on the function of pepper MACPF
genes, plants at the age of four weeks were submerged for a period of 48 h, followed by a
recovery period of 48 h. The reverse-transcription and quantitative PCR (qRT-PCR) method
was utilized to examine the regulation pattern of six CaMACPF genes. The transcription
levels of CaMACPF1/3 genes exhibited an increase of more than two-fold after 48 h of
submergence in the roots of pepper (Figure 7). Additionally, CaMACPF1/2/3 genes dis-
played an increase of more than two-fold after 48 h of submergence, while the transcription
level of the CaMACPF4 gene also exhibited an increase of more than two-fold after 48 h of
submergence in the leaves of pepper (Figure 7). These results indicated that the induction
of CaMACPF genes by submergence suggested their potential involvement in the plant’s
response to hypoxia and subsequent recovery.
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Figure 7. Expression profile of SolMACPF genes under submergence treatment. qRT-PCR analysis
of CaMACPF1–6 genes after 48 h of submergence. (a) The relative expression of CaMACPF genes in
pepper roots after submergence for 48 h; (b) Relative expression of CaMACPF genes in the leaves after
48 h of submergence was assessed. The plants were cultivated in a greenhouse with a temperature of
28/23 ◦C (light/dark) and a light period of 10 h followed by 14 h of darkness. Transcript levels were
normalized using CaUBI as the internal reference. Each data point represents the average of three
biological repeats. * p < 0.05; ** p < 0.01 by Student’s t-test.

2.9. Subcellular Localization of Selected CaMACPF

The subcellular localization of pepper CaMACPF6 proteins was investigated through
the utilization of a confocal microscope. In order to analyze their subcellular localization,
we employed the heterologous expression of CaMACPF6-GFP fusion proteins in Ara-
bidopsis protoplast. The findings indicate that the CaMACPF6-GFP signal predominantly
overlapped with the nucleus subcellular marker ARF4-RFP (Figure 8a), as well as with the
dye FM4-64 (Figure 8b), which suggests that the CaMACPF6 protein is localized within the
nucleus and plasma membrane.
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Figure 8. Subcellular localization of CaMACPF6. (a) The expression of CaMACPF6-GFP and the
nucleus marker ARF4-mCherry, as well as merged images, were also observed; (b) The expression of
CaMACPF6-GFP and dye FM4-64, as well as merged images, were also observed. The fluorescence
signal of CaMACPF6 was predominantly localized in the nucleus and plasma membrane. Bar, 5 µm.

3. Discussion

MACPF proteins have been found to have a substantial impact on plant development
and response to various stresses, particularly in relation to pathogens and pests affecting
both plants and animals [23,32–34]. Thus far, the identification of MACPF genes in the
genomes of Arabidopsis, cotton, and Poaceae species has been accomplished [2,15,35].
However, no MACPF genes have been characterized in Solanaceae, a plant family that
encompasses several crucial agricultural and horticultural crops, such as tomato, potato,
and pepper. In this study, we aim to identify Solanaceae MACPF genes and analyze their
evolutionary characteristics and functional roles in development and stress response.

3.1. The Solanaceae MACPF Genes Conservation in Eudicot and Monocot

Several MACPF genes have been identified in Arabidopsis, cotton, and Poaceae species,
at the genome level [2,19,23]. Our previous study demonstrated that the occurrence of
MACPF genes was first observed in the moss P. patens but not in algae, suggesting their
association with the colonization of land by plants and their classification as a land plant-
specific gene family [2]. Furthermore, only Group IV MACPF genes were found in the
moss and spikemoss, with no other groups identified. In this study, employing similar
methods [2], we have identified seven, six, seven, and six MACPF genes in Nymphaea
colorata, Capsicum annuum, Solanum lycopersicum, and Solanum tuberosum, respectively
(Table S1, Figure 1). These MACPF genes were found to be distributed in Groups I, II, and
III, indicating that these three MACPF groups likely originated in the basal group of seed
plants. Conversely, no Group IV MACPF genes were identified in Nymphaea colorata and
Solanaceae species, suggesting that Group IV is specific to the moss and spikemoss lineage.
Moreover, there were at least two members in Groups I, II, and III, suggesting that they
might have undergone similar evolutionary processes in the Solanaceae genomes. Notably,
the number of members in Groups I and II in Solanaceae genomes was smaller compared to
Poaceae genomes, while there were more members in Group III. This discrepancy suggests
the presence of distinct evolutionary selectivity patterns between eudicot and monocot.

The parameters Ka, Ks, and ω (Ka/Ks ratio) were utilized to evaluate the selective
pressure exerted on gene evolution [26,27]. The ω values derived from pairwise com-
parisons within groups or species were consistently below 1.0 (Figure 3), indicating that
Solanaceae MACPF genes underwent purifying selection throughout their evolutionary
history, a pattern similar to that observed in Poaceae MACPF genes [2]. In contrast to the
Poaceae MACPF genes, theω values were significantly smaller in Solanaceae species when
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comparing across species (Figure 3b), implying that SolMACPF genes experienced a greater
degree of purifying selection in comparison to Poaceae MACPF genes. Additionally, the
ω values of Solanaceae MACPF genes were lower than those of Poaceae MACPF genes
in both Groups II and III, with an increase in Group I [2], implying that SolMACPF genes
experienced a higher level of purifying selection in Groups II and III, but a lesser degree in
Group I.

The findings of our study indicate that SolMACPF genes could be classified into three
distinct groups in angiosperm, as evidenced by the high bootstrap values of phylogenetic
trees, similarities in gene structures, arrangement of domains or motifs, and physical and
chemical properties (Figures 1 and 2). This classification aligns with previous research
on Poaceae MACPF genes, which also demonstrated the same grouping as observed
in Solanaceae [2]. Furthermore, this classification is consistent in water lily genomes,
suggesting a higher degree of conservation of MACPF genes among angiosperms.

3.2. Solanaceae MACPF Duplications and Collinearity Analysis

In the three Solanaceae genomes, a total of 19 MACPF genes were identified, exhibiting
an uneven distribution across the chromosomes, which distribution pattern was also found
to be similar to that observed in Poaceae genomes [2], but differed from the outcomes
of diploidization or polyploidization events [36–38]. No clustering of MACPF genes was
observed in the genomes of the Solanaceae family (Figure 4), which was consistent with
the expansion of MACPF genes in the Poaceae family [2], suggesting the absence of tandem
duplication in the Solanaceae family, based on chromosomal location analysis. Furthermore,
unlike the expansion of MACPF genes in the Poaceae family [2], no segmental duplications
were detected in the SolMACPF genes, indicating a divergence between monocotyledons
and dicotyledons. Additionally, it was observed that MACPF genes in the Solanaceae family
did not undergo segmental duplication events, unlike in Poaceae species [2], suggesting
a distinct duplication trajectory between eudicot and monocot species. The analysis of
three Solanaceae genomes duplication demonstrated the absence of tandem or segmental
duplications in the MACPF gene, indicating that the expansion of Solanaceae MACPF genes
was solely attributed to dispersed duplications.

The paralogous MACPF genes identified by collinearity analysis in Solanaceae ex-
hibited similar domain organization and gene structures, particularly within the same
groups, as evidenced by the significantly higher bootstrap values in the phylogenetic tree
(Figures 1 and 2), implying that there were no instances of domain or motif gain or loss
during the evolution of MACPF genes. In comparison to Poaceae MACPF genes, Group III
members in the Solanaceae species exhibited an additional duplication, highlighting the
distinctiveness of this particular group.

After gene duplication, the duplicated genes might undergo various outcomes, such
as sub-functionalization, neo-functionalization, or non-functionalization [39]. The distinct
response to phytohormone and stress treatments exhibited by CaMACPF2 and CaMACPF5
in Group I, CaMACPF3 and CaMACPF4 in Group II, and CaMACPF1 and CaMACPF6 in
Group III suggests functional divergence or sub-functionalization of duplicated genes
following the expansion.

3.3. Solanaceae MACPF Genes Function

Previous studies have highlighted the significant roles of plant MACPF gene devel-
opment and stress response [2,15,18,19,22,23,35,40]. The utilization of expression patterns
was employed to evaluate the involvement of genes in plant reactions to both biotic and
abiotic stresses [41] in conjunction with physiological and biochemical indicators. Analysis
of tissue expression revealed that five out of the six CaMACPF genes exhibited a prefer-
ence for expression in the placenta or pericarp, which belong to vegetative tissues, while
CaMACPF5 was predominantly expressed in leaf tissue (Figure 6). This observation sug-
gests that MACPF genes in the Solanaceae family might possess significant functions in
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plant development, particularly during vegetative stages, similar to MACPF genes in the
Poaceae family [2].

Furthermore, an in-silico analysis of the promoter of the 19 SolMACPF genes re-
vealed that the presence of 196 potential CREs associated with phytohormone and stress
responses (Figure 5), indicating their involvement in plant adaptation to environmental
stimuli. Notably, the examination of RNA-seq expression data for pepper MACPF genes
corroborated the association between phytohormone and stress response, particularly in
the roots (Figure 6b), which aligned with the identification of CRE motifs in the gene
promoters. Additionally, our research findings demonstrated that six CaMACPF genes ex-
hibited regulation by at least one phytohormone or stress treatment (Figure 6b), suggesting
their involvement in complex or interconnected functions in response to environmental
stimuli in the Solanaceae family. Particularly noteworthy, our results have revealed that
CaMACPF1/2/3/4/6 were all induced by hypoxia stress, with the exception of CaMACPF5,
which provided a foundation for further experimental investigation.

4. Materials and Methods
4.1. MACPF Genes Identificaiton in Solanaceae

To comprehensively analyze the complete genome of the MACPF gene family, a Basic
Local Alignment Tool for Protein (BLASTP) analysis was conducted. This analysis utilized
Arabidopsis and six Poaceae species MACPF genes [2,15] as queries, which were against se-
lected Solanaceae genomes, with parameters of the E-value less than 10–5, including pepper
(Capsicum annuum), tomato (Solanum lycopersicum), and potato (Solanum tuberosum) [36,37,42],
as well as the base group of water lily (Nymphaea colorata) [24]. Additionally, the MACPF
domain Pfam entry (PF01823) was obtained from the Pfam database [43] and used to serve
as a seed to identify the MACPF gene, through the HMMER 3.0 software [44], with Ensembl
Plants [45] and Phytozome databases [46]. The SMART, CDD, and InterProscan databases
were then employed to further screen the candidate MACPF proteins, as previously de-
scribed in a study [2,31].

4.2. MACPF Gene Structure, Domain Organization, and Promoter Analysis

The exon–intron organization of the predicted gene structures was detected by the
Gene Structure Display Server (GSDS2.0). The conserved motif in the domain organizations
was characterized through the MEME (Multiple EM for motif elicitation) database [47]. The
putative cis-regulatory elements in the 2000 bp upstream of MACPF gene promoters were
predicted using the PlantCARE database [48]. The results were visualized by the software
of TBtools [49].

4.3. MACPF Gene Phylogenetic Analysis

The catalytic domains of MACPF proteins were aligned using ClustalX 2.0 [50], and
the resulting alignment was used as input for MEGA X to construct a phylogenetic tree [51].
The maximum likelihood method (ML) was employed with the Jones–Taylor–Thornton
(JTT) model and suitable parameters, including Gamma distribution evolutionary rates
(+G), pairwise deletions, and 1000 bootstraps, which was visualized using FigTree software.

4.4. MACPF Gene Duplication and Synteny Analysis

To identify intragenomic and intergenomic syntenic blocks within the Solanaceae,
MCScanX software was utilized with the default parameters [52]. The segmental duplica-
tion and tandem duplication events were identified according to the previous study [53].
The result was visualized by the software of TBtools [49].

4.5. MACPF Gene Expression Analysis

The tissue-, phytohormone- or stress-specific expression profile of Solanaceae MACPF
genes was determined by re-analyzing the published pepper RNA-seq transcriptome
datasets from PepperHub [30]. Differentially expressed genes with a fold-change greater
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than 2.0 were subjected to heatmap analysis using R software based on Z scores of gene
expression values, as described previously [54,55].

4.6. Submergence Treatment and Quantitative RT-PCR

Pepper Capsicum 6421 was cultivated in a greenhouse under the conditions of
25/23 ◦C (day/night) and a photoperiod of 16 h light/8 h darkness. In light submer-
gence (LS) treatment, four-week-old pepper seedlings were submerged in the water with
a depth of 10 cm. After 48 h of submergence followed by 48 h recovery, roots or leave
from three individual plant were harvested and pooled as a sample. The expression of
CaMACPF genes was detected using qRT-PCR (quantitative reverse transcription PCR),
as described in previous studies [53,56]. After quantifying the expression levels of each
gene in various samples and obtaining three replicated Ct values, the Ct difference between
the experimental and control groups and the internal reference gene CaUBI-3 (∆Ct) was
calculated. Subsequently, the difference in ∆Ct between the experimental group and the
control group (∆∆Ct) was determined. Finally, the 2−∆∆Ct method was employed to assess
the relative changes in Ct values of the experimental group compared to the control sample.
Hypothesis testing was conducted using Student’s t-test. The primers used in this study
can be found in Table S2, with CaUBI-3 serving as the reference gene.

4.7. Subcellular Localization of the CaMACPF6

To determine the subcellular localization of the CaMACPF6 protein, the full-length
coding sequence (CDS) was obtained from pepper seedlings using reverse transcription
polymerase chain reaction (RT-PCR) with gene-specific primers. The amplified CDS was
then ligated into pUC121-XTEN-GFP-HA vectors, which had been digested with BamHI,
using specific primers containing the BamHI restriction enzymes (Table S2). The construct
pUC121-CaMACPF6-XTEN-GFP-HA enables the synthesis of a fusion protein comprising
CaMACPF6. Translation of this fusion protein is initiated at the start codon within the
StuI restriction enzyme site, which is positioned before the BamHI site and does not
induce any frameshift mutations in the CaMACPF6 protein. Following the transformation
of the constructed vectors into Arabidopsis protoplast, the resulting fluorescent signal
was visualized using a confocal microscope (LSM880 with Fast airy scan), as previously
detailed [57].

5. Conclusions

In this study, we conducted a comprehensive characterization of the MACPF genes
in three Solanaceae genomes, resulting in the classification of 19 SolMACPF genes into
three distinct groups, according to the phylogenetic tree, gene structure, and organization
of domain or motif. The intra-genome analysis demonstrated that dispersed duplications
primarily contributed to the expansion of SolMACPF genes, as opposed to tandem and
segmental duplications. Inter-genome collinearity analysis identified 12 orthologous pairs
of the SolMACPF gene. Furthermore, based on the ω values, it was determined that
purifying selection was the predominant evolutionary driving force behind the expansion
of the SolMACPF gene family. The expression pattern and subcellular localization of the
Solanaceae MACPF genes indicate their substantial involvement in plant development
and response to environmental stimuli, specifically submergence. These findings offer a
comprehensive analysis and fresh perspective on the evolution and function of SolMACPF
genes, serving as a foundation for future functional identification.
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