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Abstract: Dimethyl sulfoxide (DMSO) is regularly used as a cryoprotectant agent for the cryopreser-
vation of platelets. However, DMSO is considered toxic. We therefore hypothesized that saline could
be used as a non-toxic medium for the cryopreservation of platelets. Double-dose buffy coat platelets
(n = 10) were divided and cryopreserved at −80 ◦C using 5–6% dimethyl sulfoxide (DMSO) or in
NaCl (9 mg/mL). Paired testing was conducted pre-freeze, post-thaw (PT 1 h). Upon analysis, each
bag was thawed and reconstituted in fresh plasma. Analyses included cell counts and the metabolic,
phenotypic, and functional properties of the platelets together with thromboelastometry. The cryop-
reserved platelets showed several biochemical and ultrastructural changes compared to pre-freezing.
Platelet recovery was approximately 17% higher in DMSO-free units (p < 0.001), but the platelet
viability was reduced (p < 0.001). However, using controlled freezing (n = 6), the platelet viability was
improved. The clot formation time (CFT) was comparable, but DMSO-free platelets showed slightly
decreased maximum clot firmness (MCF) (p = 0.034). By reducing the reconstituted plasma volume, a
reduced CFT and increased MCF were obtained (p < 0.001). This study demonstrates that platelets
can be cryopreserved in saline without the addition of DMSO, with high recovery and maintained
hemostatic function. However, controlled freezing is required to optimize platelet quality.

Keywords: transfusion; platelets; cryopreservation; dimethyl sulfoxide (DMSO, Me2SO); activation;
microparticles

1. Introduction

Platelets are key players in hemostasis, and platelet transfusions are critical in the
treatment of bleeding [1]. However, many challenges concern the availability of platelets
since they have a short shelf time of 5–7 days, resulting in high wastage and high costs
and often limited access in remote locations. The cryopreservation of platelets was first
mentioned in a paper more than 65 years ago, where the platelets were frozen at −15 ◦C
and later transfused [2]. Since then, the method has evolved, and nowadays platelets
are frozen and stored at −80 ◦C [3]. The original method containing dimethyl sulfoxide
(DMSO, Me2SO) as a cryoprotectant agent (CPA) was developed in 1974 by Robert C.
Valeri [4]. The method was further optimized by removing excess DMSO before freezing,
to avoid the post-thaw wash, which enhanced platelet pre-activation [5]. This method has
become the standard routine for platelet cryopreservation [6]. Previously, cryopreserved
platelets were used mainly for special indications, but recently there has been increasing
interest in the treatment of bleeding [7,8].

Although the 6% DMSO no-wash protocol is generally used, the method has disad-
vantages. One issue is the toxicity of DMSO. Not only does the freezing process damage
the cells, but DMSO may also worsen the damage if cells are exposed for too long and
not kept cool [9]. Studies have demonstrated in vitro platelet recovery of 50–70% after
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cryopreservation [10–12]. Most cells display a pre-activated phenotype and the increased
release of platelet-derived microparticles [13–15]. Studies also confirm the downregulation
of various platelet receptors, including glycoprotein Ibα (CD42b), platelet von Willebrand
factor receptor, glycoprotein VI (GPVI), collagen receptor, and platelet and endothelial cell
adhesion molecule 1 (PECAM-1). Cryopreservation adversely affects viability, with lower
membrane potential compared to fresh platelets [10–12].

The main action for CPAs is to prevent the formation of intracellular ice crystals and
protect the ultrastructures of the cells. The cell membrane is the most vital structure af-
fected by the freezing process, as adverse changes in the lipid organization and osmotic
pressure occur when the temperature shifts [16,17]. Various CPAs have been evaluated to
minimize platelet lesions during freezing, most often in combination with DMSO. Alterna-
tive CPAs include propane-1,2-diol and glycerol cocktails with hydroxyethyl starch and
dextran, as well as with glucose [18–22]. Other mixtures contain DMSO with added second
messengers such as ThromboSol1 and epinephrine or recrystallization inhibitors such as
N-(2-fluorophenyl)-d-gluconamide [23–25]. In the majority of studies, it was concluded
that the cryopreserved platelets displayed similar defects as with the conventional DMSO
freezing protocol [20,23,24]. Additionally, it has been shown that alternative CPAs exclud-
ing DMSO also can induce toxic side effects [18,19,21]. The most recent studies comprising
trehalose or trehalose combined with phosphate have been conducted to decrease the
pre-activation of the platelets [26,27]. Studies have also tried to remove DMSO prior to and
post-freezing to reduce the final concentration of DMSO [28,29]. Furthermore, the usage of
controlled-rate freezing (CRF) was evaluated by our group to study the risk of intracellu-
lar ice formation or dehydration during the freezing process. The study concluded that
CRF was not superior to uncontrolled freezing (UCRF) when using the standard DMSO
protocol [12].

Although multiple attempts to find alternative CPAs have been conducted, many
of them include DMSO, and DMSO-free alternatives are complex in terms of toxic side
effects and technology. Thus, in a series of pilot experiments, the effects of freezing using
saline without the addition of DMSO were initially tested. Surprisingly, we observed that
the addition of high-volume isotonic saline showed preservative effects on platelets after
freezing and thawing, hypothetically indicating a reduction in the intracellular water since
destructive ice crystallization would otherwise have occurred. The mechanisms behind
this are unclear but may be linked to the prevailing discrepancy regarding osmosis in
general [30]. In this study, we further show that it is possible to cryopreserve platelets
without any sheltering protection of a CPA and still retain hemostatic functionality. This
non-toxic approach would minimize the risk of adverse effects from DMSO, on the platelets
as well as in the recipients.

2. Results
2.1. Improved Platelet Recovery in DMSO-Free Concentrates

Platelets thawed after cryopreservation with the DMSO-free protocol showed platelet
recovery of 87.4% ± 8.6% compared to cryopreservation with the conventional DMSO
method, which displayed recovery of 69.6% ± 6.1% (p < 0.001). The number of platelets per
unit before freezing was 306 ± 38.2 × 109/unit (1445 ± 161 × 106/mL). After thawing, units
frozen with DMSO presented a mean of 212 ± 25.8 × 109/unit (1005 ± 147 × 106/mL),
while DMSO-free units amounted to 267 ± 45.2 × 109/unit (1236 ± 198 × 106/mL)
(p < 0.001) (Figure 1).
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Figure 1. Increased platelet counts in DMSO-free concentrates. *** p < 0.001.
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the platelet loss after cryopreservation. Boxplots display a median with 95% confidence 

intervals (n = 10). A two-tailed t-test was performed between the DMSO and DMSO-free 

groups, defined as * p < 0.05, ** p < 0.01, and *** p < 0.001. Error bars indicate 95% CIs. 

2.2. Changes in Extra- and Intracellular Metabolic Parameters

Extra- and intracellular metabolic parameters were examined before and after cryo-

preservation with DMSO and without DMSO. Significant differences could be shown for 

various parameters (Table 1). DMSO-free products showed higher partial pressure oxygen 

(pO2), resulting in less partial pressure carbon dioxide (pCO2) in the product. Other pa-

rameters, such as pH, lactate, and bicarbonate, also showed variations. The platelet vol-

ume, glucose, and ATP generation remained comparable between the two groups (Table 

1). 

Table 1. Extra- and intracellular metabolic parameters before and after cryopreservation. The table 

displays values from fresh platelets (double-dose buffy coat platelets pre-freezing) and post-thaw 
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Glucose (mmol/L) 8.00 ± 0.59 16.29 ± 3.98 16.40 ± 3.86 0.335 

Lactate (mmol/L) 7.65 ± 1.05 2.89 ± 0.75 2.64 ± 0.67 <0.001 *** 

Bicarbonate (calculated) 8.98 ± 0.57 18.09 ± 2.19 17.86 ± 2.23 0.003 ** 

cK+ (mmol/L) 4.04 ± 0.08 4.29 ± 0.21 4.32 ± 0.23 0.394 

cNa+ (mmol/L) 159.90 ± 1.10 156.10 ± 2.33 154.50 ± 1.35 0.005 ** 

cCl− (mmol/L) 79.90 ± 2.13 84.30 ± 1.57 84.90 ± 1.91 0.81 

ATP (μmol/1011 PLTs) 6.45 ± 1.16 4.03 ± 1.39 2.79 ± 1.54 0.01 ** 

2.3. Similar Phenotypic Expression after Cryopreservation 

The expression of various platelet receptors showed both up- and downregulation 

after cryopreservation. Both cryopreserved groups were more activated, with the elevated 

expression of P-selectin (CD62P), from a mean of 11.43 ± 5.95% of total fresh platelets to 

66.81 ± 2.70% with DMSO and 73.78 ± 10.50 with DMSO-free medium. The expression of 

phosphatidylserine (Annexin V+) was also elevated in the cryopreserved groups, i.e., 

Figure 1. Increased platelet counts in DMSO-free concentrates. *** p < 0.001.

The number of platelets per unit was measured before and after freezing to examine
the platelet loss after cryopreservation. Boxplots display a median with 95% confidence
intervals (n = 10). A two-tailed t-test was performed between the DMSO and DMSO-free
groups, defined as * p < 0.05, ** p < 0.01, and *** p < 0.001. Error bars indicate 95% CIs.

2.2. Changes in Extra- and Intracellular Metabolic Parameters

Extra- and intracellular metabolic parameters were examined before and after cryop-
reservation with DMSO and without DMSO. Significant differences could be shown for
various parameters (Table 1). DMSO-free products showed higher partial pressure oxygen
(pO2), resulting in less partial pressure carbon dioxide (pCO2) in the product. Other param-
eters, such as pH, lactate, and bicarbonate, also showed variations. The platelet volume,
glucose, and ATP generation remained comparable between the two groups (Table 1).

Table 1. Extra- and intracellular metabolic parameters before and after cryopreservation. The table
displays values from fresh platelets (double-dose buffy coat platelets pre-freezing) and post-thaw
DMSO-containing cryopreserved platelets compared to post-thaw DMSO-free cryopreserved platelets.
Data are presented as mean ± SD of n = 10. A two-tailed t-test was performed between the DMSO
and DMSO-free groups, defined as ** p < 0.01, and *** p < 0.001.

Pre-Freeze Fresh Platelets Post-Thaw DMSO Post-Thaw
DMSO-Free p-Value

Mean platelet volume (fL) 9.61 ± 0.30 9.92 ± 0.50 10.25 ± 0.96 0.155
pH (37 ◦C) 6.94 ± 0.05 7.09 ± 0.07 7.11 ± 0.07 <0.001 ***
pCO2 (kPa) 5.96 ± 0.76 8.29 ± 0.71 7.85 ± 0.69 <0.001 ***
pO2 (kPa) 16.79 ± 1.78 16.52 ± 1.13 20.42 ± 0.66 <0.001 ***

Glucose (mmol/L) 8.00 ± 0.59 16.29 ± 3.98 16.40 ± 3.86 0.335
Lactate (mmol/L) 7.65 ± 1.05 2.89 ± 0.75 2.64 ± 0.67 <0.001 ***

Bicarbonate (calculated) 8.98 ± 0.57 18.09 ± 2.19 17.86 ± 2.23 0.003 **
cK+ (mmol/L) 4.04 ± 0.08 4.29 ± 0.21 4.32 ± 0.23 0.394

cNa+ (mmol/L) 159.90 ± 1.10 156.10 ± 2.33 154.50 ± 1.35 0.005 **
cCl− (mmol/L) 79.90 ± 2.13 84.30 ± 1.57 84.90 ± 1.91 0.81

ATP (µmol/1011 PLTs) 6.45 ± 1.16 4.03 ± 1.39 2.79 ± 1.54 0.01 **

2.3. Similar Phenotypic Expression after Cryopreservation

The expression of various platelet receptors showed both up- and downregulation
after cryopreservation. Both cryopreserved groups were more activated, with the elevated
expression of P-selectin (CD62P), from a mean of 11.43 ± 5.95% of total fresh platelets
to 66.81 ± 2.70% with DMSO and 73.78 ± 10.50 with DMSO-free medium. The expres-
sion of phosphatidylserine (Annexin V+) was also elevated in the cryopreserved groups,
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i.e., DMSO with 43.50 ± 15.98% and DMSO-free with 51.16 ± 14.40%, compared to fresh
platelets with 5.93 ± 2.13%. In addition, cryopreserved platelets displayed the downregula-
tion of receptors, with some further reduced in the DMSO-free group. Among the receptors
with decreased expression were glycoproteins Ib, IIIa (CD42b, CD61), and VI and platelet
endothelial cell adhesion molecule (PECAM-1) (Figure 2).
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Figure 2. Cryopreservation of platelets alters the phenotypic expression of various platelet markers.
The phenotypic expression of various platelet-specific structures was measured before and after
freezing with two different cryomedia. Results from fresh platelets (double-dose buffy coat platelets
pre-freezing), post-thaw DMSO, and post-thaw DMSO-free cryopreserved platelets are displayed,
with bars showing the mean value of n = 10. A two-tailed t-test was performed between the DMSO
and DMSO-free groups, defined as ** p < 0.01, and *** p < 0.001. Error bars: 95% CI.

Furthermore, the response upon activation with agonist ADP and collagen was ex-
amined. No significant difference could be shown between the two study groups, neither
before stimulation nor after stimulation with either ADP or collagen. However, there was
a significant difference (p > 0.001) in the base activation (PAC-1+) of the platelets before
freezing, being 6.34 ± 6.83% (fresh platelets), compared to after freezing, with DMSO
yielding 49.94 ± 11.28% and DMSO-free yielding 50.09 ± 15.36%.

2.4. Increased Release of Platelet-Derived Microparticles in Cryopreserved Concentrates

The amount of platelet-derived microparticles was measured through flow cytometry
according to their size (<1 µm) and the expression of platelet glycoprotein IIIa (CD61).
Fresh platelets displayed a significantly lower proportion of platelet-derived micropar-
ticles, with a mean of 3.19% ± 1.20%, while cryopreserved displayed 24.78% ± 0.64%
(DMSO) and 25.41% ± 2.00% (DMSO-free), respectively. Additionally, the expression of
phosphatidylserine detected with Annexin V-FITC was measured to investigate the pro-
coagulant profiles of the microparticles. No significant difference was found between the
three groups (p = 0.056), with a mean of 4.92% ± 2.32% for fresh platelets, 4.77% ± 2.84%
for DMSO, and 2.60% ± 1.55% for DMSO-free cryopreserved platelets.

2.5. Controlled-Rate Freezing Restores Platelet Viability in DMSO-Free Concentrates

Platelet viability was analyzed by measuring the platelet mitochondrial membrane
potential using flow cytometry. The mitochondrial membrane potential was reduced
(p < 0.001) (n = 10) in DMSO-free CP, with a mean of 35.3% ± 8.5%, compared to CP with
DMSO, with a mean of 61.2% ± 11.9% (Figure 3A). When controlled-rate freezing was
applied in a new set of experiments (n = 6), the platelet viability was recovered in the
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DMSO-free group, from 52.03% ± 4.02% with uncontrolled-rate freezing to 68.27% ± 8.52%
with controlled-rate freezing (p < 0.001) (Figure 3B).
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Figure 3. Platelet viability after DMSO and DMSO-free cryopreservation at different freezing rates.
Mitochondrial membrane potential (JC-1+) was measured to estimate platelet viability in fresh,
DMSO-containing, and DMSO-free cryopreserved platelets. (A) JC-1 expression (mean) in DMSO
and DMSO-free cryopreserved platelets (n = 10) with 95% error bars. (B) JC-1 expression (mean)
with 95% error bars for DMSO-free cryopreserved platelets (n = 6), frozen with either fast-rate
uncontrolled freezing (UCRF) or controlled-rate freezing program (CRF). A two-tailed t-test was
performed between the DMSO and DMSO-free groups, as well as between the UCRF and CRF groups,
defined as *** p < 0.001. Error bars: 95% CI.

2.6. Platelet Concentration and Freezing Rate Affect Platelet Coagulation Capacity

Thromboelastometry was performed to assess the in vitro coagulation capacity of
DMSO and DMSO-free CP. Fresh platelets were examined to monitor the base values, as
well as the fresh frozen plasma (FFP) that the samples were diluted in. Fresh platelets
(200 × 109/L) (n = 10) showed a clotting time of 47.7 ± 2.4 s, clot formation time of
52.5 ± 5.5 s, and maximal clot firmness of 57.0 ± 4.1 mm. FFP without platelets, analyzed
in duplicate, displayed a clotting time of 56 s, clot formation time of 505 s, and maximal
clot firmness of 23 mm. ROTEM analyses of DMSO and DMSO-free CPs was performed
according to the number of viable cells, with a loading of 200 × 109 JC-1+ cells/L per test
(n = 8). No significant difference was shown in the clotting time, (s) 37.1 ± 1.6 vs. 36.9 ± 1.5
(p = 0.649), or clot formation time (s), 119.9 ± 24.6 vs. 168.8 ± 102.6 (p = 0.175), respectively.
However, the maximal clot firmness was significantly (p = 0.034) higher in the DMSO
group, with a mean of 31.5 ± 3.5 mm, compared to the DMSO-free group, with a mean of
28.0 ± 3.6 mm (Figure 4).
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Figure 4. Hemostatic properties of cryopreserved platelets are affected by the platelet concentration.
Thromboelastometry was performed to estimate the hemostatic function of cryopreserved platelets.
Panels display (A) clotting time, (B) clot formation time, and (C) maximal clot firmness. DMSO-free
platelets showed no significant difference compered to DMSO regarding CT and CFT, but slightly
reduced maximal clot firmness. However, when the DMSO-free products were reconstituted in less
plasma to a higher platelet concentration, all three parameters were affected. p-values are defined as
* p < 0.05 and *** p < 0.001. Error bars: 95% CI.

In a second step, with a new set of experiments (n = 6), DMSO-free concentrates were
frozen using CRF (mean; 1300 × 109 cells/L). With CRF, the MCF increased from a mean
of 33.4 mm ± 5.4 mm (UCRF) to 35.2 mm ± 6.2 mm (CRF). The CFT was reduced from
102.2 s ± 63.8 s (UCRF) to 94.2 s ± 66.9 s (CRF), but the differences for MCF and CFT were
not significant.

Subsequently, in a third experiment, we aimed to test the coagulation effect by increas-
ing the platelet concentration in DMSO-free units (n = 6) by reconstitution in either 100 mL
(mean: 2175 × 109 cells/L) or 50 mL (mean: 4006 × 109 cells/L) blood-group-compatible
plasma. Results showed that all three parameters were significantly affected by the added
volume of plasma, indicating that the coagulation properties were improved in more con-
centrated platelet products. The clotting time was increased by 7.0 s (p < 0.001), the CFT
decreased by 20.5 s (p = 0.031), and the MCF was increased by 8.5 mm (p < 0.001) when less
plasma was added (Figure 4).

2.7. DMSO and DMSO-Free Platelets Display Similar Ultrastructural Changes through
TEM Imaging

Electron microscopy was performed to investigate the altered morphology of cryopre-
served platelets after freezing. Both DMSO and DMSO-free platelets displayed a highly
diminished morphology with a few normal cells and an increased number of rounded cells
(balloon-like platelets), with cytoplasmic granules randomly distributed or polarized to the
periphery of the cell (Figure 5).
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Figure 5. TEM images of DMSO and DMSO-free cryopreserved platelets. (A) DMSO-containing
cryopreserved platelets, (B) DMSO-free cryopreserved platelets, and (C) fresh day-1 platelets showing
normal ultrastructure, including alpha, dense granules, and glycogen in clusters. Both (A,B) demon-
strate an increased number of balloon-like platelets with no or few cytoplasmic granules clustered
along the cell membrane. A limited number of normal cells can be recognized by the irregular cell
surface and cytoplasmic granules (pointed out with white arrows). Balloon-like platelets appear
completely smooth, apart from an occasional membrane bleb. The cytoplasm of balloon-like platelets
contains only a few (if any) randomly distributed organelles or remnants thereof. Such examples are
equally present in both groups, including highly diluted cytoplasm and a few inclusions as well as
moderately dense cytoplasm and higher levels of organelles.

3. Discussion

It is well known that the cryopreservation of platelets affects their characteristics
and function. Efforts have been made to find alternative cryoprotectant agents (CPA)
without or with less usage of DMSO [18–21,23–27,31]. Despite all efforts, the original
method developed in the 1970s continues to be the preferred method [4,5]. Thus, the
optimal approach for platelet cryopreservation remains to be explored. In this study, we
explored an alternative freezing protocol by excluding DMSO and freezing the cells in
saline without the addition of DMSO. We then compared our results in a paired study
design with conventional cryopreserved platelets with DMSO. The results showed that
DMSO-free platelets exhibited improved recovery with a higher number of platelets in
the final product (87.4% ± 8.6% vs. 69.6% ± 6.1%). For conventional DMSO products,
the results are in line with previous studies showing platelet recovery between 50 and
70% [8,10–12,32].

Electrolytes were examined to confirm that the salt balance was normalized after
cryopreservation with a high volume of saline. Likewise, pH, lactate, and bicarbonate were
all within accepted values. Notably, DMSO-free platelets showed a higher concentration
of partial-pressure oxygen compared to DMSO, leading to a decreased concentration of
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partial-pressure carbon dioxide. This could conceivably indicate limited aerobic capacity
after reconstitution. Although the ATP generation was equivalent between groups, it
could not be ruled out that the reduced mitochondrial function in the DMSO-free units
could be linked to the increased oxygen pressure observed. Such a situation was earlier
characterized and is considered to have a negative impact on platelets with respect to
conventional storage [33]. However, after thawing and reconstitution, DMSO-free frozen
platelets are not intended for storage. It has previously been shown that a loss of membrane
potential also plays a key role in the mechanism of procoagulant platelet formation [34],
which, in the context of platelet transfusion in bleeding situations, may still be beneficial.

In line with previous studies, we confirmed that the cryopreservation of platelets leads
to alterations in various receptors compared to fresh platelets [10–12,32]. Using saline,
the expression of glycoproteins (GP) Ib, IIIa, and VI (CD42b, CD61), along with PECAM-
1, was further decreased. Impaired expression of GPVI has previously been linked to
mitochondrial damage [35–37] and a reduced collagen response [10,38]. We could observe
that the DMSO-free platelets showed lower mitochondrial membrane potential (MMP).
However, this study did not show any differences between groups in platelet responses to
stimulation with collagen. Hypothetically, the equally high background activation level
may have been caused by the freezing process itself. Cryopreserved platelets exhibit
an increased amount of platelet-derived microparticles (PMPs) [13–15,39]. These PMPs
have been shown to be procoagulant and support faster clotting in cryopreserved platelet
products [13,15,40]. It is suggested that the expression of phosphatidylserine (PS) promotes
coagulation by creating a catalytic surface that enhances the binding of coagulation factors,
activating platelets to initiate the fibrin network and platelet aggregation [13,41–43]. In this
study, the fraction of Annexin-V-positive PMPs was similar in all groups both before and
after freezing. However, previous studies have found the fraction of Annexin-V-positive
PMPs to be much higher [13–15]. This might be linked to a discrepancy in methodology,
as we could not detect as many Annexin-V-positive PMPs. Nonetheless, we could, as in
other studies, see faster clotting initiation after cryopreservation. This may be an effect of
the greater quantity of PMPs, as well as the increased expression of Annexin V+ on the
cryopreserved platelets.

To support our phenotypic findings, we performed TEM imaging. Through TEM
imaging, we observed that DMSO and DMSO-free platelets showed similar ultrastructural
changes, including swelling. The TEM images strongly illustrated a balloon-like morphol-
ogy in many of the platelets after freezing and thawing, which was earlier described as
a feature of procoagulant platelets [44]. Ballooning has been shown to be an irreversible
process that increases the area for coagulation assembly, affects PS exposure, and releases
PMPs [45].

The coagulation properties of the cryopreserved products were shown to be somewhat
influenced by the CPA as DMSO-free concentrates displayed reduced maximal clot firmness.
However, both the clotting time and clot formation time remained comparable. CT is mainly
affected by the coagulation factors, while CFT combines the interaction of coagulation
factors, platelets, and fibrinogen. The maximal clot formation measures the clot strength,
which is affected by the fibrinogen concentration, factor XIII, and platelets [46,47]. The
weakened stability of the clot is likely the result of platelets harmed by the freezing process.
Although no significant difference could be shown regarding platelets’ responsiveness
to agonists, DMSO-free platelets showed a reduced MMP together with the reduced
expression (%) of platelet receptors. On one hand, this reduction might have been the
cause of the weakened stability of the platelet clot as fewer platelets maintained their full
aggregating capacity. On the other hand, the loss of membrane potential in the extension
may also have generated balloon-like platelets, as indicated by our TEM illustrations. With
this theory in mind, it is suggested that the former subpopulation mainly serves as an
area for coagulation assembly, participates in the retraction of fibrin clots, and shows a
“closed “ GPIIb/IIIa [45], which may explain that these platelets, despite being considered
procoagulant, do not have a positive influence regarding clot stability in vitro. Although the
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DMSO-free platelets generally showed reduced MCF and glycoproteins, slightly beyond
the reduction already seen with the standard DMSO method, this difference did not seem
to be of such an extent that hemostatic efficiency in vitro could not be demonstrated. It is
important, however, that the coagulation capacity in vitro was significantly improved with
respect to DMSO-free platelets when using CRF.

In previous studies on DMSO platelets, as well as in the current study, impaired
clot stability compared to fresh platelets was shown [12,32]. As shown previously, the
MCF was reduced, but by reconstituting the DMSO-free concentrates in less plasma,
the platelet concentration could be increased and the MCF increased, creating a more
stable clot in vitro. The relevance of this in vivo, when giving a platelet transfusion, is,
however, unknown. In contrast, it is suggested that at the high conventional liquid stored
platelet concentrations, the association of MCF and platelet concentration is leveled out [48].
Thus, it can be speculated that with an increase in the concentration of cryopreserved
platelets, most of these platelets would be PS-positive and therefore likely to contribute to
a procoagulant surface.

In accordance with recommendations, the desired DMSO concentration in the final
product should not exceed 1% and must therefore be diluted in 200 mL of plasma, while,
for the DMSO-free platelets, such precautions are not necessary, and this may be beneficial
as our results showed a clear in vitro improvement regarding coagulation when the platelet
concentration was increased. Since saline is non-toxic, freezing DMSO-free units in larger
volumes without a centrifugation step would hypothetically offer the possibility of reducing
the complexity of the process, both pre- and post-freeze/thaw, but the logistical advantages,
especially regarding transport to smaller hospitals, of freezing small volumes were of
greater importance in choosing the presented study design.

Controlled-rate freezing is favorable to minimize the risk of intracellular ice formation,
which therefore may be an advantage [16,49,50]. However, we have previously shown
that CRF does not reduce cell damage in platelets cryopreserved with DMSO [12]. In
contrast, during DMSO-free freezing, the MMP of the platelets increased on average by
16% and coagulation evaluated in ROTEM was improved when using CRF. This indicates
that optimizing the freezing rate method is important in DMSO-free freezing, to optimize
cell function.

One hypothesis about the nature of intracellular ice formation is proposed in which the
osmotically driven water efflux that occurs in cells during freezing (caused by the increased
osmotic pressure of the extracellular solution in the presence of ice) is viewed as the agent
responsible for producing a rupture in the plasma membrane, thus allowing extracellular
ice to propagate into the cytoplasm [51]. The pressure that develops during freezing due
to water flux is found to be sufficient to cause a rupture in the plasma membrane and the
theory gives an accurate description of the phenomenology of intracellular ice formation.
However, the outcomes of our experiments indicate that intracellular ice formation is
prevented in the presence of a high volume of isotonic saline, hypothetically by contributing
to the osmosis effect, while the protective effect on the cell membrane regarding harmful
extracellular ice crystallization remains unclear. As intracellular ice formation, as proposed,
occurs in cells during freezing but not in a frozen state, the effect of time at −80 ◦C may be
negligible. However, this must be tested in further studies with an extended storage time
on such platelets.

A limitation of our study is that it was not always clear what the various alterations
in receptor complexes signified. In this setup, it was not possible to determine whether
the altered expression of different receptor complexes generally occurred on all cells or
reflected a specific fraction of cells—for instance, if the observed change was, hypothetically,
directly linked to the aggregating or the procoagulant fraction. Potential inclusions of other
subpopulations, as recently described [37,52], may also have played a role in contributing
to the complexity.

In summary, this study has shown, for the first time, that it is possible to freeze platelets
in saline in the absence of a CPA. Further studies are needed to fully understand the
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mechanisms involved. We have shown that DMSO-free cryopreserved platelets are viable
and hemostatically active in vitro, which needs to be confirmed in future in vivo studies.

4. Materials and Methods
4.1. Experimental Overview: Cryopreservation

In the first experiment, the cryopreserved platelets were prepared from double-dose
platelet concentrates (n = 10) produced from pools of eight ABO-identical buffy coats
in additive solution (SSP+), as previously described [53]. Each double dose of platelet
concentrate was then equally divided into two separate freezing bags (Macopharma), using
a sterile connection device (Terumo BCT, Lakewood, CO, USA). Additionally, a small
sample (10 mL) was sterilely collected from the double-dose to determine the baseline
in vitro parameters. Each production line (n = 10) of the study was then prepared accord-
ingly. Freezing medium comprising either 25% DMSO/NaCl (9 mg/mL) (50 mL) or NaCl
(9 mg/mL) (100 mL) was sterilely docked and then added to the respective platelet concen-
trate from the same double dose. The platelet concentrates were centrifugated for 10 min at
1200, and nearly all the supernatant was removed, leaving approximately 0.5 mL freezing
medium in approximately 10 mL of platelet suspension, resulting in a final concentration of
5% DMSO/NaCl or 10% NaCl. The platelet concentrates were immediately placed in metal
boxes (Ninolab) and frozen at −80 ◦C with fast uncontrolled freezing. Cryopreserved units
were then stored at −80 ◦C for 70–119 days, subsequently thawed, and resuspended as
recently described [30] in 200 mL fresh plasma. After thawing, all units were kept at room
temperature for one hour before analysis (Figure 6).
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Figure 6. Schematic overview of the study. The figure displays the study, which was divided into
three stages. Stage 1, comparing DMSO versus DMSO-free cryopreservation, with measurements
taken pre- and post-freezing. All cryopreserved platelets in stage 1 were reconstituted in 200 mL
plasma. Stage 2, comparing DMSO-free cryopreserved platelets frozen by uncontrolled (UCRF) or
controlled-rate freezing (CRF). All cryopreserved platelets in stage 2 were reconstituted in 200 mL
plasma. Stage 3, comparing the hemostatic function of DMSO-free cryopreserved platelets (UCRF)
reconstituted in 100 mL or 50 mL plasma.

In a second experiment, the double-dose platelet concentrate (n = 6) was cryopreserved
in NaCl (9 mg/mL) (100 mL) using either fast uncontrolled freezing or controlled-rate
freezing. Controlled-rate freezing was performed with a liquid nitrogen freezer, the Planer
Kryo 560-16 (Planer, Middlesex), with a set temperature program from +4 ◦C to −90 ◦C,
as described [12]. Cryopreserved units were then stored at −80 ◦C until thawed and
resuspended as mentioned. Furthermore, in a third experiment, the double-dose platelet
concentrate (n = 6) was cryopreserved according to the above-described procedure with
NaCl (9 mg/mL) (100 mL) as the freezing medium, and later thawed in either 50 mL or
100 mL blood-group-matched plasma (Figure 6).
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4.2. Intra- and Extracellular Metabolic Parameters

In vitro metabolic parameters and recovery were analyzed before and after freezing.
Platelet counts and mean platelet volumes were measured using the CA 620 Cellguard
(Boule Medical, Stockholm, Sweden). Routine blood gas equipment (ABL 800, Radiometer
Medical ApS, Copenhagen, Denmark) was used to analyze the pH (at 37 ◦C), glucose,
lactate, and bicarbonate together with electrolytes (cNa+, cK+, and cCl−). The total
adenosine triphosphate (ATP) concentration was measured using the ATP kit SL 144-401
(BioThema Luminescent Assays). Duplicates of platelet samples were diluted 1:10 in 0.6%
trichloroacetic acid (0.73 M TCA, H2O Sigma Aldrich, Stockholm, Sweden) and incubated
for 15 min on ice. Thereafter, the samples were further diluted 1:81 in Tris–EDTA buffer
(0.1 M Tris[hydroxymethyl] aminomethane, 2 mM EDTA, adjusted to pH 7.75 with acetic
acid) and directly frozen at −60 ◦C. All frozen samples were then analyzed in one batch,
with triplicates of each sample. Frozen samples were thawed at room temperature and
added to a 96-well microplate (Biothema) with 120 µL Tris–EDTA buffer. A total of 40 µL
ATP Reagent SL (D-luciferin, luciferase, magnesium ions, inorganic pyrophosphate, and
bovine serum albumin) was added to all samples. Light emission corresponding to sample
ATP levels (µmol/1011 platelets) was measured with a luminometer (Orion Microplate,
Berthold Detection Systems GmbH, Pforzheim, Germany).

4.3. Flow Cytometry

Flow cytometry was used to analyze the expression of a variety of platelet markers,
such as P-selectin with PE-conjugated CD62P (Beckman Coulter, Brea, CA, USA); GPIb with
FITC-conjugated CD42b (Beckman Coulter); platelet endothelial cell adhesion molecule
with PECAM-1 (Sigma-Aldrich, St. Louis, MI, USA); GPIIb with PE-conjugated CD61
(Beckman Coulter, Indianapolis, IN, USA); platelet collagen receptor with FITC-conjugated
GPVI (Pharmingen BD Biosciences, San Jose, CA, USA); and phosphatidylserine with
Annexin V (BD Biosciences, Erembodegerm, Belgium). The conformational epitope on
the GPIIb/IIIa complex of activated platelets was assessed before and after stimulation
with collagen (50 µg/mL, Sigma Aldrich) and ADP (10 µM, Sigma Aldrich) using the FITC-
conjugated monoclonal antibody PAC-1 (IgM, Becton Dickinson, Franklin Lakes, NJ, USA).
Changes in the platelet mitochondria transmembrane potential (∆ψ) were assessed with
the mitochondrial permeability transition detection kit MitoPT JC-1 (Immuno-Chemistry
Technologies, LCC, Bloomington, MN, USA). All flow cytometric tests were executed
using a CytoFLEX Flow Cytometer (Beckman Coulter Life Sciences, Bromma, Sweden) as
previously described [11,12,53].

Platelet microparticles (PMPs) were analyzed directly from the platelet units (fresh,
DMSO, and DMSO-free) without centrifugation, to minimize sample manipulation. Beads
of standardized 0.6, 1.0, and 3.0 µmol/L (Biocytex, Marseille, France) were used to set
the gating scale for the forward light scatter to distinguish the microparticles. PMPs
were defined as being less than 1µm, based on the binding of platelet glycoproteins
GPIIb/IIIa CD61 PE-conjugated (Beckman Coulter, Indianapolis, IN, USA), dual-stained
with Annexin-V FITC-conjugated (BD Biosciences, Erembodegerm, Belgium), diluted in
Annexin V binding buffer (BD Biosciences, Erembodegerm, Belgium) [13]. The proportion
(%) of PMPs was then calculated from the total number of 10,000 gated events, analyzed on
a CytoFLEX Flow Cytometer (Beckman Coulter Life Sciences).

4.4. Thromboelastometry

Thromboelastometry using a ROTEM delta 3000 (TEM International, GmbH, Munich,
Germany) was performed to assess the hemostatic function of the platelets. To begin,
cryopreserved DMSO and DMSO-free (n = 10) were diluted in aliquoted fresh frozen AB
plasma to a concentration of 200 × 109 viable cells /L according to the expression of JC-1+%
of total cells. Diluted samples were then analyzed on the instrument according to the
manufacturer’s instructions, with the EXTEM parameter as the readout.
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Subsequent analyses were carried out with DMSO-free platelets cryopreserved using
either controlled-rate freezing or fast uncontrolled-rate freezing (n = 6). Samples from
the two groups were directly analyzed on the instrument without any further dilution.
Additionally, tests were performed on cryopreserved DMSO-free platelets (n = 6) recon-
stituted in either 100 mL or 50 mL fresh blood-group-compatible plasma. Samples from
each bag were directly analyzed in parallel, with one sample diluted to a concentration of
200 × 109 cells/L.

4.5. Transmission Electron Microscopy

For transmission electron microscopy (TEM), platelets were fixed in 2% glutaraldehyde
in 0.1 M phosphate buffer, pH 7.4, at room temperature, for 30 min, followed by overnight
fixation at 4 C. After fixation, platelets were rinsed in 0.1 M phosphate buffer pH 7.4.
The cells were gently centrifuged to a pellet and postfixed in 2% osmium tetroxide in
0.1 M phosphate buffer, pH 7.4, at 4 C, for 2 h, stepwise dehydrated in ethanol followed
by acetone, and finally resin embedded in LX-112 (Ladd). The ultrathin sections were
stained with uranyl acetate followed by lead citrate and examined in a Hitachi HT7700
electron microscope (Hitachi High-Tech) operated at 80 kV. Digital images were obtained
using a 2kx2k Veleta digital camera (OSiS). Digital images were included to illustrate the
appearance of ultrastructural alterations in platelets pre-freezing and post-thawing.

4.6. Statistics

The mean values, standard deviations, and error bars 95% CI are given if not further
specified. A paired t-test was applied to determine the statistical significance (p < 0.05)
between the DMSO and DMSO-free cryopreserved platelet derivates. Further, t-tests were
performed between CRF and UCRF for DMSO-free products. Additionally, paired t-tests
were performed between groups of DMSO-free platelet products reconstituted in either
50 mL or 100 mL plasma. ANOVA was performed to investigate differences in microparticle
amounts between fresh, cryopreserved DMSO, and cryopreserved DMSO-free platelets.
All the statistical analyses were carried out using IBM SPSS statistics (version 28.0.1.1 (14)).
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