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Abstract: Head and neck squamous cell carcinoma (HNSC) exhibits genetic heterogeneity in etiolo-
gies, tumor sites, and biological processes, which significantly impact therapeutic strategies and
prognosis. While the influence of human papillomavirus on clinical outcomes is established, the
molecular subtypes determining additional treatment options for HNSC remain unclear and incon-
sistent. This study aims to identify distinct HNSC molecular subtypes to enhance diagnosis and
prognosis accuracy. In this study, we collected three HNSC microarrays (n = 306) from the Gene Ex-
pression Omnibus (GEO), and HNSC RNA-Seq data (n = 566) from The Cancer Genome Atlas (TCGA)
to identify differentially expressed genes (DEGs) and validate our results. Two scoring methods,
representative score (RS) and perturbative score (PS), were developed for DEGs to summarize their
possible activation functions and influence in tumorigenesis. Based on the RS and PS scoring, we se-
lected candidate genes to cluster TCGA samples for the identification of molecular subtypes in HNSC.
We have identified 289 up-regulated DEGs and selected 88 genes (called HNSC88) using the RS and
PS scoring methods. Based on HNSC88 and TCGA samples, we determined three HNSC subtypes,
including one HPV-associated subtype, and two HPV-negative subtypes. One of the HPV-negative
subtypes showed a relationship to smoking behavior, while the other exhibited high expression in
tumor immune response. The Kaplan–Meier method was used to compare overall survival among
the three subtypes. The HPV-associated subtype showed a better prognosis compared to the other
two HPV-negative subtypes (log rank, p = 0.0092 and 0.0001; hazard ratio, 1.36 and 1.39). Additionally,
within the HPV-negative group, the smoking-related subgroup exhibited worse prognosis compared
to the subgroup with high expression in immune response (log rank, p = 0.039; hazard ratio, 1.53).
The HNSC88 not only enables the identification of HPV-associated subtypes, but also proposes
two potential HPV-negative subtypes with distinct prognoses and molecular signatures. This study
provides valuable strategies for summarizing the roles and influences of genes in tumorigenesis for
identifying molecular signatures and subtypes of HNSC.

Keywords: head and neck cancer; systems biology; molecular subtypes; molecular signature; human
papillomavirus; prognostic biomarker
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1. Introduction

Head and neck squamous cell carcinoma (HNSC) is a type of cancer with a high
mortality rate worldwide, accounting for over 800,000 new cases and 400,000 deaths
annually [1]. The prevalent risk factors contributing to the increased incidence of HNSC
include smoking, drinking, human papilloma virus (HPV) infection, and chewing of
areca. Among these risk factors, HPV status is a critical prognostic indicator for HNSC.
HPV-positive HNSC patients often exhibit more favorable clinical outcomes compared to
HPV-negative patients. [2–4]. The survival rates of HNSC patients have not significantly
improved in recent decades due to the heterogeneity of the disease in terms of etiologies,
tumor sites, and genetic characterization. This heterogeneity has posed challenges
in the discovery of effective diagnostic, prognostic, and therapeutic biomarkers for
HNSC [2–5]. Due to the heterogeneity of HNSC, some studies have revealed that
approximately 60% of HNSC patients with overexpression of epidermal growth factor
receptor (EGFR) experienced worse clinical outcomes, but the remaining 40% of patients
did not [2,6,7]. Currently, HNSC patients who have failed standard treatments, such as
surgery, radiation, and chemotherapy, are lacking alternative treatment options.

An ideal biomarker for cancer includes several characteristics. Firstly, it should
exhibit significant expression during the disease state. Secondly, the candidate genes
can reveal the underlying mechanisms of the disease. Thirdly, it should be associated
with disease prognosis. Additionally, the detection should demonstrate consistency and
reliability [8]. Previous research has proposed the benefits of biomarkers and subtypes
for cancer diagnosis and prognosis. For example, PSA (prostate-specific antigen) is a well-
known biomarker for prostate cancer, used for early detection and monitoring prognosis [9].
In breast cancer, biomarkers such as ER (estrogen receptor), PR (progesterone receptor),
and HER2 (human epidermal growth factor receptor 2) are utilized for the identification of
intrinsic subtypes [10–13]. Additionally, the breast cancer 70-gene MammaPrint microarray
assay is used to predict patient prognosis [14]. These biomarkers are valuable to decide
treatment and predict patient clinical outcomes in breast cancer. However, beyond the
distinction of the subgroups of HPV-positive and HPV-negative, there are no established
molecular subtypes for HNSC clinical application [2,3,15].

In this study, we aim to develop a strategy for the identification of HNSC molecular
signatures and subtypes (Figure 1). We first utilized gene expression between tumor and
normal tissues to determine 289 differentially up-regulated DEGs of three microarrays.
Then, the two scoring methods, representative score (RS) and perturbative score (PS), were
developed to group and select 88 genes (HNSC88) by estimating their relative relations of
cellular functions and dysregulation in the tumor state. Finally, the hierarchical clustering
was performed to discriminate three HNSC subtypes, and Kaplan–Meier analysis was used
to identify their prognostic significances.
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Figure 1. Schematic of identifying HNSC biomarkers.

2. Results
2.1. Identification of Molecular Signature for HNSC Using CS, RS, and PS Scoring

To obtain the molecular signature that reveals cellular functions and subtypes of HNSC,
three scoring methods were developed to identify candidate genes; namely, Cluster Score
(CS), Representative Score (RS), and Perturbation Score (PS). First, we identified 478 DEGs
that significantly changed across three microarrays. Based on the general characteristics
of biomarker used in clinical medicine [8], only 289 up-regulated DEGs were further
analyzed in this study. The CS value (Equation (1)) was calculated to estimate the relative
relation of cellular functions between any two genes among the 289 up-regulated DEGs
(Figure 2). Next, the 289 DEGs were clustered into 27 groups by using CS values and
unsupervised hierarchical clustering. To identify the cellular functions and pathways of
the 27 cluster groups in HNSC, we implemented functional enrichment analysis of GOBP,
KEGG pathways, and ten hallmarks of cancer, with the hypergeometric test. The results
of the enrichment analysis were ranked by enrichment p-value, with the top three being
presented in Table 1.

Of the 27 cluster groups, only 11 groups (G1 to G11, Figure 2, left dendrogram) con-
tained at least one GOBP with an enrichment p-value < 0.05 and had ≥3 gene members
involved in that GOBP. The cellular functions of these 11 groups could be summarized
into five cancer-related functions for HNSC: tumor immune response (G1 to G3), tumor
survival (G4), tumor metastasis (G5 to G7, G10), tumor growth (G8, G9), and tumor
metabolism (G11).

For these 11 groups, the RS scoring (Equation (2)) was used to calculate the sum of
CS values among the gene members, estimating the genes that were representative of
cellular functions within a cluster group. The PS scoring (Equation (3)) was applied to
each gene to estimate the influence when the gene was dysregulated in HNSC. Finally,
the 88 genes (HNSC88) were selected by ranking the geometric means of RS and PS
(Equation (4)). In this study, the HNSC88 gene set was considered the molecular signature
for classifying and identifying HNSC tumors. The list of 88 genes (HNSC88) and their
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corresponding fold change between tumor subgroups and normal tissues are presented in
Supplementary Data S1.
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Figure 2. Hierarchical clustering of CS values for 289 significantly up-regulated DEGs. The clustering
demonstrates the relative relation of cellular functions between any two genes. The 289 DEGs were
classified into 27 cluster groups using a threshold of Spearman’s ρ > 0.6 (indicated by the left purple
triangle). GOBP enrichment analysis was conducted, and only 11 groups (G1 to G11) were identified,
which had at least one significantly enriched GOBP with a p-value < 0.05 and ≥3 members. The
five cancer hallmarks represented by the 11 groups are displayed in the right color bar.

Table 1. GOBP, KEGG and cancer hallmark enrichment analysis.

Cluster Group # Members GOBP KEGG Pathways Summary of
Pathways

Cancer-Related
Processes

The Hallmarks of
Cancer (Summary

of Processes)

G1

APOBEC3A,
CMPK2, DTX3L,

HERC5, IFI30,
STAT1

- Defense
response to
virus;

- Response to
virus;

- Response to
other
organism;

- - - -
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Table 1. Cont.

Cluster Group # Members GOBP KEGG Pathways Summary of
Pathways

Cancer-Related
Processes

The Hallmarks of
Cancer (Summary

of Processes)

G2 CXCL1, IL1F9, IL8,
MMP12, MMP9

- Response to
wounding;

- Inflammatory
response;

- Locomotion;

- IL-17
signaling
pathway;

- Cytokine-
cytokine
receptor
interaction;

- Rheumatoid
arthritis;

- Signaling
molecules
and
interaction;

- Immune
disease;

- Cytokines
chemokines
production;

- Tumor
growth;

- Activating
Invasion and
Metastasis;

- Tumor-
Promoting
Inflamma-
tion;

G3

DDX60, GBP1,
IFI35, IFI6, IFIT1,

IFIT3, ISG15,
RSAD2, UBE2L6

- Response to
virus;

- Defense
response to
virus;

- Innate immune
response;

- Cytosolic
DNA-
sensing
pathway;

- Influenza A;
- RIG-I-like

receptor
signaling
pathway;

- Immune
system;

- Infectious
disease:
viral;

- -

G4 CTSL1, NCF2,
RGS2, SOD2, TLR2

- Response to
lipopolysaccha-
ride;

- Response to
molecule of
bacterial
origin;

- Cell-type
specific
apoptotic
process;

- Phagosome;
- Transport

and
catabolism;

- -

G5
COL4A1, COL4A2,
COL5A1, COL5A2,
CTHRC1, PXDN

- Collagen
catabolic
process;

- Multicellular
organismal
catabolic
process;

- Extracellular
matrix
disassembly;

- Protein
digestion
and
absorption;

- ECM-
receptor
interaction;

- Focal
adhesion;

- Digestive
system;

- Signaling
molecules
and
interaction;

- Cellular
community—
eukaryotes;

- Cell matrix
adhesions;

- ECM;
- EMT

regulators;

- Activating
Invasion and
Metastasis;

G6

INHBA, LAMC2,
MMP1, MMP10,
MMP3, PLAU,
PTHLH, TGFBI

- Extracellular
matrix
organization;

- Extracellular
structure
organization;

- Cellular
component
movement;

- TGF-beta
signaling
pathway;

- IL-17
signaling
pathway;

- Prostate
cancer;

- Signal trans-
duction;

- Immune
system;

- Cancer:
specific
types;

- ECM;
- Tumor

growth;
- Matrix

regulation;

- Activating
Invasion and
Metastasis;

- Tumor-
Promoting
Inflamma-
tion;

G7

ACVR1, CLIC4,
DSG2, FAT1,

FNDC3B, ITGAV,
SNAI2

- Vasculature
development;

- Cardiovascular
system
development;

- Circulatory
system
development;

- -
- EMT

regulator;

- Activating
Invasion and
Metastasis;

G8

CDC45, CDC6,
CDK4, CHEK1,

CKS1B, DTL, FEN1,
FOXM1, GINS1,
MCM2, RFC4,
TPX2, UHRF1

- Cell cycle
process;

- Cell cycle;
- Interphase;

- DNA
replication;

- Cell cycle;
- p53

signaling
pathway;

- Replication
and repair;

- Cell growth
and death;

- S-CC phase;
- Evading

Growth
Suppressors;

G9

AURKA, BIRC5,
CDC20, CEP55,
ECT2, KIF2C,

KIF4A, NUP155,
TRIP13

- Nuclear
division;

- Mitosis;
- Organelle

fission;

- - - -
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Table 1. Cont.

Cluster Group # Members GOBP KEGG Pathways Summary of
Pathways

Cancer-Related
Processes

The Hallmarks of
Cancer (Summary

of Processes)

G10

CDH3, CEBPB,
DFNA5, GJA1,
HOMER3, JUP,
KLF10, KLF7,
KRT17, MSN,

MYO1B, PANX1,
PRNP, RRAS2,

SLC16A1

- System
development;

- Locomotion;
- Response to

endogenous
stimulus;

- Regulation
of actin
cytoskeleton;

-
Arrhythmogenic
right
ventricular
cardiomy-
opathy
(ARVC);

- Autophagy—
animal;

- Cell motility;
-

Cardiovascular
disease;

- Transport
and
catabolism;

- EMT
regulator;

- Cell-cell
adhesions;

- Activating
Invasion and
Metastasis;

G11
ACOT9, FKBP9,

GALNT2, UBE2Q2,
VKORC1

- Peptidyl-amino
acid
modification;

- - - -

# The column colors of the Cluster Group correspond to the five cancer hallmarks in Figure 2.

2.2. Unsupervised Clustering of HNSC Subtypes Based on the Expression of HNSC88

To identify HNSC molecular subtypes, we employed HNSC88 and unsupervised
hierarchical clustering on 345 HNSC tumors, including full HPV status records (Figure 3).
The HPV status was collected by combining the TCGA clinical data with the results of Tang,
K. W. et al. [16]. Based on the clustering dendrogram (Spearman’s ρ ≥ 0.7) and the gene
expression profile of 345 tumors and HNSC88, three primary subtypes were determined
(1: purple, 2: pink, and 3: blue). We observed differential distributions of HPV status,
smoking history, and TP53 somatic mutations among the three subtypes, which may reflect
in the survival rate.
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Figure 3. Hierarchical clustering of HNSC88 gene expression for the classification of HNSC subtypes.
Unsupervised clustering analysis of gene expression for 88 genes (HNSC88) in 345 HNSC tumors
revealed three distinct subgroups (cluster 1, 2, and 3) using Spearman’s ρ ≥ 0.7 as the threshold.
Above the heatmap, the distribution of three clinical features (i.e., current smoking, TP53 somatic
mutation, and HPV status) is displayed with orange color for the individual tumor samples. To the
left of the heatmap, the functions of the 88 genes were identified through enrichment analysis (please
see Figure 2 and Table 1). The expression fold changes of the 88 genes between the three subtypes
and normal tissues are shown on the right.
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For example, cluster 1 was considered an HPV-negative smoking-related subtype,
which included the largest percentage of smoking patients (43%) and showed low expres-
sion in tumor immune response (indicated by the yellow frame a). Some studies have
indicated that smoking may suppress human immune function, thus facilitating immune
evasion by cancer cells and reducing the effectiveness of HNSC treatments [17–22]. Cluster
2 was considered an HPV-negative immune-expressed subtype, displaying the highest
gene expression in the gene set related to tumor immune response (indicated by the blue
frame 1). On the other hand, cluster 3 was classified as an HPV-positive-related subtype,
showing the largest percentage of HPV-infected patients compared to cluster 1 and cluster 2,
respectively (67% versus 5.7% and 2.2%). The HPV-positive-related subtype also exhibited
higher expression in tumor growth, and some studies have indicated that HPV virus may
dysregulate the cell cycle to promote cancer cell growth (e.g., CDK4 and MCM2, both mem-
bers of HNSC88) [2,23]. Furthermore, there was no significant difference between cluster
1 and cluster 2 in the ratio of TP53 somatic mutations (odds ratio was 0.97). However, the
frequency of TP53 somatic mutations in both HPV-negative subgroups was higher than
that in the HPV-positive-related subgroup (odds ratios were 2.18 and 2.25, respectively).
We also observed that the genes and their gene expression involved in tumor metastasis
of HPV-negative patients in both subgroups are often up-regulated DEGs or show higher
expression, compared to HPV-positive-related patients. This may be one of the reasons
why HPV-positive patients have better clinical outcomes (the yellow frame b).

2.3. Prognostic Significance of Three HNSC Subtypes

The genome characterization and clinical features mentioned above are reflected in the
survival rates of subtypes (Figure 4). Firstly, the cluster 3 subtype (HPV-positive-related)
significantly contains more HPV-infected patients who are often TP53 wild-type and non-
smokers, showing more favorable survival outcomes. In addition, compared to patients in
clusters 1 and 2, HPV-negative patients in cluster 3 present a similar gene expression profile
to HPV-positive patients (lower expression in tumor metastasis), which may contribute to
a better survival rate (Figure 4, blue line).
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Figure 4. Kaplan–Meier plots of overall survival (OS) for three subtypes identified by HNSC88
in 345 HNSC tumors (blue: HPV-positive; pink: HPV-negative immune-expressed; purple: HPV-
negative smoking-related). The p-value of log-rank test and hazard ratio between subtypes were
performed and displayed.
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We further identified two interesting HPV-negative subtypes (cluster 1 and 2, purple and
pink lines) in which the tumor metastasis gene set was significantly up-regulated, leading
to adverse prognosis compared to the HPV-positive subtype (log-rank p-value = 0.0001 and
0.009; hazard ratio = 1.39 and 1.36, respectively). Moreover, the survival of the HPV-negative
smoking-related subtype (cluster 1) was significantly lower compared to cluster 2, further
increasing the risk of death (log-rank p-value = 0.039; HR = 1.53). Based on the clustering
and survival analysis, we identified three subtypes with statistically significant differences in
overall survival. One subtype was HPV-positive, associated with favorable survival, while the
other two subtypes were HPV-negative, exhibiting poor survival and could be distinguished
based on gene expression and smoking behavior.

2.4. Immunohistochemistry (IHC) Stain of Clinical HNSC Patients

Based on our domain knowledge, we selected three genes, MMP9, NCF2, and IFI30, to
verify their protein expression in tumors and normal tissues using IHC staining (Figure 5).
The primary antibodies were purchased from GeneTex (Irvine, CA, USA), with catalog
numbers GTX62122, GTX62954, and GTX103967, respectively. The gene MMP9 was used as
a positive control and is a well-known biomarker for HNSC [24,25], which showed strong
protein expression only in tumor regions (Figure 5A). The other two genes, NCF2 and IFI30,
play roles in immune response, antigen presentation, inflammation, cell invasion, and cell
survival, and they have been considered as diagnostic and prognostic biomarkers in several
cancers [26–31]. However, there are few studies that have provided evidence for their roles
in HNSC (Figure 5B,C). According to the literature, the gene IFI30 is a novel biomarker
for HNSC, and we may have conducted the first study to verify its protein expression in
HNSC slides by IHC staining. The protein expression in tumor and normal regions were
presented by − (negative) and + (positive) (Figure 5D).
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Figure 5. Evaluation of protein expression of (A) MMP9, (B) NCF2, and (C) IFI30 by immunohis-
tochemistry (IHC) staining. The tumor tissue slides were stained with primary antibodies against
MMP9, NCF2, and IFI30. Their protein expressions in the cancerous region are indicated by red
arrows, whereas those in the normal adjacent region are indicated with black arrows. The red dashed
line was used to highlight tumor tissues (i.e., the brown part). (D) The intensity of protein expression
is presented as − (negative) and + (positive), respectively.

3. Methods
3.1. Datasets

In this study, we collected 235 HNSC tumor samples and 71 corresponding normal
tissues from three GEO microarrays (GSE30784, GSE6791, and GSE9844) for the identifica-
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tion of HNSC signatures [32–34]. The platform of the three microarrays is the Affymetrix
Human Genome U133 Plus 2.0 Array, which includes 54,675 probes. All raw data (CEL files)
were processed using RMA normalization and log2-transformation with the R package
“affy” [35]. Next, we mapped the 54,675 probes to 19,213 genes (UniProt, Cambridge, UK)
using Affymetrix annotations (version 34). For each gene, we obtained a corresponding
expression value from the probes. If a gene was mapped by multiple probes, its expression
value was calculated as the average of these probes.

We further collected 520 HNSC tumor samples and 44 normal tissues (level 3 RNA-Seq
data with tumor type: 01) from TCGA to validate subtypes [36]. For TCGA samples,
we utilized the clinical data, such as HPV status, smoking history, and clinical follow-
up information, to annotate HNSC subtypes and conduct survival analysis. Because
HPV status is a very important risk factor for HNSC in clinical outcomes, we only se-
lected 345 TCGA patients annotated with HPV status for further subtype analysis. The
HPV statuses of 345 patients were obtained and integrated from TCGA clinical data and
Tang, K. W. et al. [16]. To evaluate the perturbations of DEGs for signaling pathways, we
collected human protein–protein interactions (PPIs) from five databases (BioGRID, Samuel
Lunenfeld Research Institute, Toronto, ON, Canada; DIP, University of California, Los
Angeles, CA, USA; IntAct, European Molecular Biology Laboratory, Cambridge, UK; MINT,
University of Rome Tor Vergata, Rome, Italia; and MIPS, German Research Center for Envi-
ronmental Health, Neuherberg, Germany) [37–41], and utilized our previous approaches
to obtain 267,326 PPIs of 16,596 human proteins [42,43].

3.2. Identification of Differentially Expressed Genes (DEGs)

We used the fold change and p-value (R package limma) to identify the differentially
expressed genes (DEGs) between normal tissues and tumors in the three microarrays. By
using the |fold change| ≥ 1.5 and p-value < 0.05, we found 2521, 1814, and 847 DEGs
in the GSE30784, GSE6791, and GSE9844 datasets, respectively. Based on the previously
mentioned characteristics of an ideal biological marker, we only used 289 DEGs that were
significantly up-regulated in all three microarrays for further analysis.

3.3. Functional Enrichment Analysis

The terms of gene ontology biological process (GOBP) and cellular component (GOCC)
were obtained from the Gene Ontology database (http://geneontology.org/). For these
GO terms, we employed five relationships to construct the GO trees: “is_a”, “part_of”,
“regulates”, “negatively_regulates”, and “positively_regulates”. These GO data were
utilized for developing the Cluster Score (CS) and conducting enrichment analysis for gene
cluster groups [44,45]. We additionally collected gene sets of 10 cancer hallmarks to analyze
the connections between tumor behaviors and 289 DEGs. The cancer hallmarks data were
obtained from the Atlas of Cancer Signalling Network (ACSN) database (https://acsn.
curie.fr/ACSN2/HMC.html, accessed on 19 July 2023), which offered 93 cancer-related
functions and 2652 cancer-related genes [46]. The 330 pathways were also downloaded
from the KEGG database and utilized to annotate the potential signaling pathways in
which the DEGs are involved. We downloaded the XML pages (KGML) for each KEGG
pathway and extracted the gene members of these pathways [47]. The summary of the
enrichment analysis is displayed in Table 1.

3.4. The Scoring Methods for Identification of HNSC-Related Genes

We have developed the Cluster Score (CS) to estimate the similarity of cellular func-
tions between any two genes out of the 289 DEGs in HNSC tumors. The CS value, along
with hierarchical clustering, was employed to group the 289 DEGs based on the relative
relations of their cellular functions. The calculation of CS is as follows:

CSi,j =
RSSBPi,j + RSSCCi,j

2
+

∑N
n=1 PCCn

i,j

N
(1)

http://geneontology.org/
https://acsn.curie.fr/ACSN2/HMC.html
https://acsn.curie.fr/ACSN2/HMC.html
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where RSSBP and RSSCC represent the relative specificity similarity (RSS) of gene ontology
biological process (GOBP) and cellular component (GOCC) between gene i and gene j,
respectively (RSS value ranges from 0 to 1) [48]. PCCi,j denotes the Pearson’s correlation
coefficient of gene expression between gene i and gene j. N refers to the number of
microarray datasets used (in this case, N = 3).

After clustering the 289 DEGs using CS, we developed two scoring methods; namely,
the Representative Score (RS) and Perturbation Score (PS), to identify the molecular sig-
natures for the classification of HNSC subtypes. For each gene, the RS value is calculated
as the sum of the CS values within each cluster group. This allows us to identify genes
that exhibit a high association with every other gene member in terms of cellular functions.
On the other hand, to assess the influence of genes (i.e., DEGs) on signaling pathways
when dysfunctions occur in HNSC, we utilized the human PPI network to compute the
Perturbation Score (PS). The RS and PS are defined as follows:

RSi =
∑M

j=1 CSi,j

2 × M
(2)

where M is the number of gene members in the cluster group, and CSi,j is the cluster score
between gene i and gene j in the same cluster group.

PS = NFCi + NPi + NIGi + NCGi (3)

where NFCi is the fold change of gene i between normal tissues and tumors; NPi is the
t-statistics p-value of gene i between normal tissues and tumors; NIGi represents the number
of genes that both interact with gene i (i.e., PPIs of gene i) and are co-expressed (|Pearson’s
r| ≥ 0.5) with gene i. For example, the protein NCF2 (UniProt: P19878) has 37 PPIs and is
co-expressed with 1 gene among them. Therefore, its NIGi value in one of the datasets is 1.
In addition, we also provided NCGi values for the genes that lacked PPI data. NCGi is the
number of genes co-expressed (|Pearson’s r| ≥ 0.7) with gene i in the context of HNSC.
The PS values of the three microarrays were ranked, averaged, and then normalized to a
range of 0 to 1. Then, the geometric mean of the RS value and PS value was employed to
select the candidate genes.

The number of selected candidates (SC) from each cluster group is provided as follows:

SC =
G − min(G)

min(G)
+ min(G) (4)

where G is the number of genes in each cluster group (i.e., G1 to G11). The min(G) is the
minimum number of members among all cluster groups (here it is 5). Finally, a total of 88
genes (called HNSC88) from 11 groups were selected for classifying HNSC subtypes.

3.5. Survival Analysis

We utilized TCGA clinical data, including clinical follow-up, smoking history, and
HPV status, to investigate the prognostic significance of HNSC subtypes. The 5-year overall
survival (OS) between HNSC subtypes was compared using Kaplan–Meier analysis (R-
2.15.3 package survplot) [49]. The log-rank test and Cox proportional hazards regression
model (R package survival) were employed to estimate their prognostic differences.

4. Discussion

HNSC is a highly heterogeneous cancer, and there are only a few alternative treatment
options available for patients who do not respond to surgery or radiotherapy/chemotherapy.
Therefore, our aim is to discover molecular signatures that can determine HNSC subtypes
with prognostic significance. In this study, we have employed several strategies and made
the following findings: (1) We developed two scoring methods to select 88 genes (HNSC88)
that were significantly up-regulated in three microarrays; namely, representative score
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(RS) and perturbative score (PS). (2) HNSC88 is involved in five major cellular functions,
including tumor immune response, tumor metastasis, tumor survival, tumor growth, and
tumor metabolism, which contribute to the determination of HNSC subtypes. (3) Three
HNSC subtypes were identified and showed different prognostic significance of the one
HPV-positive and two HPV-negative subgroups. The most distinct difference in molecular
signatures between the two HPV-negative subgroups was related to smoking behavior and
tumor immune response. Numerous studies have indicated that smoking can suppress
the immune system and hinder the effectiveness of HNSC treatment [17,20,50]. We believe
that our results not only provide additional evidence for the relationships between HPV
status, smoking, and clinical outcomes, but also highlight the detrimental effects of tobacco
consumption on HNSC.

However, some limitations and findings still need to be improved and verified. First,
our RS and PS scoring rely on the annotations of cellular functions (i.e., GOBP and GOCC)
and protein-interaction records to estimate the relationship between two genes. With
more comprehensive annotations, we could potentially cluster genes more accurately and
discover additional biological functions by considering surrounding gene members. Second,
the percentage of patients with TP53 mutation was not significantly different between
the two HPV-negative subtypes (cluster 1 and 2). Therefore, we can only suggest the
associations among smoking, immune response, and clinical outcomes without providing
specific genomic pattern results (e.g., mutation data).

5. Conclusions

In summary, we have presented a strategy to select the HNSC molecular signature
for predicting three subtypes with prognostic significance. The three subtypes include one
HPV-positive subtype with a favorable prognosis, which is consistent with current domain
knowledge. The other two HPV-negative subtypes showed differences in smoking behavior
and the gene expression related to tumor immune response, and they also exhibited distinct
survival rates. Additionally, we identified a novel gene, IFI30, that may be associated
with favorable prognosis. Compared to the subtype with the worst survival rate, IFI30
was overexpressed by approximately 2-fold in the subtypes with the best and second-
best favorable survival. We believe that our scoring methods and HNSC88 provide an
opportunity to develop diagnostic and prognostic markers for HNSC in the future.
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